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The binding energy of nuclear matter is calculated in the chiral o-w model in an approxima-
tion to the Hartree-Fock scheme. Relativistic exchange energies and correlation energies
including the effects of vacuum polarization are calculated. It is found that if one includes only
the nucleon loop term in the meson self-energies, no satisfactory description of nuclear matter
can be given. It is argued that by including the meson loop terms in the meson self-energies
one can account for the saturation properties of nuclear matter.  © 1989 Academic Press, Inc.

1. INTRODUCTION

The description of nuclear matter and nuclei based on relativistic quantum field
theory is a very challenging problem which attracted much attention especially
during the last ten years. The starting point is a relativistic lagrangian describing
the interaction of nucleons via the exchange of mesons [1,2]. Although due to
mainly technical difficulties it is at present still not possible to give a realistic
description of strongly interacting systems within fully relativistic models, they
endow us with a means to investigate the roles of mesonic degrees of freedom and
the polarization of the negative energy Dirac sea, two points which cannot be
studied unambiguously within a nonrelativistic framework.

The common ingredients of almost all relativistic models used so far to describe
nuclear systems [2, 3] are the ¢ and the w mesons coupling to the nucleons in
order to account for the medium range attraction and the short-range repulsion in
the nuclear force. Guided by the desire to incorporate the concept of chiral
symmetry, in a recent paper [4] we thoroughly discussed the so-called chiral o-w
model, which in addition includes the pion as well as nonlinear mesonic interaction
terms. The lagrangian is given by the well-known linear ¢ model lagrangian to
which the w meson part including the usual vector coupling to the nucleon is
added. From the theoretical side the model seems attractive, since it exhibits the
constraints imposed by chiral symmetry on the energy density of the system in an
explicit and illuminating way. Actual calculations of the nuclear matter binding
energy within this model, however, are haunted by serious difficulties. It has been
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known for a rather long time [6, 7] that in the simplest approximation, namely the
quasiclassical approximation, it is not possible to describe saturating normal
nuclear matter. Rather, one observes a chiral phase transition from the normal state
(Goldstone mode of chiral symmetry) to the abnormal state (Wigner mode) at
densities around the normal nuclear matter density. It is also well known [7] that
in order to avoid this phase transition one has to include the contribution due to
the negative energy Dirac sea to the energy density. The result is a saturating
nuclear matter state and a continuous chiral phase transition at very high densities.
In addition to this contribution of the Dirac sea, however, there are the “zero point
oscillations” of the boson fields (= and ¢) [1, 8]. It is not possible to assess these
bosonic vacuum fluctuations as straightforwardly as the fermionic ones due to the
presence of “tachyon poles” in the Hartree propagators of the bosons. In order
to gain insight into the role of the zero-point oscillations of the ¢ field in the
framework of the Hartree approximation, it is common [3] to add self-energy
corrections to the ¢ propagator in a somewhat ad hoc way to prevent the tachyon
pole. Strictly speaking, however, the presence of the tachyon poles renders the one
loop (Hartree) calculation of the energy density impossible, and consequently
people were led to investigate the two loop (Hartree-Fock) approximation
[1,4,8,9].

When we start from the Hartree—-Fock expression for the energy density, the
bosonic vacuum fluctuations discussed above are contained in the so-called “ring
energies” (or RPA-type “correlation energies”). Their computation requires the
self-consistent one loop (Hartree-Fock) meson propagators. The corresponding
meson self-energies consist of the traditional particle-hole excitations, the nucleon—
antinucleon excitations, and certain meson loop diagrams. The principal aim of the
present paper is to study the role of these ring energies [9]. As a first step we
consider only the ring energies due to the ¢ and @ mesons, leaving out the pionic
contribution. The problems associated with the pion will be discussed, but not
explored in detail. Relativistic ring energies have been considered theoretically in
some works [1, 2, 10], but detailed investigations, especially in the framework of
chiral models, have not yet been performed. An attempt has been made in Ref. [8]
by using approximated forms of the meson self-energies.

In this work, the binding energy of nuclear matter including the contributions of
the relativistic ring and exchange energies will be calculated. We start in Section 2
from the expression for the Hartree-Fock energy density as given in Ref. [4]. In
order to make the calculation manageable, we omit the two line irreducible meson
loop contributions to the energy density. Consequently, we start by considering the
meson self-energies to be made up of particle-hole and nucleon-antinucleon loops.
Consistently taking into account all relevant renormalization constants, we will
demonstrate that the energy density, given in its final form by Eq. (2.49), is finite.
The stability conditions for the RPA-type ring sum will be discussed. Usually the
meson self-energy is decomposed [2] into a “density part” depending explicitly on
the Fermi distribution function and a “Feynman part” describing vacuum polariza-
tion effects. In Section 3.1, we discuss the numerical results obtained by retaining
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only the density parts in the meson self-energies. It will be shown that in this
approximation nuclear matter is unstable at normal densities, and thus the saturation
point lies at about half of the normal nuclear matter density (see Fig. 6). The reason
for this will be discussed in detail. Then, in Section 3.2, we will re-include the Feynman
parts of the meson self-energies in the calculation of the energy density. It will be
shown that in this picture the nuclear matter binding energy does not saturate (see
Fig. 13). The total binding energy and some individual contributions turn out to
show a rather pathological behaviour. In Section 3.3. we will invoke the meson loop
contributions to the meson self-energies and show that these cancel large parts of
the nucleon loops. The physical reason for this cancellation will be discussed. We
will estimate roughly the influence of these meson loops on the ring energies and
find that saturation is recovered (see Fig.20). A summary and conclusions are
represented in Section 4.

The present work should be considered as a first step in the quantitative explora-
tion of the effects of vacuum fluctuations on nuclear properties in chiral models
based on the loop expansion technique. Many of the effects treated in this paper
need further investigation. We emphasize that also the whole physical picture, as it
emerges from a loop expansion, should be subject to discussion. In the course of the
calculation we will be confronted with terms which become unphysically large when
treated without phenomