
ANNALS OF PHYSICS 194, 387437 (1989) 

The Binding Energy of Nuclear Matter 
in the Chiral O-W Model 

L. G. LIU, W. BENTZ, AND A. ARIMA 

Department of Physics, Faculty of Science, 
University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan 

Received May 3, 1989 

The binding energy of nuclear matter is calculated in the chiral u-o model in an approxima- 
tion to the Hartree-Fock scheme. Relativistic exchange energies and correlation energies 
including the effects of vacuum polarization are calculated. It is found that if one includes only 
the nucleon loop term in the meson self-energies, no satisfactory description of nuclear matter 
can be given. It is argued that by including the meson loop terms in the meson self-energies 
one can account for the saturation properties of nuclear matter. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The description of nuclear matter and nuclei based on relativistic quantum field 
theory is a very challenging problem which attracted much attention especially 
during the last ten years. The starting point is a relativistic lagrangian describing 
the interaction of nucleons via the exchange of mesons Cl, 2). Although due to 
mainly technical difficulties it is at present still not possible to give a realistic 
description of strongly interacting systems within fully relativistic models, they 
endow us with a means to investigate the roles of mesonic degrees of freedom and 
the polarization of the negative energy Dirac sea, two points which cannot be 
studied unambiguously within a nonrelativistic framework. 

The common ingredients of almost all relativistic models used so far to describe 
nuclear systems [2, 33 are the o and the w mesons coupling to the nucleons in 
order to account for the medium range attraction and the short-range repulsion in 
the nuclear force. Guided by the desire to incorporate the concept of chiral 
symmetry, in a recent paper [4] we thoroughly discussed the so-called chiral (T-O 
modei, which in addition includes the pion as well as nonlinear mesonic interaction 
terms. The lagrangian is given by the well-known linear CJ model lagrangian to 
which the w meson part including the usual vector coupling to the nucleon is 
added. From the theoretical side the model seems attractive, since it exhibits the 
constraints imposed by chiral symmetry on the energy density of the system in an 
explicit and illuminating way. Actual calculations of the nuclear matter binding 
energy within this model, however, are haunted by serious difficulties. It has been 
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known for a rather long time [6, 71 that in the simplest approximation, namely the 
quasiclassical approximation, it is not possible to describe saturating normal 
nuclear matter. Rather, one observes a chiral phase transition from the normal state 
(Goldstone mode of chiral symmetry) to the abnormal state (Wigner mode) at 
densities around the normal nuclear matter density. It is also well known [7] that 
in order to avoid this phase transition one has to include the contribution due to 
the negative energy Dirac sea to the energy density. The result is a saturating 
nuclear matter state and a continuous chiral phase transition at very high densities. 
In addition to this contribution of the Dirac sea, however, there are the “zero point 
oscillations” of the boson fields (rc and a) [ 1, 81. It is not possible to assess these 
bosonic vacuum fluctuations as straightforwardly as the fermionic ones due to the 
presence of “tachyon poles” in the Hartree propagators of the bosons. In order 
to gain insight into the role of the zero-point oscillations of the (r field in the 
framework of the Hartree approximation, it is common [3] to add self-energy 
corrections to the cr propagator in a somewhat ad hoc way to prevent the tachyon 
pole. Strictly speaking, however, the presence of the tachyon poles renders the one 
loop (Hartree) calculation of the energy density impossible, and consequently 
people were led to investigate the two loop (Hartree-Fock) approximation 
El, 4, 8791. 

When we start from the Hartree-Fock expression for the energy density, the 
bosonic vacuum fluctuations discussed above are contained in the so-called “ring 
energies” (or RPA-type “correlation energies”). Their computation requires the 
self-consistent one loop (Hartree-Fock) meson propagators. The corresponding 
meson self-energies consist of the traditional particle-hole excitations, the nucleon- 
antinucleon excitations, and certain meson loop diagrams. The principal aim of the 
present paper is to study the role of these ring energies [9]. As a first step we 
consider only the ring energies due to the cr and o mesons, leaving out the pionic 
contribution. The problems associated with the pion will be discussed, but not 
explored in detail. Relativistic ring energies have been considered theoretically in 
some works [ 1,2, lo], but detailed investigations, especially in the framework of 
chiral models, have not yet been performed. An attempt has been made in Ref. [8] 
by using approximated forms of the meson self-energies. 

In this work, the binding energy of nuclear matter including the contributions of 
the relativistic ring and exchange energies will be calculated. We start in Section 2 
from the expression for the Hartree-Fock energy density as given in Ref. [4]. In 
order to make the calculation manageable, we omit the two line irreducible meson 
loop contributions to the energy density. Consequently, we start by considering the 
meson self-energies to be made up of particle-hole and nucleon-antinucleon loops. 
Consistently taking into account all relevant renormalization constants, we will 
demonstrate that the energy density, given in its final form by Eq. (2.49), is finite. 
The stability conditions for the RPA-type ring sum will be discussed. Usually the 
meson self-energy is decomposed [2] into a “density part” depending explicitly on 
the Fermi distribution function and a “Feynman part” describing vacuum polariza- 
tion effects. In Section 3.1, we discuss the numerical results obtained by retaining 
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only the density parts in the meson self-energies. It will be shown that in this 
approximation nuclear matter is unstable at normal densities, and thus the saturation 
point lies at about half of the normal nuclear matter density (see Fig. 6). The reason 
for this will be discussed in detail. Then, in Section 3.2, we will re-include the Feynman 
parts of the meson self-energies in the calculation of the energy density. It will be 
shown that in this picture the nuclear matter binding energy does not saturate (see 
Fig. 13). The total binding energy and some individual contributions turn out to 
show a rather pathological behaviour. In Section 3.3. we will invoke the meson loop 
contributions to the meson self-energies and show that these cancel large parts of 
the nucleon loops. The physical reason for this cancellation will be discussed. We 
will estimate roughly the influence of these meson loops on the ring energies and 
find that saturation is recovered (see Fig. 20). A summary and conclusions are 
represented in Section 4. 

The present work should be considered as a first step in the quantitative explora- 
tion of the effects of vacuum fluctuations on nuclear properties in chiral models 
based on the loop expansion technique. Many of the effects treated in this paper 
need further investigation. We emphasize that also the whole physical picture, as it 
emerges from a loop expansion, should be subject to discussion. In the course of the 
calculation we will be confronted with terms which become unphysically large when 
treated without phenomenological meson-nucleon vertex-form factors and, 
moreover, are very sensitive to assumed parameters. We therefore wish to leave 
open the possibility of alternative approaches which treat the effects of vacuum 
fluctuations more rigorously. 

2. THE ENERGY DENSITY IN THE CHIRAL Q-O MODEL 

In this section we will derive the form of the energy density which will be used 
for the numerical calculations. The theoretical framework has been established in 
Ref. [4], and we will frequently refer to the results of that paper. For the sake of 
a self-contained presentation, however, we will first explain the essential ingredients 
of the model before turning to the energy density. 

2.1. The Model 

The lagrangian of the present model is obained by adding the o meson pieces to 
the familiar chiral ~7 model lagrangian [S]: 

This lagrangian consists of the fields Y, 4, rr, and VP for the nucleon, the 0 meson, 
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the pion, and the w meson, respectively, and the coupling constants g, g,, and A. 
We further introduced GPY = PV - C’V‘. The last term in (2.1) breaks the chiral 
symmetry explicitly, and c is the corresponding symmetry breaking parameter. The 
symmetry is spontaneously broken by assuming p* < 0. Since the e and the o 
meson fields have non-vanishing expectation values in the nuclear matter ground 
state, which we denote by v” and GP, we translate the fields according to 

qs=a+o” (2.2a) 

V@=c#+tz~, (2.2b) 

defining the new quantum fields cr and o Ir. The tilde in Eqs. (2.2) indicates the 
density dependence. The Green functions and accordingly also the energy density of 
the system calculated from the lagrangian (2.1) are generally divergent. In order to 
deal with these divergencies, we have to introduce renormalization constants for all 
fields, coupling constants and mass parameters in (2.1), which will be fixed by 
imposing renormalization conditions on the Green functions in free space (zero 
density). The renormalization procedure consistent with chiral symmetry has been 
discussed in Ref. [S] and applied to the case of nuclear matter in Ref. [4]. The final 
form of the lagrangian, after introducing Eqs. (2.2) and all renormalization 
constants into (2.1), is [4] 

with 

(2.3a) 

mn2 + am,* L&= -~122,(P-v*)*- 2 (3 -2) 

mw2 + 6m,* 
+c(u”-vu)+ 2 iv%, (2.3b) 

JZL = !F[iZ, P - rkN - c!%i, - gZ,(a + in. ry,) - g,Z,,y,(d + W)] Y 

+; [z,(iT,o)* - (cl,* + 6Gli,*)a*] 

+f [z,(a,~)* - (+I,* + 6fi,*)d] -d ~,G,,Gflv 

+ 
mu2 + 8m02 

2 
(2.3~) 

Sf& = o(c - v”(fi,* + ~562,~)) + w,W(m,2 + am,*). (2.3d) 

Here Z,, Z, and Z, are the wave function renormalization constants for the 
nucleon, the (0, n) mesons, and the o meson, and Z,, ZA, and Z,, are the vertex 
renormalization constants for the aNN (and +VN) vertex, for the purely mesonic 
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interaction vertices and for the wNN vertex, respectively. The lagrangian contains 
the density dependent mass parameters S,, fi,*, and &,* together with their coun- 
terterms, as well as the mass renormalization counterterm 8m02 for the w meson. 
The lagrangian (2.3a) has been split into three parts, where A& is a constant 
depending on the “mean fields” f? and G P, P’,, is that part which will generate the 
loop terms in the energy density, and P& is a counterterm which ensures that the 
fields cr and cY’ have vanishing expectation values in the nuclear matter ground 
state, according to their definitions (2.2). 

We now briefly discuss the definitions of all the parameters appearing in (2.3). 
Considering the masses mN, m,, and m, of the nucleon, the pion, and the o meson 
in free space as fixed, the only free parameters are the u meson mass m, and the 
oNN coupling constant g,. The coupling constants g and 1 are defined by the 
relations 

m,=gv (2.4a) 

mo2 - m,* = 211*v*, (2.4b) 

where v is the vacuum expectation value of 4, which is determined by symmetry 
requirements (see later). The density-dependent mass parameters are defined by 

v” 
fi,=gv”=m,- 

V 
(2Sa) 

fig* = mo2 + 31*( v”* - v2) (2.5b) 

$&* = mn2 + A*(iT* - v*). (2.5~) 

The mass counterterms in free space dm,, 6m,*, 6m,*, and 6m,* together with the 
wave function renormalization constants Z,, Z,, and Z, are determined in the 
usual way by imposing renormalization conditions on the single particle 
propagators. Throughout this work we will use the renormalization points q* = mN2 
for the nucleon and q* =0 for the mesons; i.e., we impose the following seven 
conditions on the renormalized self-energies in free space (characterized by a 
subscript f): 

cNfW=mN)= aK s(k=mN)=O 
C,(k* = 0) = C,(k* = 0) = p a% (/p = 0) = rJ 
~#=0)=~(k”=0)=0. 

(2.6b) 

Here zITf is the transverse part of the o meson self-energy in free space. The 
prescription (2.6~) together with baryon current conservation gives [ 111 

6m *=O w Y z,, = z,. (2.7) 
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The mass renormalization constants in free space, which are now fixed by 
Eqs. (2.6), in turn determine the vertex renormalization constants Z, and Z1 as well 
as the density-dependent mass counterterms 

6mN z,=1+- 
mN 

(2.8a) 

(2.8b) 

661 0 2=6m 0 2+3A2(Z 1 -1)(c2-u2) 

c!%z~~ = 6m,’ + 12*(Z, - 1)(ij2 - v’). 

(2.9b) 

(2.9~) 

The “mean fields” v” and IV are determined as follows [4]: Baryon current 
conservation gives 

(2.10) 

where j,ll is the baryon current in the nuclear matter ground state. Since in the 
following we will work in the nuclear matter rest frame, we have ti = j, =O. The 
partial conservation of the axial vector current (PCAC) gives the implicit relation 
(the Goldstone theorem) to determine 17, 

-&l,-‘(O) = qci,2 + C,(O)) = c, (2.11) 

where d,(q) (C,(q)) is the renormalized pion propagator (self-energy) in the 
nuclear medium. The symmetry-breaking parameter is generally related to pionic 
properties by c = F,M,‘, where F, is the pion decay constant and M, is the pole 
position of the pion propagator in free space. On the other hand, due to the renor- 
malization prescription (2.6b), Eq. (2.11) in free space becomes c = umz2, and hence 
u is determined to be IJ = FzM,2/m,2. An explicit one loop calculation of the pion 
self-energy shows that [S] M, = m,, and therefore u x F,. From Eq. (2.4a), the 
coupling constant g then takes the value gw 10. We will use the value g = 10 
throughout this paper. 

2.2. Form of the Energy Density 
We start from the self-consistent two loop (Hartree-Fock) expression for the 

energy density, which was derived in Ref. [4] from the lagrangian (2.3): 

E=lJ+XJ+E,+E,. (2.12) 
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Here U is the familiar two-humped “potential” including the contribution from the 
w mean field. 

U= 
m:--m, 

80’ 
(a7-*Z)‘+~(a?-“2)-c(a-u)-~~~, (2.13) 

and 6U is the counterterm 

tim,‘- drn,’ 
SU= -VEV+ 8v2 (3 - ,2)2 + E$ (62 - “2). (2.14) 

It includes the subtraction of the vacuum expectation value (VEV) in order that E 
of Eq. (2.12) vanish for zero density. The “ring energy” E, is given by 

with 

E, = E,’ + E,,’ + E,’ (2.15a) 

f 
d4k 

ENr= -i (2Tc)4 - Tr(ln(S/-‘S) - S,P’S) 

E r-4 d4.k 
s 

- Tr(ln(AfPIA) - a,-‘A) 
cm -2 (27c)4 

(2.15~) 

- (ln(A,f-lA.) - 6,-‘A.). (2.15d) 

Here S and A, are the full renormalized propagators for the nucleon and the pion, 
and A is the combined propagator for 0 and o defined in Ref. [4]. The propagators 
characterized by fare the full renormalized propagators in free space, and 

S,(k) = 
1 

Z,i7 - iiiN - CM, + id, 
(2.16a) 

agO = 1 
Z,k* - Go2 - &i,’ 

for a=6= -1 
&flb = 

g”“Jwo = g”” z otherwise 
w 

6,, = 
1 

Z,k* - fin2 - 6fiz2’ 

(2.16b) 

(2.16~) 

In (2.16a) we used 

t%p=kJ‘-g,3”, 6, = S( 1 - 2n(k) O(k,)) 

with n(k) the Fermi distribution and 6 >O an infinitesimal quantity. The roman 
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FIG. 1. The one-loop (Hartree-Fock) combined self-energy for CJ and w mesons, expanded in terms 
of the nucleon Hartree propagator (full line). The meson lines refer to the RPA meson propagators. The 
wavy line with dots denotes the D or w meson, and the dashed and dashed-dotted lines represent the 
n and o mesons, respectively. The circles stand for vertices, and the squares for vertex and self-energy 
corrections. 

indices (a, b) of the combined propagator A take the values - 1 to 3, where the 
index - 1 characterizes the (T meson degree of freedom, and the Greek indices run 
from 0 to 3. Finally, the loop contribution in (2.12) is given by 

El=; (2~4 s d4k (Tr(Az) + 3A,c,) + E,,,,,. (2.17) 

The first term in (2.17) is the familiar Fock term, while El,,,, is the contribution 
of the purely mesonic loops. The unrenormalized self-energies c and Z, in (2.17) 
are shown graphically by the diagrams in Figs. la and 2a, respectively, if the full 
lines are considered as the self-consistent Hartree-Fock propagators. Equation 
(2.17) is the two-loop term in the expansion of the energy density with respect to 
the number of loops. 

The variation of the energy density (2.12) with respect to the propagators S, A, 
and A, gives the Dyson equations, which are in general coupled integral equations. 
The presence of divergencies makes an exact solution of these integral equations 
very difftcult. The main purpose of this paper is to investigate if one can achieve 

,/‘-\ I-. 
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\ : I 
-- -_ --‘-.I-- + -- ‘di- + -4 1 ++- 

.V. 
ta) Cb, 

-(-+-+-(-p-+--Q- 

(C) 
FIG. 2. Same as Fig. 1 for the pion self-energy. 
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a satisfactory description of the nuclear matter binding energy by making the 
following two simplifications: First, to neglect the meson loops in (2.17), i.e., 

E I, mes = 0, (2.18) 

and, second, to construct the meson self energies in (2.17) or Figs. la, 2a by using 
the lowest order (Hartree) nucleon propagator So, which is given by (2.16a) with 
Z,= Mr,,,=O. In order to be consistent with this latter approximation, we also 
have to replace S + So in the counterterm contribution of (2.15b), i.e., 

S0-‘S=(S0-‘+(Z,-1)~-6&,,)S+S0-‘S+((Z,-1)i7-6@,,)S,. (2.19) 

With these two approximations we obtain the Dyson equations by varying (2.12) 
with respect to S, A, and A,, 

S=& 
- - 

A=&+A,~A=A,+A,~A 

A,=~,,+~,,~,A,=A,n,A. 

(2.20a) 

(2.20b) 

(2.2Oc) 

with 

17”b=C”b--~b+~a~16b~166 (2.21a) 

17, = 2, - c,+ 6, (2.21b) 

6, = fig2 - mo2; 6, = rEi,’ -m,‘. (2.21c) 

The meson self-energies z here are the renormalized nucleon-loop contributions 
(specified below) constructed from the Hartree propagator So. Note that A,-and A,, 
in Eqs. (2.20) include the self-energies in free space, and therefore the latter ones are 
subtracted in Eqs. (2.21). 

Due to the Dyson equations (2.20b), (2.20~) the last terms in (2.15c), (2.15d) 
cancel against the loop term (2.17), and we are left with 

E=U+dU+E, (2.22a) 

with 

&= -i ~Trln(S,~‘SO)+~~~Trln(A~~lA) s 

3i d4k 
+T (2n)4 I 

- ln(A,y’A, )-igi Tr(S,(Gfii,-&Z,- 1)). (2.22b) 

Let us now discuss the counterterm contribution 6U. Since E is required in the two 
loop approximation, one could in principle consider the CJ and n self-energies in free 
space in the same approximation to calculate the mass counterterms 6m,* and bm,2 
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required in Eq. (2.14). Due to our renormalization conditions (2.6) one can, 
however, calculate these mass counterterms more conveniently directly from the 
expression (2.22) for the energy density. For this purpose we use the general 
relations, which hold for any fixed density, 

aE 
FL- - -ad.-'(0)-c=qfi,2+~~tn*+C,(0))-c 

g= -d,-‘(o) = k,2 + si,* + Z’,(O), 

(2.23a) 

(2.23b) 

which were exploited extensively in Ref. [4]. Equation (2.23a) states that, for exact 
chiral symmetry (c = 0), the minimization of E with respect to fi at fixed density 
leads either to a pole in the pion propagator at q = 0 (Goldstone mode) or to a 
vanishing value for C and ~5~ (Wigner mode). The minimization condition obtained 
from (2.23a) thus agrees with the Goldstone theorem (2.11). Due to Eq. (2.23b), the 
condition -d,-‘(O) >O decides which of the two modes is actually realized. 
Although we use the same notations, note that the propagators and self-energies in 
(2.23) also contain the two loop contributions (since we calculate E in the two loop 
approximation), in contrast to the quantities in (2.20) and (2.21). In Appendix A 
we demonstrate the relations (2.23), i.e., we derive the two loop expressions for the 
0 and rc self-energies which are consistent with the expression (2.22) for the energy 
density. 

Using (2.23) in the free space limit (density p + 0, fi -+ u) we obtain, using (2.22a) 
(see also Eqs. (A.l) and (A.12)) 

aEL 
aa p=o,a=v 

= oC,(O) = - v6mn2 (2.24a) 

aZEL 
afi* 

= C,(O)= -6m,*, (2.24b) 
p=o,a=v 

where in the second steps we used the renormalization conditions (2.6b). Equa- 
tion (2.24) determines the mass counterterms drn,' and 6m,* in terms of E,. Due to 
chiral symmetry, E, depends only on B2 rather than on v”. Using this fact we obtain, 
on putting (2.24) into (2.14), 

6U= -E,~p~o~~~u-(~2-~2)~ (2.25) 
p=o,tT=v 

This expression shows that the counterterm 6U effectively subtracts the first three 
terms in the expansion of E, for p = 0 around v”* = u*. Therefore, the total energy 
density E for p = 0 behaves like (v”’ - u2)3 as v” --) u. 

The aim of the rest of this section is to bring the energy density (2.22) into a form 
more clearly showing its finiteness and its physical content. Our final result will be 



BINDING ENERGY IN A CHIRAL MODEL 397 

given by Eq. (2.49). Since in the actual calculation we will not include the pionic 
contribution in (2.22b), we shall omit it in the following formulae. (Problems 
associated with the inclusion of the pionic contribution will be discussed in 
Section 4.) It is convenient to split the Hartree propagator So into two parts [2] 

so = so, + SOD (2.26a 

with the “Feynman part” 

SO,=- 
1 

K-fil,+ih 
(2.26b 

and the “density part” 

So, = (il + eN) ni y S(i;, - E,) (2.26~) 
k 

with Ek = dm. Then the nucleonic part in (2.22b) can be treated as in 
Ref. [4] with the result 

d4k 
- i m Tr ln(Sof -lS,)=4~~Bkn(k)+g,~‘p 

with 

6,=biN2-mN2. (2.27b) 

For the combined C, o contribution in (2.22b) we can write, using the Dyson 
equation (2.20b), 

(2.28a) 

where we defined the longitudinal and transverse polarizabilities by [2] 

det( 1 - ndf) = .sLsT2. (2.28b) 

In order to derive their explicit expressions, we need the renormalized polarization 
insertions in (2.21a). They are given by (see Fig. la) 

C-’ - ‘(k) = C,(k) = -ig* s $$ Tr(S,(k + 4) S,(q)) + &,2 - k’(Z, - 1) 

= C,,(k) + C,,(k) (2.29a) 
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,P”(k) = Z,“‘(k) = - igw2 1% Tr(yPS,(k + 4) y”&(q)) 

-(g-yg) (Z,- 1) 

= Z,,“‘(k) + ZoFPV(k) (2.29b) 

F~‘(k)=Z~‘“(k)= -igg, 
s $ TW‘~o(k + d So(d). (2.29~) 

The “density parts” of these polarizations, characterized by a subscript D, involve 
at least one factor Sob in the integrals of (2.29), while the “Feynman parts” involve 
the combination S,, SOF in the integrals and include also the counterterms. The 
combination S,,&,r does not contribute in (2.29~). The polarizations satisfy the 
relations 

k,C”“(k) = 0. (2.30) 

For future reference we note that the Feynman part of (2.29b) has the structure 

c COF 
P” = (2.31) 

defining the transverse self-energy zrr. (In free space it coincides with C,, of 
Eq. (2.6c).) Analogous to Eqs. (2.29) the polarizations n of (2.21a) will be split as 

n-‘-‘=zz,=n,,+n,,+s, (2.32a) 

with 

nc,F = c,F - z,,; (2.32b) 

(2.32~) 

with 

(2.32d) 

p-‘=y-1 (2.32e) 

For the calculation of the determinant in (2.28b) it is convenient to choose k to lie 
on the x axis. Then the seven different non-vanishing components of LIab are 
Ii-‘-‘, noo, IT”, n** = f133, n-“= no-‘, n-l1 = n’~ ‘, and @’ = n’“. Equa- 
tion (2.30) gives three relations (for a = - 1, 0, l), and we are left with four inde- 
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pendent components, which we will choose to be Ii-‘- ‘, p, 1733, and fly ‘. 
Noting that the free-space propagator A, has the same tensor structure as the 
unrenormalized propagator (2.16b), one can calculate the determinant explicitly 
with the result 

EL=(l -Acr,~,)(1-AdflL ) - &A,J~M~ (2.33a) 

Ed = 1 + A,,Z7, (2.33b) 

with the free space propagators 

A,-‘-’ = Aof= 1 
k2 - mo2 - L’Jk) 

(2.34a) 

At’= gJ’yAwf= gp” -1 
k2 - mu2 - C,,(k)’ 

l7, has been introduced in (2.32a), and the other quantities in (2.33) are defined by 

Ii-, = Ilw33. (2.35~) 

Here L and T stand for the longitudinal and transverse part of the o meson 
polarizations, and M denotes the mixed polarization with one external c and one 
external o meson leg. Equation (2.30) was used in deriving the second equalities in 
(2.35a, 2.35b). By using (2.32d) we will also split the longitudinal and transverse 
polarizations introduced above into their Feynman and density parts: 

UL = fl,, + OLD (2.36a) 

l7T=nTF+llTo. (2.36b) 

Note that due to the structure of (2.31) we have, for the Feynman parts, 

I& = - LILF = c,, - z,,. (2.36~) 

Inserting Eqs. (2.33) into (2.28a) one obtains the expression for the combined C, o 
contribution to the energy density. 

Next we turn to the last term in (2.22b). We first note that the factor i in the 
integrand can be replaced by fi N: If the density part of the Hartree propagator, 
Eq. (2.26c), is inserted into this term, the-h function leaves only the on-shell value 
of the integrand, which means effectively t + CijN in the last term of (2.22b). When 
the Feynman part (2.26b) is inserted we have, after a shift of the integration 
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variable, Tr(S,,z) a k2/(k2 - fiN2) = 1 + fiN2/(k2 - fii,*), and the “1” in this last 
expression is cancelled by the subtraction of the VEV. We further use 

6rii,-A,(Z,- 1)=2(6m,-m,(Z,- l))= +,r . (2.37) 
b=mN 

Here the first equality follows from Eq. (2.9a) and the second one from the renor- 
malization condition (2.6a). Note that z,, denotes the unrenormalized nucleon 
self-energy in free space. Therefore, the last term in (2.22b) becomes 

--j (27c)4 s d4k 
- Tr(S,(Gk, -&Z, - 1)) 

=i3zNf (2.38) 
mN 

Here we have performed the integral over S,,, and the divergent constant a is given 
by 

where r is the gamma function and n the number of dimensions. 
So far we discussed the forms of the various terms in Eq. (2.22b). The results are 

given by Eqs. (2.27a), (2.28a), and (2.38). From these formulae one can directly 
calculate the counterterm 6U of Eq. (2.25). For this we note that for zero density 
(p = 0, but i? # u) the polarizabilities (2.33) involve only the Feynman parts of the 
polarizations and the mass shift 6, of Eq. (2.21~). A simple calculation gives 

Here, as in the following, we use the notation 

aA a2A 
A’=- a%,* 9 ,i,N2 = ,N* A"=a(6iN2)2 rirN2=mN2' 

(2.39a) 

(2.39b) 

(2.39~) 

(2.39d) 

(2.40) 

The term (2.39a) comes from the nucleonic contribution in (2.22b); (2.39b) and 
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(2.39~) have been derived from the (0, o) contribution in (2.22b); and (2.39d) has 
been derived from the last term in (2.22b). The mass shift JN is given by (2.27b). 

We have now derived the explicit forms of all the terms in the energy density 
(2.22), and it remains to add them together in such a way that the finiteness of the 
whole expression becomes evident. For this, let us first separate the divergent parts 
from the expressions (2.27a) and (2.28a). For (2.27a) we write 

-i $ Tr ln(S,,-‘S,) = 4 j $ E,n(k) + g,G’p + ENC+ 6E, (2.41a) 

with 

(2.41~) 

The term EN’ ’ IS finite, and the divergent term 6E, is cancelled by (2.39a). Next 
consider (2.28a). The density parts of the polarizations I7 in (2.33) go as l/k* for 
k + CO [Z], while Feynman parts, as we will see later, behave as In k2 in this limit. 
Consequently, we write 

with 

i d4k 
5 (2n)4 I 

- Tr ln(d,-‘A) = ELC + ETC + SE,, + 6E,, + 6E, (2.42a) 

In sL + AgIL’, + A,,IZ, 

E c=-i T ln + - Aof& + f MA%* 

~E,D=;$$, (A,,n,,+A,,n,,-2A,,n,,) 

(2.42b) 

(2.42~ ) 

=; j $ (A,,~,, + kGLm)‘p) (2.42d) 

(2.42e) 

6E4=&$$ {(A,,(6, + K,,H2 + (A,rfl,,)2 + 2(A,&,)‘}. (2.42f) 

595/194/2-l? 
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The terms ELC and ETC are finite, while the terms 6E, of second order and 6E, of 
fourth order in the coupling constants are divergent. We have to combine them 
with the contributions (2.38) and (2.39) in order to get a finite result. Consider first 
the term (2.42d). As explained before, the density parts of the self-energies involve 
at least one factor S,, in the integrals of (2.29). The combination So,,&, will give 
rise to a finite result when inserted into (2.42d). The resulting contribution is 
the familiar exchange term, which we will call ET;, (see Eq. (2.45b) below). The 
remaining terms involve the combination &SOD and, when inserted into (2.42d), 
give 

- -i $Tr(~N,S,)= -if,,l~=fiN~$TrS,,. s (2.43) 

Here zjNF is the unrenormalized “Feynman part” of the nucleon self-energy (see 
Fig. 3): 

I,t is a manifestly Lorentz invariant function, and when we expand it around 
It = fii,, we obtain the second equality in Eq. (2.43). The term (2.43) combined with 
the first term on the RHS of Eq. (2.38) gives a finite result. We therefore write 

6-52~ - i 12nj4 I d4k 
- Tr(S,,(G%i, -&Z, - 1)) = ET;, + ET,“, 

with the “exchange energies” 

A&) Tr(f%dq) SOD@+ 4)) 

+$jg4j$i A,@) Wyp&dq) Y~oD(k + 4)) 

ET;,= -i~NFl~zfiNj$$Tr&D 

with 

(2.45a) 

(2.45b) 

(2.45~) 

(2.45d) 

FIG. 3. Diagrams for the Feynman part of the nucleon self-energy (2.44). Here the full line denotes 
the propagator S,,, and the dashed-dotted and wavy lines are for the free o and o propagators, 
respectively. 
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From the general relation z,, = zNF + 6tii, - &Z, - 1) between the renormalized 
and the unrenormalized nucleon self-energies it is seen that (2.45d) is indeed the 
renormalized self-energy at i = fir., and hence is finite. 

Let us now add together all the remaining divergent terms, i.e., the second term 
in (2.38), the terms (2.39b)-(2.39d) and (2.42e), (2.42f). The second term in (2.38) 
combined with (2.39d) gives 

- 

- Tr(&(G#zN - *,(Z, - 1)) + (2.39d) = & $ C, (2.46a) 
N p=mN 

where the constant C is given by 

C = SN4 ln 5 - mNZ6, - i 6,‘. 

Now adding together the divergent terms listed above we get 

(2.46a) + (2.39b) + (2.39~) + (2.42e) + (2.42f) = ET;, + E” 

with 

(2.46b) 

(2.47a) 

(2.47b) 

((26,@,;“+ [II,,‘]‘-“) A$+ 3[Z7,,2]‘-“d,,;). (2.47~) 

Here ncP2’ (Z7-‘I) denotes the value of the polarization 27 after the first two (one) 
powers in an expansion around GN2 = mN2 have been subtracted, 

n!-‘)=n,,-s C’ IF N rF (2.48a) 

(2.48b 

with i = c or T. In (2.47~) we further introduced the notation 

[niF2](- l)= z7,,* - @,c;,)*. (2.48~ 

In the next section it will be shown that the expressions (2.47b) and (2.47~) are 
finite. 

We can now write down the final expression for the energy density (2.22). We 
have to add Eqs. (2.41a), (2.39a), (2.42b), (2.42c), (2.45a), and (2.47a) and obtain 

E = EQCL + ET;, + ET& + E;;, + E” + ENC + ELC + ETC. (2.49) 
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Here the quasiclassical contribution is given by 

EQLC= U+4 s 
d3k 

---&n(k)+g,P”p 
(2x) 

(2.50) 

with U from Eq. (2.13). The three “exchange energies” E”“, being of second order 
in the coupling constants, are given by (2.45b), (2.45c), and (2.47b), the fourth- 
order term E” is given by (2.47c), and the “correlation energies” ,!? are given by 
(2.41 b), (2.42b), and (2.42~). 

2.3. Polarization Insertions and Stability Conditions 
Let us inspect more closely some of the loop terms in (2.49). Our intention here 

is, first, to show the finiteness of (2.49), second, to derive certain stability conditions 
which will restrict the choice of the parameters, and, finally, to discuss the signs of 
the various terms. 

(a) Exchange terms and the fourth-order term E”. The three “exchange 
energies” ET;), i = 1, 2, 3, in Eq. (2.49) can be represented graphically by Fig. 4. 
According to our derivation, ET;, is due to the combination S,, SOD, ET,“, due to 
Sor,SOF, and ET;, due to S,,S,, in the diagrams of Fig. 4. The numerical evaluation 
of the traditional Fock term ET;, according to (2.45b) presents no difficulties [Z]. 
As expected from the nonrelativistic picture, the cr meson contributes repulsion here 
while the o meson gives an attraction. The term Ey;, of (2.45~) is due to the shift 
mN + fiN of the nucleon mass. Its evaluation requires the renormalized Feynman 
part of the nucleon self-energy CNF. According to our definition (2.44), this quan- 
tity involves the full meson propagators in free space. As we will discuss later in 
connection with the introduction of cutoff functions, however, in the actual calcula- 
tions we will neglect the free space meson polarizations. In this approximation, the 
unrenormalized nucleon self-energy of (2.44) becomes 

167c*z;,,(p) = g2(fi&,(o)(~2, C&*) + jW,“‘(j*, GN2)) 

+ gw2( -4+tNF,‘o’(j72, rFzN2) + 2jFw(“(@*, rFzN2)) (2.51a) 

FIG. 4. Graphical representation of the exchange energies in Eq. (2.49). The full line stands for the 
Hartree propagator, and the dashed-dotted and wavy lines for the free o and w meson propagators, 
respectively. Counterterm contributions are not indicated in the figure. 
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with 

F,‘“‘(p2, m2) = - ($ r(2 - f) +f,‘“‘(p2, mq, 

I 
1 

f%‘“‘( p*, m2) = dx x” ln(m2 + (m,* -m2)x-p2x(l -x)) (2.51b) 
0 

(cr=a,w;a=O, 1). 

The renormalized self-energy at j = Cri, is then found from (2.45d) as 

167~‘&.&,~~= g’~N(f,‘o’+f~(1))-2g,2~,(2f,‘o’-~w(”) 

with 

(2.52a ) 

f,‘“’ = fz(U)(fiN2, FzN2) -p)(mN2, rnN2) 

5 
1 = dx Xn ln fiN2(1 - xl’ + m,*x 

0 mN2( 1 - x)’ + ma2x’ 
(2.52b) 

It is seen that a(o) contributes attraction (repulsion) to (2.52a) and hence also to 
the term Ey;) of (2.45~). 

The evaluation of the next two terms E;;, and E” in (2.49) requires the Feynman 
parts of the meson self-energies. These are obtained by replacing So -+ So, in 
(2.29a), (2.29b): 

167r2Z,,=4g2(k2-4~N2) 1’ dxln fiN2-i>J1 -x) 
0 

- 8g2fiN2 In $ + gg2(sN2 - mN2) (2.53a) 

16n2L,,=16g,2k’~1dxx(l-x)lnAN2~~~~1~~X). (2.53b) 
0 

For k2 =0 and rFzN/mN between 0.4 and 1, (2.53a) gives a large positive contri- 
bution, which will strongly influence our later discussions. The polarizations IZF 
introduced in (2.32) are obtained from the above expressions by subtracting the free 
space values (fiN = mN). 

In order to show that the expressions (2.47b), (2.47~) are finite, we need the 
asymptotic forms of the polarizations for large k2. We obtain (i = 0, T) 

LTiF a log k* + O[log k2/k2] (2.54a) 

niF(-l) log k* 
a -p-+ O[l/k’] (254b) 
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(254d) 

(2.54e) 

where C has been given in (2.46b). Due to (2.54b), (2.54c), E” of (2.47~) is finite. 
From (2.54d), (2.54e) it follows that the divergence of the first term in (2.47b) is 
given by 

1C(3g’-3g..,‘)r(2-f), 167~~ 2rc2 2 

This divergence is cancelled by the second term of (2.47b), as can be seen from the 
form of the unrenormalized nucleon self-energy in free space, obtained by setting 
fi, = mN in (2.51). This shows that also the contribution (2.47b) is finite. 

The integrals in (2.47b), (2.47~) are calculated numerically by performing a Wick 
rotation (k2 + I2 = -ko2 - k2; we will use a hat on a quantity to characterize its 
Wick rotated expression). We obtain, leaving out the free space meson self-energies, 

16n2E”” = (3) (2.55a) 

+ gw2(-4fu’o’(mN2y mN2) + 2fw(“(mN2~ mN2))] (2.55b) 

If one does not introduce a cutoff function, one should make use of the asymptotic 
expansion given in (2.54d), (2.54e) to subtract a suitable function from the 
integrand in (2.55a) and add it again, thereby cancelling the divergent term (2.5%) 
analytically. (For example, a possible choice concerning the (T meson contributions 
in (2.55) would be the function 3Cg2/2rt2. 1/((12 + p2)(12 +m,')), where p is an 
arbitrary mass.) However, as we will explain later, we will evertually introduce a 
cutoff function, which enables us to calculate the two terms (2.55a), (2.55b) 
separately. We will then see (in Section 3.2) that the contribution of the cr meson to 
z’NI is negative and hence the CJ meson part of the term (2.55b) is positive. (Note 
that C < 0.) The G meson term in (2.55a) cancels part of this repulsive contribution, 
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which can be understood from the fact that fiCF’. 2, < 0 for small I’. For the 
o meson the situation is just reversed; i.e., the o meson part of the sum 
(2.55a) + (2.55b) gives attraction. 

The fourth-order term E” of Eq. (2.56) will turn out to depend very strongly on 
the assumed value for m,. We have 6, < 0, and also both fioFCP ” and [fi,,‘] ’ I’ 
are negative for small Z2. Roughly speaking, for m, 5 1.2 GeV one gets a repulsive 
contribution from (2.56). For higher m,, however, the mass shift 6, becomes 
increasingly important and E” turns into an attractive contribution. The w meson 
term in (2.56) will be seen to be small compared with the u contribution. 

(b) Correlation energies. Next we turn to the correlation energies in 
Eq. (2.49). For the nucleonic contribution we have the simple Hartree expres- 
sion (2.41 b), which can be given analytically as [3,4] 

F(.~)=,~21ny-~(y2-1)+2(?,-1). (2.57) 

For 11~ < 1 we have ENC >O. The positive sign is easily understood from the fact 
that ENC is nothing but the energy of the Dirac’sea minus the vacuum value 

(JZ$?i? - Jw) + counterterms. (2.58) 

The longitudinal and transverse correlation energies have been given in (2.42b), 
(2.42~). For their numerical evaluation we will perform a Wick rotation 
(k, -+ o = ik,). If we include both the explicitly density dependent and the Feynman 
parts in the meson propagators, the imaginary parts of the self-energies have the 
correct (negative) sign, which implies that the propagators have neither zeros nor 
poles for complex k,’ [S]. This leaves the possibility of real (physical) poles and 
poles on the imaginary k, axis (tachyon poles). For the system to be stable the 
latter ones have to be avoided, which imposes the “stability conditions” 

&(I) > 0 (2.59a ) 

&(I) > 0 (2.59b) 

for all values of the Euclidean four vector 1= (w, k). An instability of the system 
occurs if a pole at k,2 > 0 passes the origin in the complex k,’ plane and moves to 
the tachyon region k,’ < 0 [S]. Hence, in practice it is sufficient to impose the con- 
ditions (2.59) for o = 0. We should note that our above discussion holds only if the 
Feynman parts of the polarizations are included. In the widely used approximation 
of including only the density parts, the propagators can have poles at complex k,*, 
and one obtains different results when the Feynman parts are neglected before or 
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after the Wick rotation. In the numerical calculations to be discussed in Section 3 
we will investigate the approximation of neglecting the Feynman parts in the Wick 
rotated expressions. 

Let us discuss the low momentum limits of (2.59), where Eq. (2.59a) imposes a 
rather strong condition on the choice of the parameters. We have for I= (0, k) + 0 
(see Appendix B) 

m *2+CoF(0)322,*2 &(O)= d 
m, ma2 

E^L(syo) = mo*2 +&+(O) (1 + F 
m, 

(H)) 0 . 

Here we used the notations 

(2.60a) 

(2.60b) 

m, *2 = clg2 + Z,,(O) = #lo2 + 4g2 J f$ & n(k) (2.61a) 
k 

16n2C,,(0) = 8g2 fiN2 - mN2 - 3fiN2 ln 5 
> 

m *2=m 
w w2 + n,,(O) = mm2 + g,’ : (2.61~) 

In the above formulae, the limits k + 0 of a quantity A(k) are denoted as 
A(0)=1im,,,,1im,+, A(k) and A’““(O) = lim,_, lim,,,, A(k). (The two limits do 
not commute, since the particle hole excitations vanish in the former but not in the 
latter limit.) We further used E, = ,/mi and NrCH) = 2p,E,/n* is the 
density of states at the Fermi surface in the Hartree ‘approximation. The mass 
parameters m,*2 or (mv*2 + C,,(O)) a re the “self consistent” CJ mass parameters in 
a one-loop calculation; i.e., they agree with the quantity -A,-‘(O) of (2.23b) if the 
energy density E equals EQCL or EcH) = EQCL + ENC (see Eq. (2.49)), respectively. 
Similarly, m,*2 is the self-consistent w meson mass parameter in a one loop 
calculation [4]. Finally, FO(“’ is the dimensionless 1= 0 Landau-Migdal parameter 
calculated from the one-loop energy density EcH) in the usual way [4, 123. We see 
that the condition (2.59a) implies 

m D *= + Z,,(O) > 0 (2.62a) 

1 + Fo(“) > 0. (2.62b) 

The conditions (2.62) are necessary in order that the meson propagators are free of 
Tachyon poles at low momenta, i.e., in order that the energy density is real. They 
do not guarantee the stability of the two loop energy density (2.49) with respect to 
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variations in 0” for fixed density, nor with respect to variations in the density. Since 
we calculated these meson propagators in the one loop approximation retaining 
only the nucleon loop, the conditions (2.62) derived above agree with the following 
stability conditions to be imposed on the Hartree energy density: J2E’H’/8v”2 > 0 for 
fixed p, and a2EcH’/ap2 > 0 at the extremum of EtH’( p). We will come back to this 
correspondence in the next section. Eq. (2.59b) for l-+ 0 imposes no further condi- 
tions. We have &(O) = m,**/m,* and t?)(O) = 1. 

Turning now to the high momentum region, we note that the k* In( -k2) 
behaviour of the polarizations (2.53) leads to zeros of the polarizabilities at space 
like momenta (k* < 0). In particular, the meson propagators (2.34) in free space 
have tachyon poles. This problem occurs also for the photon propagator in Q.E.D. 
One possibility to avoid the tachyon pole has been proposed in Ref. [13] and con- 
sists in introducing the chain approximation in the spectral function of the Kallen- 
Lehmann representation. The resulting propagators are different from (2.34) and 
free of Tachyon poles. In this work, however, we will avoid the tachyon poles 
caused by the Feynman parts of the polarizations by introducing a meson-nucleon 
vertex form factor. This point will be further discussed in the next section. Without 
the introduction of vertex form factors there is also the possibility that for high 
density and/or small values of fii, the density part of the transverse polarization 
l7=,, causes E^T to become negative. For example, for g, = 15, p = 0.5 fm - 3, and 1 
fiN/mN = 0.6, l7&1* + mu’) becomes less than - 1 at o z 0, lk( z 450 MeV. The 
reason for this is very similar to that for pion condensation: The transverse part of 
the nonrelativistic o meson exchange potential contains a 6 function piece which is 
attractive in this channel. Since this instability occurs at rather high values of 1 kl, 
it can, unlike the case of pion condensation, be avoided by introducing a meson- 
nucleon cutoff function. Another possibility is to introduce a phenomenological 
two-body interaction (nonrelativistically usually written in momentum space as 
4nf2/m,*gs(c, . a,)), which simulates the effects of exchange and short range 
correlations. For example, the choice g, = 0.1 eliminates the singularity mentioned 
above, as does also a dipole form factor with .4 = 1 GeV. 

Returning now to the correlation energies (2.42b), (2.42c), a Wick rotation gives 
the following expressions which will be used for the numerical calculations: 

(2.63a) 

Here the Wick rotated polarizabilities are given by 
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~L=(l+&)(l-&)+(l*+m,;$+m,i) (2.64a) 

(2.64b) 

Here tan 8 = Ikl/o, and we again approximated the free space meson propagators 
by their lowest order forms. If all self-energy pieces in (2.63a) are neglected and 
only the mass shift 6, is retained, EL c is equivalent to the “zero-point oscillation” 
energy of the r~ field discussed in the Introduction, 

E,‘+kl$(,/m--dm)+counterterms, (2.65) 

which is attractive and known to cancel large parts of the nucleonic contribution 
(2.58) [3]. The effect of the density part of the CJ polarization Z?,, in (2.63a) has 
been roughly estimated in previous calculations [ 1, 3,4] by replacing Grg2 + mo*2 
in (2.65), where m,*2 is given by Eq. (2.61a). Note, however, that in the opposite 
limit of o -+ 0 followed by lkl --t 0, fi,, is negative and very large due to the attrac- 
tive nature of the particle hole interaction mediated by (T meson exchange. Physically 
we expect that this effect, which is partially cancelled due to the presence of the 
o meson (i.e., the mixing term in (2.64a)), will enlarge the attractive contribution 
due to ELC. On the other hand, the Feynman part fioF is positive and very large at 
small momenta and, as we shall see, can even change ELC into a repulsive contribu- 
tion. We will come to this point later. The contribution due to ETC will turn out 
to be small in our subsequent calculations. 

3. RESULTS AND DISCUSSIONS 

In this section we will show the results for the binding energy per nucleon based 
on the expression (2.49) and analyze them in detail. This will be done in two steps: 
First, in Section 3.1, we neglect the Feynman parts of the meson polariza- 
tions (2.29); i.e., the polarizations in this case include the familiar particle-hole 
excitations and the Pauli principle corrections to the NR excitations. Second, in 
Section 3.2, the Feynman parts will be re-included. Our conclusion will be that we 
cannot achieve a satisfactory description of nuclear matter within the framework 
discussed so far. In particular, if the Feynman parts of the meson polarizations are 
included the saturation of the binding energy is lost. After analyzing the situation 
we will see that, once the vacuum fluctuations are considered, the meson loop con- 
tributions to the meson polarizations (see Fig. lb, 2b) should be taken into account 
simultaneously with the nucleon loops. Therefore, in Section 3.3, we will estimate 
the influence of these meson loops on the correlation energies. This modification of 
the correlation energies leads to a recovery of the saturation. 
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In all subsequent calculations we fix g = 10 due to reasons discussed earlier. We 
further use mN = 939 MeV, v = 93.9 MeV due to (2.4a), m, = 783 MeV, and in 
(2.4b) and (2.13) we use m, = 140 MeV. The free parameters are m, and g,,. 

3.1. Feynman Parts of Polarizations Neglected 

Here we include only the pieces C,, and CcoD of Eq. (2.29). Their analytical 
expressions are given in Ref. [ 141, and in Appendix C we give the corresponding 
formulae after Wick rotation. No meson-nucleon vertex form factors will be 
included in the present subsection. 

First we discuss the stability conditions (2.62) for Z,, = 0. To satisfy (2.62a) 
makes no essential difficulties, but Eq. (2.62b) imposes severe restrictions. For 
normal densities m, ** decreases as c/u deviates from unity towards smaller values, 
and accordingly the parameter F,, (H’ of Eq. (2.61d) becomes more negative. For 
example, choosing g, = g = 10 and m, = 1 GeV, the possible values of i?/v are 
restricted to c/v 2 0.8 for all densities p 5 0.4 fm -3. For higher densities this lower 
limit decreases gradually but slowly. From this and Eq. (2.61d) we see that we need 
rather high values of g, and/or m, in order to have some freedom in varying 6 
when minimizing the energy density with respect to v” for fixed p. For medium and 
high densities (p 2 0.15 fm P3), there is also an allowed region of small i?/r. 

The Wick-rotated polarizabilities iL and E^= are shown in Fig. 5 for a small value 
of o (o = 20 MeV) as a function of 1 kl. The density is chosen as p = 0.15 fm -- 3, and 
i?/u = 0.85. The other parameters are 

1.6 

0.8 

m, = 1.1 GeV, g,= 11.1. 

:~..,l,,,.l.,.,l,~,,I.,,,- 
0 0.2 0.4 0.6 0.8 1 

k [Cd] 

(3.1 1 

FIG. 5. The Wick rotated longitudinal (full line) and transverse (dashed line) polarizabilities of 
Eq. (2.64) without the Feynman parts in the meson self-energies. The case shown here refers to 
p=0.15fmm3. i7//v=O.85, w=20MeV. 
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We see that for medium values of the three momentum d, deviates very much 
from unity, in contrast to E^,. The value of & at Ikl = 0 is approximately given by 
(2.60a). The sudden increase of & at low Ikl is due to the particle-hole excitations 
in the mixing part I?,* of Eq. (2.64a). (Note that the particle-hole excitation pro- 
cesses vanish for 1 kl + 0, o # 0.) The contributions of particle-hole excitations in 
I?, are negative for small w, but they are overwhelmed by the mixing term due to 
the large g,. This shows the important role of the cr-o mixing in order to satisfy 
the condition (2.59a). The sharp peak of & shown in Fig. 5 persists only for low w. 

The results for the binding energy per nucleon are shown in Fig. 6a. Here, in 
addition to the choice (3.1), we show the results obtained by slight changes of g,. 
The nucleon effective mass is shown in Fig. 6b. The prominent features of this 
calculation are, first, that for densities p 2 0.16 fmP3 we do not find a minimum of 
the energy density as a function of fi and hence no stable nuclear matter state, and, 
second, that for certain parameters nuclear matter saturates at about half of the 
normal nuclear matter density with a rather low binding energy. We found that this 
situation cannot be improved by choosing a different parameter set or by intro- 
ducing meson-nucleon vertex form factors. The following discussion analyzes the 
results of Fig. 6. 

Figure 7 shows the binding energy per nucleon for some fixed densities as a func- 
tion of C/u. For p 5 0.16 fm P3 each curve shows a minimum, and the corresponding 
“physical” values 6, and E,JA have been used to draw Fig. 6. According to 
Eq. (2.23a), v”, is a solution of the equation 

Z,(O)= - r+; ) ( > (3.2a) 

and the curvature at 6 = i?, is given by 

MO ** = sli,* + Z,(O). (3.2b) 

density [f m -33 

b 

F 
?I OS 
= 0.90 iz 
+ 0.85 
0 

= 
o 0.80 I 

FIG. 6. Binding energy per nucleon (a) and the nucleon effective mass (b) calculated by neglecting 
the Feynman parts in the meson self-energies. The three lines refer to different values for g,: g, = 10.9 
(dashed-dotted line), g, = 11.1 (full line), g, = 11.3 (dashed line). The 0 mass is M, = 1.1 GeV. 
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FIG. 7. Binding energy per nucleon as a function of E/u for various densities: 0.05 fm m3 (dashed line). 
0.1 fm ’ (full line), 0.15 fmm3 (dashed-dotted line), 0.2 fme3 (dotted line). The case refers to the full line 
of Fig. 6a. 

As shown in Appendix A, the two loop self-energies in these expressions are given 
by 

z, = z,, + c,, + z,. mes + dz;, (a = g, n), (3.3) 

where the first two terms constitute the nucleonic contribution (2.29) shown in 
Figs. la, 2a, the third term is the meson loop contribution of Figs. lb, 2b, and 6Z:, 
is the contribution of the vertex and self-energy corrections to the nucleon loop 
diagrams, see Figs. lc, 2c. It is evident from Fig. 7 that for p z 0.16 fme3 the mass 
parameter M, *2 becomes zero, and beyond this density Eq. (3.2a) no longer has a 
solution. This situation, which is very similar to the one observed already in the 
quasiclassical approximation [4], is shown in more detail in Fig. 8, which 
illustrates Eqs. (3.2) for a fixed density p = 0.15 fm -3. The dashed double-dotted 
line in Fig. 8a shows the right-hand side of Eq. (3.2a), and the full line the two-loop 
pion self-energy Z,(O). There are two solutions to Eq. (3.2a), one corresponding to 
a minimum of the energy density and the other to a maximum, see also Fig. 7. If 
we increase the density further, the two solutions coalesce, and beyond that density 
the full line in Fig. 8a lies above the dashed double-dotted one such that Eq. (3.2a) 
has no solution, The quantity M, *2 of Eq. (3.2b) is shown by the full line in Fig. 8b. 
For 6 = Co we still have M, * = 670 MeV, but for higher densities M,* vanishes at 
the physical point 6,. The same quantities are shown as functions of the density in 
Fig. 9. Since Eq. (3.2a) is satisfied at every density, the dashed double-dotted and 
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FIG. 8. Effective pion (a) and sigma (b) mass parameters for p = 0.15 fin-j as functions of E//o. For 
explanation, see text. 

the full lines in Fig. 9a coincide. Since -fin2 is an increasing function of the density 
(see Eq. (~SC)), so is the self-energy C,(O). The square of the “pion effective mass” 

M, *2 = fin2 + Z,(O) (3.4) 

is equal to c/i& = ma2 . v/i+, for every density. From Fig. 9b we see again that M,** 
is a decreasing function of the density. Actually it vanishes for p z 0.16 fmP3. 
A vanishing IW,,*~ means [4] that the Landau-Migdal parameter F,, of the quasi- 
particle interaction approaches -co, and the system collapses due to the infinite 
amount of attraction. 

Figures 8 and 9 also show the various contributions (3.3) to the self-energies. 
(The explicit expression of the mesonic contribution Z,.,,,(O) is given in 
Appendix A.) The dotted lines in Figs. 8b, 9b show the quasiclassical mass 
parameter m,*2 of Eq. (2.61a), the dashed-dotted line includes the Feynman part 

density [fm-3] 

3.0 +--77-7 

density [fm-31 

FIG. 9. Effective pion (a) and sigma (b) mass parameters as functions of the density. For explana- 
tion, see text. 
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Z,,(O), and the dashed line includes further the mesonic piece Z,,,,,(O). It is 
already well known [4] that in the quasiclassical approximation the (T mass is 
quenched, while the inclusion of the Feynman part Z,, gives rise to a very large 
enhancement. The former effect leads, as we discussed above, to a collapse of the 
system in the quasiclassical approximation, while the latter effect leads to a 
stabilization of the system once the one nucleon loop contribution to the energy 
density is added to the quasiclassical result. Figs. 8b, 9b, however, show that the 
meson loop term Z,,,, brings the CJ mass again close to the quasiclassical result. 
We also see that the term 6C, of Eq. (3.3) due to the aNN vertex correction and 
the nucleon self-energy correction is small. In a similar way, the different contribu- 
tions to the pion self-energy are shown in Figs. 8a, 9a. The dotted line shows the 
quasiclassical part Z,,(O) and the dasheddotted line also includes the Feynman 
part X&O). The latter one is negative and large. The meson loop term Zrr,mes, 
however, gives a very large positive contribution, and the final result for C,(O) is 
again rather close to the quasiclassical part, Z‘,,(O). 

The above discussion on the meson self-energies shows the following two points: 
First, the reason for the instability of the system at normal densities (p 2 0.16 fm ‘) 
is quite similar to the reason for the instability in the quasiclassical approximation: 
The effective 0 mass (3.2b) is a decreasing function of the density and finally 
vanishes at normal densities, leading to an infinite amount of attraction in the 
Landau-Migdal force. Second, the very large positive contribution to the effective 
(T mass due to the Feynman part CarI which in the one loop calculation [4] leads 
to a drastic weakening of the attraction and thereby to a stabilization of the system, 
is cancelled by the mesonic loop terms of Fig. 1 b. A similar cancellation takes place 
also for the pion self-energy. This latter point, which will be taken up again in the 
next subsection, already gives us a hint that in the present model the nucleon and 
meson loops should be treated together. 

Let us now discuss the individual contributions to the total binding energy per 
nucleon shown in Fig. 6a. A qualitative discussion of the various contributions has 
already been presented in Section 2.3. In the present approximation of neglecting 
the Feynman parts of the meson self-energies in the calculation of the energy den- 
sity, we have Eo, ex = EV = 0 in Eq. (2.49). The exchange energies E;;, and E;;, per 
nucleon are shown in Fig. 10. We see that the traditional exchange energy E;:, is 
small compared with the term ET;, due to NR excitations, and, moreover, the c and 
o contributions to ET:, tend to cancel each other. In the present calculation we do 
not use meson-nucleon vertex form factors. As we will see in the next subsection, 
ET;, is reduced very much if a vertex form factor is introduced. E;,“,of Eq. (2.4%) 
is determined by the Feynman part of the nucleon self energy CNF at K = r&, which 
has been given in Eq. (2.52). For example, with the presently used parameters we 
have for p=0.13fme3 (&,,/mN=0.89), L',,(~=T%,)=(-52.0+224.2) MeV= 
172.2 MeV, where the first and second numbers are due to c and o, respectively. 
Altogether, we get a large repulsive contribution due to the exchange energies, 
which is mainly due to the w meson term in ET;,. The correlation energies ,!?c per 
nucleon are shown in Fig. 1 I. The dominant term is the large attractive longitudinal 
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FIG. 10. The exchange energy contributions to the total binding energy per nucleon shown by the 
full line in Fig. 6a. Dotted lines, ET;,; dashed lines, ET;,; full line, total exchange energy contribution. 

-300 

density [fm-3] 

FIG. 11. The correlation energy contributions to the total binding energy per nucleon shown by the 
full line in Fig. 6a. Dashed-dotted line, ENc; dotted line, ErC; dashed line, EL ‘; full line, total correlation 
energy contribution. 
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correlation energy ELC, which is partially cancelled by the nucleonic term ENC. In 
the Hartree approximation ELC reduces to (2.65). In a Hartree calculation employ- 
ing high values of m,, as used also in the present calculation, this term is of the 
same order of magnitude as ENC with the opposite sign [3]. The additional large 
attraction shown in Fig. 11 comes mainly from the particle-hole excitations in the 
0 meson self-energy. Again we have to point out that the inclusion of vertex form 
factors would reduce E,“. The transverse contribution ETC is very small in spite of 
the large value for g,. Finally, the quasiclassical contribution (2.50) gives a large 
repulsion with the presently used high values for g, and m,. (For p = 0.1 fm-’ this 
term contributes about 60 MeV to E,/A.) This fact, among others, probably points 
out the inadequacy of the present approximation: The lowest order term is highly 
repulsive, and all the attraction comes from the higher order correlations. Note that 
we were forced to use high values of g,, and m, in order to satisfy condition (2.62b), 
or, more generally, (2.59a). 

We mentioned above that for medium and high densities the conditions (2.62) 
are satisfied also for small values of G/u, suggesting the possibility of an abnormal 
state. Such a state, however, was not found in the actual calculation: If one uses 
large m, (m, 2 1 GeV), the condition (259a) turns out to be violated for finite Ikl. 
For smaller values of m, condition (2.59a) can be satisfied, but the energy per 
nucleon has a maximum at v” x 0 rather than a minimum and, moreover, is positive 
and very large. 

Alltogether, with the present approximation we are unable to give a satisfactory 
description of the nuclear matter binding energy: The saturation occurs at low den- 
sities and at medium and high densities nuclear matter is unstable. The reason for 
this instability is a pole in the two loop expression of the (r propagator at zero 
momentum. At low densities (p z 0.1 fmP3) the binding energy results from a 
delicate cancellation mainly between the attractive correlation energy and the 
repulsive exchange energy. 

3.2. Feynman Parts of the Polarizations Included 

We now wish to discuss how the situation changes when we include the Feynman 
parts of the polarizations (2.29) in the calculation of the energy density. It is clear 
from Eq. (2.61b) or Fig. (8b) that the piece L’,,(O) is very large and positive, at 
least for values of 6 relevant for the normal state. Its inclusion reduces the attractive 
contribution to the parameter FO (“I of Eq. (2.61d) and thus makes condition (2.62b) 
easier to satisfy. This is reminiscent of the one loop (Hartree) calculation where the 
inclusion of the nucleon loop term in the energy density stabilizes the system. Due 
to the presence of this large positive piece in the 0 propagator we can employ a 
small value for g, without violating (2.62b). For example, for the choice 

m, = 1.35 GeV, g, = 3.5 (3.5) 

Eq. (2.62b) leads to the restriction 0.55 5 C/v SO.95 in the range of densities 

595,‘194,‘?-13 
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0.1 fm -’ 5 p 5 0.4 fm -‘. (The upper limit imposed on the possible values of C/u is 
due to the fact that Z,,(O) + 0 as v” + u.) 

In Section 2.3 we discussed the necessity to include meson-nucleon vertex form 
factors in order to prevent tachyon poles in the free space meson propagators. In 
the calculations to be discussed below we employ a dipole type form factor, 

(3.6) 

choosing /1= 850 MeV. This means, in particular, that we multiply all meson self- 
energies by F2(k2). Once this is done, the free space meson self-energies do not 
modify the propagators drastically. For example, with the parameters given above 
we have 1 fgI( Z’)/( l2 + mG2)1 < 0.14 for all i2. For the o meson the influence of the 
free space self-energy is very small even for higher values of g, [ 111. We will there- 
fore approximate the meson propagators in free space by their lowest order forms. 
The form factors have also to be introduced into the nucleon self-energy (2Sla). 
This modifies the functionsf,‘“‘(p’, p’) (p=Kr, or mN) of Eq. (2Slb) as follows: 

/I4 ‘dxx” I 
X 

+A2-m,’ () $(l -x)2+/12x’ (3.7) 

Introducing this modification into (2.52) we obtain the self-energy Z,,(‘j = fiN) 
and ET;, of Eq. (2.45~). The modified exchange energy ET;, is obtained by multi- 
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FIG. 12. Same as Fig. 5 for the case that the Feynman parts are included in the meson self-energies. 
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plying the polarizations in (2.55a) by p’(r), introducing the replacement (3.7) into 
Eq. (2.55b) and leaving out the term (2.55~). 

Figure 12 shows the longitudinal and transverse polarizabilities for the same case 
as in Fig. 5 ( p = 0.15 fm P3, i@ = 0.85, and o = 20 MeV) using the parameters (3.5) 
and n = 850 MeV. For 1 k 1 + 0 the value of tL is close to (2.60a). As we increase 1 k(, 
the negative contribution of the particle-hole excitations’in fiC of Eq. (2.64a) causes 
& to decrease. The mixing term fiM* now plays a minor role due to the smaller g,. 
This is in contrast to the case shown in Fig. 5, where due to the large g,,, the 
particle-hole excitations in Z?,’ dominate over those in I?,, leading to a sharp 
increase for small Ik(. 

In spite of the fact that the stability condition (2.59a) is now easier to satisfy, it 
turns out that we cannot improve the situation for the nuclear matter binding 
energy. On the contrary, even the saturation at low densities found in Section 3.1 
is lost. The full line of Fig. 13a shows the binding energy per nucleon calculated 
with the parameters (3.5) and .4 = 850 MeV. The dotted line represents the 
quasiclassical contribution of Eq. (2.50). We found that, once the parameters are 
chosen such that one has binding at some medium densities (which in particular 
requires a high value for m, as we will discuss soon), at lower densities one has no 
binding, while at higher densities the binding energy increases until nuclear matter 
becomes unstable due to Mn*2 + 0 as found also in the previous subsection. 

The binding energy per nucleon E,/A of Fig. 13a shows a highly pathological 
behaviour. In particular, due to the general relations [4] 

P$(E,!A)=~~,-&IA (bEF=EF- mN) 
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FIG. 13. Binding energy per nucleon (a) and the nucleon effective mass (b) calculated with the 
parameters (3.5) and A = 850 MeV. The Feynman parts of the meson self-energies are included. The 
dotted line in (a) shows the quasiclassical contribution and the full line the total result. 
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with sr the Fermi energy and N, the density of states at the Fermi surface, it is seen 
that for small densities 8~~ grows steeply, reaches a maximum before E,/A of 
Fig. 13a reaches its maximum, and then falls off. The parameter F, decreases 
monotonously from positive to negative values. All these features are just opposite 
to those obtained from a saturating binding energy curve. Nevertheless, we will 
continue to discuss the results in detail, since some of the contributions to the 
binding energy will be left unmodified even if one goes beyond the present 
approximation scheme. 

Selecting some densities, the binding energy per nucleon is plotted against C/u in 
Fig. 14. Again, as in Fig. 7, we find that beyond a certain density (p % 0.26 fme3) 
the binding energy curves show no minima but decrease monotonously from their 
values at C/u z 1 until they enter the region G/u < 0.55, where Eq. (2.62b) is violated. 
According to our discussion in Section 3.1, this means that MU*’ of Eq. (3.2b) 
vanishes at fi = Co for p z 0.26 fmP3. The rr and r~ mass parameters are shown in 
Figs. 15 and 16. Figure 15 illustrates Eqs. (3.2) for fixed p = 0.2 fmd3, and Fig. 16 
shows the mass parameters as functions of the density. The curves in Figs. 15 and 
16 are qualitatively very similar to those in Figs. 8 and 9, and therefore a similar 
discussion as given in Section 3.1 holds also here. Note that in this section we used 
the cr mass parameter m,** + Z,,(O), shown by the dashed-dotted lines in Figs. 15b 
and 16b, as an “input” in the calculation of the energy density, since our meson 
propagators now contain also the Feynman parts C, besides the density parts C,. 
Figures 15b and 16b, however, show that the “output” self-energy L’,, which in 
addition contains also the meson loops and other two loop corrections, returns 

60 \ 
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FIG. 14. Binding energy per nucleon as a function of G/u for various densities: 0.1 fme3 (full line); 
0.15 fin-’ (dashed-dotted line); 0.2 frne3 (dotted line); 0.3 fmm3 (dashed double-dotted line). The case 
refers to the full line in Fig. l3a. 
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FIG. 15. Effective pion (a) and sigma (b) mass parameters for p = 0.2 fm -3 as functions of C/I>. For 
explanation, see text. 

towards the quasiclassical mass parameter m, . *’ The same feature is observed fcr 
the pion in Figs. 15a and 16a. This shows that, as far as the meson propagators are 
concerned, the present calculation is highly non-selfconsistent. We will come back 
to this point in the next subsection. 

We now discuss the individual contributions to the binding energy per nucleon. 
Figure 17 shows the three parts of the exchange energy of Eq. (2.49). The contribu- 
tions E;;, and ET& can be compared with those in Fig. 10, noting that now we 
employ a much smaller g, and a meson-nucleon vertex form factor. From this 
comparison it is seen that the traditional exchange energies E;;, are not very 
sensitive to the cutoff, since the momentum transfer is limited, but the ET;, are very 
sensitive. Namely, the use of A = 850 MeV reduces them by a factor 8 to 9 
compared to the case A = co. The new contribution ET;, has already been discussed 
qualitatively in Section 2.3, and we have the following contributions to Eq. (2.55) 
for p = 0.2 fmP3 (fit,/m, = 0.89): The unrenormalized free space nucleon self- 
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FIG. 16. Efiective pion (a) and sigma (b) mass parameters as functions of the density. For explana- 
tion. see text. 
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energy (i.e., the term [...I in Eq. (255b)) takes the value C,,(K=m,) = 
( - 127.4 + 44.8) MeV = - 82.6 MeV, where the first and second numbers are due to 
0 and w, respectively. The constant C takes the value C = -0.00246 GeV4. As dis- 
cussed before, the sign of ET;, is determined by the term (2.55b), which dominates 
over (2.55a). As in all parts of the exchange energy, 0 and w tend to cancel each 
other. Figure 18 shows the contribution due to the fourth order term (2.56). Since 
the w contribution is negligiblely small, we show only the term due to the ILJ meson. 
As discussed in Section 2.3, it depends very sensitively on m, and, moreover, also 
on the cutoff mass /1. For high values of m, we have attraction as shown in Fig. 18. 
Although E” is finite for /1 + co, it becomes unphysically large in this limit. The 
correlation energies are shown in Fig. 19. Again we encounter a very high sensitivity 
to m, : The longitudinal correlation energy ELC gives attraction only for high values 
of m,. The possibility to have a repulsive longitudinal correlation energy is due to 
the large positive Feynman part CoF. As m, increases, the (negative) mass shift 6, 
becomes increasingly important and the whole contribution turns into an attractive 
one. This feature, together with the behaviour of E” discussed before, forces one to 
use high m, in order to have attraction at least for some densities. 

In our calculation including the Feynman part of the (T self-energy, the abnormal 
state is pratically ruled out by the condition (2.60a). This is so since at t? M 0 the 
piece C,,(O) is negative and very large in magnitude. Only at extremely high 
densities the term m,*2 in (2.60a) dominates over C,,(O), see Ref. [4]. 

In conclusion of this part, the use of the full nucleon loop term in the meson self- 
energies does not improve the situation for the nuclear matter binding energy found 

density [fm-3] 

FIG. 17. The exchange energy contributions to the total binding energy per nucleon shown by the 
full line in Fig. 13a. Dotted lines, ET;,; dashed lines, E;$; dashed-dotted lines, Ef;,; full line, total 
exchange energy contribution. 
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FIG. 18. The contribution of the 0 meson term in E” of Eq. (2.56) to the total binding energy per 
nucleon shown by the full line in Fig. 13a. 
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FIG. 19. The correlation energy contributions to the total binding energy per nucleon shown by the 
full line in Fig. 13a. Dashed-dotted line, E,.,C; dotted line, ,I?*=; dashed line, ELC: full line, total correla- 
tion energy contribution. 
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in Section 3.1, but on the contrary makes it worse: There is no saturation as a func- 
tion of the density, and beyond some density (p % 0.26 fmP3 in the present calcula- 
tion), the system becomes unstable with respect to variations in 6. The reason for 
this instability is the same as found in the previous subsection; i.e., as we approach 
this density from below, the 0 meson exchange part of the Landau-Migdal force 
gives an infinite amount of attraction. 

3.3. Role of the Meson Loops in the Meson Polarizations 

In the last two subsections we have seen that the two approximations introduced 
in Section 2.2 (see the discussion around Eq. (2.18)) are not appropriate for a 
description of the nuclear matter binding energy. If we avoid the approximation 
(2.18), our developments have to be changed in the following respects: First, we 
have to take into account the two line irreducible meson loop contributions in 
Eq. (2.17), and second, due to the variational principle, the meson self-energies also 
include the meson loop diagrams shown in Fig. 1. We have to say little about the 
former effect, but we wish to discuss some points concerning the latter one. Actually, 
we have already seen in Figs. 8, 9, 15, and 16 that these meson loops affect the total 
meson self-energies very much. For k = 0, the large nucleon loop contribution due 
to Z,, is cancelled by the meson loops. In the Hartree approximation, the cancella- 
tion between the diagrams of Figs. la and b can be understood as follows: In this 
approximation, the correlation energies are given by (2.58) and (2.65). The 
nucleonic contribution (2.58) is due to the negative energy Dirac sea, while the 
mesonic contribution (2.65) comes from the positive energy bosonic zero-point 
oscillations. The cancellation between these two terms is physically quite trans- 
parent and has been discussed in many previous works [ 1, 3,4]. The first and 
second derivatives of these terms with respect to x = G/u determine the pion self- 
energies of Figs. 2a and b, and the c self-energies of Figs. la and b, respectively. 
Since the dependence of (2.58) and (2.65) on x is similar ((2.58) is a function of 
x2 = 1 + (x2 - 1) and (2.64) is the same function of 1 + +(x2 - l)), it follows that 
there is also a cancellation between the nucleon loop and meson loop diagrams of 
Figs. 1 and 2. This observation further supports our supposition that in our model 
the fermionic and bosonic terms should be taken into account simultaneously. 

An exact assessment of the meson loops goes beyond the scope of the present 
work. In principle, as mentioned above, we should solve the Dyson equation which 
now appears as an integral equation, then use the modified 0 self-energy in the 
calculation of the correlation energy (2.63), and include also additional mesonic 
two loop diagrams in the energy density. In this section we only wish to estimate 
the influence of the additional meson self-energies on the longitudinal correlation 
energy (2.63a). The forms of the mesonic pieces Z’, mes (CI = 0, n) have been given 
in Appendix A. In the Hartree approximation they reduce to [4] 

c ,,,,,(O) = s NY,) (3.8a) 
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with 

and 

c ,.ndO) =; (=*,nles(o)) 

= g$ H(y,) 

with 

(3.8b) 

(3.8~) 

(3.8d) 

To avoid the tachyon pole we replace y, + y,* = m,*2/m,2 with the quasiclassical 
0 mass parameter of Eq. (2.61a). As in other cases [4], this ad hoc replacement is 
not unique. One can perform this substitution in (3.8a) and then calculate C,,,,,(O) 
from the general relation (3.8~) between the 7c and g self-energies at k = 0. In this 
case, which we will call prescription (a), one has yg + yo* in (3.8d), (3.8e). 
Likewise, one could first calculate Z,.,,, (0) in the pure Hartree approximation and 
then substitute yb -+ yD* (prescription (b)). The results differ due to the derivative 
term in (3.8e). We will show the results obtained with both prescriptions. 

The piece (3.8d) is negative for y0 < 1 (or y,* < 1) and cancels large parts of the 
nucleon loop term C,,(O). In order to estimate the effect of this cancellation on the 
binding energy, we simply add (3.8d) to the CJ polarization fi, in the expression for 
the longitudinal correlation energy (2.63a), leaving the other parts of the energy 
density unchanged. This is, off course, a very crude and, moreover, non-unique 
treatment. Nevertheless, it might provide insight into the way an additional self- 
energy piece which strongly cancels with the large Z;,, affects the results for the 
binding energy. 

It turns out that the above prescriptions lead to a saturating nuclear matter state. 
We found that one can choose many possible parameter sets (g,,, m,, /1) with 
similar results. Here we use the set 

g, = 5.5, m, = 0.84 GeV, A = 0.835 GeV. (3.9) 

Figure 20 shows the results for the binding energy per nucleon and the effective 
nucleon mass. We plot the quasiclassical contribution and the total binding energy 
per nucleon obtained with both prescriptions (a) and (b). With the parameter set 
(3.9) the condition (2.62b) cannot be satisfied for densities p 5 0.04 fm P3; i.e., 
nuclear matter is unstable at very small densities. For any reasonable parameter set 
one finds that prescription (a) tends to give too low saturation densities 
(p z 0.13 fm --3). From Fig. 20a it is seen that the total loop correction to be 
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density [fn+] density [fm-3-j 

FIG. 20. Binding energy per nucleon (a) and the nucleon effective mass (b) calculated with the 
parameters (3.9). The Feynman parts of the meson self-energies are included, and the meson loops are 
incorporated as described in the text. In Fig. (a), the results obtained with prescription (a) are shown by 
the dotted line (quasiclassical contribution) and the full line (total result), while prescription (b) gives 
the dashed-dotted line (quasiclassical contribution) and the dashed line (total result). The full (dashed) 
line in Fig. (b) refers to prescription (a) ((b)). 
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FIG. 21. Binding energy per nucleon as a function of G/u for various densities: 0.05 fm-’ (dashed 
line); 0.15 fme3 (dashed-dotted line); 0.25 fmm3 (full line); 0.35 fmm3 (dotted line). The case refers to the 
full line in Fig. 20a. 
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FIG. 23. The contribution of the o meson term in E” of Eq. (2.56) to the total binding energy per 
nucleon shown by the full line in Fig. 20a. 
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discussed below is repulsive. The results shown in the following refer to 
prescription (a). 

Figure 21 shows the binding energy for some fixed densities as a function of G/u 
and should be compared with the previous results in Figs. 7 and 14. Since the pre- 
sent treatment is only an approximate one, we will not repeat the entire discussions 
on the effective meson mass parameters here. We just note that M,*’ of Eq. (3.2b) 
is now an increasing function of the density, as can also be seen from the curves in 
Fig. 21. 

The individual contributions to the binding energy are shown in Figs. 22 to 24. 
Consider first the correlation energies of Fig. 24. Since the large positive piece C,, 
is largely cancelled in the present calculation, the longitudinal correlation energy 
ELC is again strongly attractive as in Section 3.1. In particular, we are not forced 
anymore to employ high values for m, in order to get attraction from the correla- 
tion energy. The exchange energies of Fig. 22 show a behaviour which is 
qualitatively similar to Fig. 17, except for the larger ET;,. As in all previous cases, 
the total exchange energy is repulsive. The contribution of the fourth-order term E" 
is shown in Fig. 23. For the presently adopted lower value of m, the second term 
in the numerator of (2.56) dominates the first term, leading to a strongly repulsive 
contribution. 

The above findings are summarized as follows: If the meson loop contribution to 
the o self-energy, Eq. (3.8d), is invoked in order to cancel the large nucleon loop 
term C,, in the correlation energy, we are able to account for the saturation 
properties of nuclear matter. The quasiclassical contribution itself is saturating, and 

50 

0.2 
density [fm-7 

FIG. 24. The correlation energy contributions to the total binding energy per nucleon shown by the 
full line in Fig. 20a. Dashed-dotted line, .ENc; dotted line, ETC; dashed line, ELC; full line, total correla- 
tion energy contribution. 
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fl-\ ./“. I .-.- + t _d,+.- + ‘; ,,., )--- + ‘-.- \ 
FIG. 25. Graphical representation of Eq. (A.4). For explanation of the symbols, see the caption to 

Fig. 1. 

the total loop correction to it is repulsive, resulting from a cancellation between the 
attractive correlation energy and the repulsive fourth-order term E” and the 
exchange energies. 

4. SUMMARY AND CONCLUSIONS 

In this paper we studied the binding energy of nuclear matter in the chiral G-O 
model. Our motivation for choosing this model was to incorporate some of the 
general chiral symmetry constraints [4, 51 into an actual nuclear matter calcula- 
tion. For the calculation of the binding energy we used an approximation to the 
Hartree-Fock scheme. This approximation consisted in the following: First, we 
neglected the two-line irreducible meson loops and, second, we used the nucleon 
Hartree propagator S, is order to construct the meson self-energies. Our finding is 
that these approximations do not allow an adequate description of nuclear matter. 
We arrived at this conclusion in two steps: In the first one we took into account 
only the explicitly density dependent part of the meson self-energies, leaving out the 
vacuum polarization pieces. We then found: (a) The stability condition (2.59a) is 
too stringent due to the large attraction from the 0 meson exchange potential. We 
pointed out that for the same reason nuclear matter is unstable in the quasiclassical 
approximation. One must use rather high values for m, and g,, which leads to a 
very repulsive quasiclassical contribution to the binding energy. Moreover, the 
possible range of values for G/v is very limited, and this restriction is not relaxed 
very much as the density increases, except for very high densities. (b) Nuclear 
matter is unstable for densities p 20.16 fmP3. The reason for this is that the effec- 
tive g mass parameter (3.2b) including the two loop contributions is a decreasing 
function of the density and vanishes around p z 0.16 fm -3. It is, however, possible 
to achieve saturation of the binding energy for smaller densities. 

In the second step we included the vacuum polarization pieces in the meson 
propagators. This actually means to add a very large positive term to the 0 meson 
self-energy. We found: (a) The stability conditions are then less stringent. (For the 
same reason nuclear matter is stable in the Hartree approximation if one adds the 
nucleon loop contribution to the quasiclassical result.) Nevertheless, (b) the binding 
energy does not saturate, and for p 2 0.26 fm -3 nuclear matter is unstable. The 
reason for this instability is similar to the one discussed before: Though we now use 
a highly enhanced effective 0 mass (i.e., mo*2 +C,,(O)) in the calculation of the 
energy density, the final cr mass parameter (3.2b) decreases with increasing density 
and vanishes for p ~0.26 fm-‘. Contrary to the case discussed before, it is not 
possible to achieve saturation before this density is reached. Rather, the attraction 
increases without limits as we approach this density from below. 
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One by-product of the above calculation was the finding that the cancellation of 
the large vacuum polarization contribution to M,*2 comes mainly from the meson 
loops in the G self-energy. We pointed out that in the Hartree approximation this 
cancellation is physically quite transparent, since it can be traced back to the can- 
cellation between negative energy fermionic and positive energy bosonic zero point 
oscillation energies. We included the effect of the meson loops in a very rough 
manner in the correlation energy, neglecting all additional modifications. We found 
that this leads to a saturating nuclear matter state without instabilities even at high 
densities. The quasiclassical contribution itself saturates, and the loop contributions 
give an overall repulsion. 

Here let us make a few remarks concerning the pionic contributions, which we 
did not consider in the present work. If the pion is included in the two steps 
discussed above, one meets the following difficulties: In the first step (vacuum 
polarizations neglected) pion condensation occurs and makes the pionic correlation 
energy complex. The attractive particle-hole contributions cause the pionic 
polarizability to become negative for w z 0 and finite Jkl. What remains from the 
large cancellation between the repulsive NR Pauli correction piece and the attrac- 
tive contribution due to the arc* coupling is a repulsive contribution to the pion 
self-energy, but this is not sufficient to prevent pion condensation. This instability, 
which is similar to the one discussed for the transverse o meson contribution in 
Section 2.3, can be avoided by including a phenomenological two-body force which 
in the nonrelativistic limit reduces to the familiar g’(o, . n2)(r1 . r,)-type interaction 
[15]. More serious difficulties come up in the second step: As is clear from Figs. 
8a and 9a, the vacuum polarization contribution to the pion self-energy is negative 
and very large. As a result, even for small deviations of C/u from unity, the pionic 
mode becomes unstable. However, as we discussed in Section 3, there are again 
large cancellations due to the meson loop contributions to the pion self-energy. 
Thus, if the pion is included, the consideration of the meson loop contributions 
becomes ever more important. 

Our above discussion indicates that in the chiral a-o model one should always 
take into account the fermionic and bosonic contributions on the same footing. 
This was pointed out earlier for the case of the Hartree approximation [ 1,3] and 
persists if the exchange and correlation energies are included. A quantitative assess- 
ment of the bosonic loop contributions is a challenging task for future works. 

APPENDIX A 

(1) Demonstration of the Relations (2.23) in the Present Approximation 
First we differentiate the energy density (2.22) with respect to v”. We have, from 

Eqs. (2.13), (2.14), (2.9c), and (2.8b), 

(A.1) 
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For the derivative of the loop part E, we have 

(A.2) 

Here we used (2.8a). Performing a partial integration in the last two terms we get, 
using (2.20b), (2.20~) and the forms (2.16), 

so= -jgi igZ,TrS,+gTr[&?Gfi,-z(Z,--l))]} 

Using the forms of the unrenormalized self-energies (see Eqs. (2.29) for z), we 
arrive at 

TrS,+3A2Z,8j~ d4k (A,+A,) 

I 
d4k 

- Tr( S,,‘C,). 
-g (27c)4 

(A.4) 

Here the quantity L’, is the one loop nucleon self-energy constructed from the full 
meson propagators A and A,. S, is shown graphically in Fig. 25. We now show the 
relation 

$7-~z(0)=A,+B, (A.5) 

with the nucleonic contribution (see Figs. 2a, c) 

An=ig2j&$ Z,Y~&Y~& + YSSO 4Sk k) 
- s, + 2y,s()y~s,cpJsrJ (A.6) g 

and the mesonic contribution (see Fig. 2b) 

d4k 
& = iA2ZA j m (A,+5An+2iCAoA,T(-k;k,O)). (A.7) 
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Concerning the mesonic vertices T, we follow the notations and conventions of Lee, 
Ref. [S]. The rcNN vertex correction A, in (A.6) satisfies [4] 

64.8) 

Putting this relation into (A.6), one finds 

The err2 vertex in (A.7) satisfies [4, 5) 

v”T(-k;k,O)=i(d,-‘-A.-‘), 

and using this we obtain 

(A.lO) 

4 = 3i2Z2 12nj4 s ~(d,+d,). 
From Eqs. (A.4), (A.9), and (A.ll) we see that Eq. (A.5) is satisfied. 

Let us now turn to the second derivative of the energy density will respect to v’. 
We have 

-&+611)=fi,‘+Grir,‘, (A.12) 

as follows from (A. 1 ), (2.5), and (2.9). In order to calculate the derivative of (A.4), 
we use the relations 

A,(k, k) = -i y 

&f,-‘(k) 

(oNN vertex correction) 

T(O;k, -k)=i a~ (07~ vertex) 

T(0, k, -k;) = i aduii(k) (a3 vertex). 

Then we obtain 

a2E, 
-=i~=f,(O)=A,+B, ai? (A.14) 

with the nucleon loop contribution (see Figs. la, c) 

AV=i(fiA,)= -ig’j~TriZ,S,‘+iS,i~+2S,‘=,j (A.15) 
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and the meson loop contribution (see Fig. lb) 

-3J”2czj. (2n)4 0 s +A T(O,k, -k;)Ao+AnT(O;k, -k)A,). (A.16) 

Equations (AS) and (A.14) are the expressions for the unrenormalized x, 0 self- 
energies which are consistent with our expression (2.22) for the energy density. In 
the actual calculation described in the main text we leave out the pionic term in E, 
of Eq. (2.22b). In this case the quantity S, (see Eq. (A.4)) does not include the term 
involving d =. Consequently, also in the quantities B, (Eq. (A.1 1)) and B, 
(Eq. (A.16)) we have to leave out the terms involving d,. 

(2) Formulae for the Meson Loop Terms 
Our applications in Sect. 3 require the forms of the meson loop contributions 

(A.1 1) and (A.16) for the case that A, is constructed from the nucleon loop term 
including the G-O mixing and that the term involving A, is neglected. A, can be 
expressed conveniently by using the longitudinal polarizability eL of (2.33a) as 
follows: 

A,-1(k)=k2-m~2-Z7,+ nh42 
k2-mw2+II, 

AOfF1 =&L 
1 - A,,Z7,’ 

(A.17b) 

The last term in (A.17a) is the 0 self-energy with intermediate one w meson states; 
i.e., the effect of the g-o mixing. Relation (A.17b) is easily derived from (A. 17a) by 
using the form (2.33a). Therefore the G meson part of (A.ll) is given by (Z, = 1 in 
the present approximation) 

I;,,,,, = 3iA2 1% A,(k) 

= 3iA2 (2z)4 i 
6Qk -(A,-A,,-(17,,+6,)A,:) 

-(&+(&,+&,)A,:). 

The term (A.18a) is finite as follows from (2.54a) and from n,, a l/k2 for k -+ em. 
The renormalized self-energy is then given by 

595: 19412-14 



434 LIU, BENTZ, AND ARIMA 

where the counterterm is calculated from Eq. (2.9~). As a result we obtain 

~,,~.,(0)=3i)‘j~(A,d,-(n,,-n,,‘-l’+6,)A,:), (A.20) 

where 17 oF(P ‘) is defined by Eq. (2.48a). Expressing A, as in (A.l7b), the numerical 
evaluation of (A.20) presents no difficulties. As explained in the main text, A,, is 
approximated by its lowest order form, and meson-nucleon vertex form factors are 
multiplied to the self-energies. The corresponding self-energy of the rr meson is then 
calculated by numerical differentiation according to the formula (compare 
Eq. (A.16)) 

z (A.21) 

If all polarizations in are neglected, (A.20) and (A.21) reduce to the Hartree expres- 
sions given in Eqs. (3.8). 

APPENDIX B 

k + 0 Limits of the Polarizabilities 

In the limit of small k, the forms of the density parts of the polarizations in 
Eqs. (2.32) and (2.35) are [14] 

17 -=?+F,(C,-d(s)) 
rn:’ ~ 

n 
z= -F,(l -s%JFZ) &S) W-2) 

ntv12 7 = F,F,( 1 - &2) d’(S) 
m, mu2 

(B.3) 

n 
-=F,$(l-(l-r2)d(S)). 
rn’:: 

Here we used the notations 

F, = NFfH’( 1 - vF2) gz 
m,” 

Fw=NF’H’$ 

with 

2v, EF2 No = ~ PF 

x2 ’ 
OF=-, 

EF 
E,=,/m; P3.6) 
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3 
c++&--- 

F 4v In F 

d(s)=1 --i In E 
(I I 

ko 
S=lklv,’ 

(J3.7) 

(B.8) 

If k, +O followed by Ikl +O, we have s + 0 and 4 -+ 1. If Ikj -+O followed by 
k,-+O, then S-+CD, ~~5-0, and s%$-+ -3. If we use (B.l) to (B.4) in (2.33a) we 
obtain 

m,** + ~crF(O) EL = 
m, 

1 _ FO4 
(MO** + ~,F(0))lm,2 

+ F&(1 -s’v~*) 
1 

(B.9) 

with the quasiclassical c meson mass parameter 

m, ** = mb2 + lim lim U,,,(k) = 6,,* + m,2F0C,, 
kg40 IL1 -0 (B.lO) 

which agrees with Eq. (2.61a). By first setting lkj = 0 or k, = 0 in (B.9) we obtain 
the two limits (2.60a), (2.60b). The transverse polarizability becomes in the k + 0 
limit 

~,=1+F~$(l-(l-s’))(s)). (B.ll) 

APPENDIX C 

Wick Rotated Forms of the Density Parts of the Meson Self-energies 
The density parts of the meson self-energies have been given analytically in 

Ref. [14]. The Wick rotated forms (k, -+ iw) are as follows, using I* = CJJ* + k’ with 
k the magnitude of the 3-momentum, 

(C.1) 

(C.2) 

cc.3 1 

l* 
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with 

(C.5) 

(C.6) 

(C.7) 

Z,=$ [(4E,2-02-a2)L,+4E,wL,+8kp,] (C.8) 

I, = & [(8EF3 - 6E,w2)L, + (12EF20 - 03)L2 

+ 2(k3 + 6fiN2k) In ~ - a3L3 + 8p,E,k . 1 
Here CI and the Li are given by 

(C.9) 

(ET’-a)(Er’-a)(E’f’+a)(E’,-‘+a) 
L3=1n (E’+‘-a)(E’,-‘-a)(E’,+‘+a)(E?‘+a) ’ 

(C.13) 

and the E ( * ) are defined as f 
E’+‘=E f p&k+& (C.14) 

E”=E -E,. * pF+k (CM) 

One may verify explicitly that for any I= (w, k) there are no singularities in the 
polarizations (C. 1) to (C.4). 

The above forms of the Wick rotated polarizations have been checked by numeri- 
cal calculation as follows: According to Eq. (2.45a) 

(C.16) 

where 6E,, is given by Eq. (2.42d). In the calculation described in the main text, 
the exchange energies ET;,, ET;, were calculated from Eqs. (2.45b), (2.45~). Likewise, 
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we can calculate the RHS of (C.16) directly by performing a Wick rotation in the 
integral (2.42d) and using the Wick rotated forms of the polarizations given above. 
If we introduce a meson-nucleon vertex form factor as described in the main text, 
both terms on the RHS of (C.16) are individually finite. The numerical calculation 
of the RHS of (C.16) agreed with the LHS calculated from Eqs. (2.45b), (2.45c), 
which confirms the analytical expressions (C.l) to (C.4). 
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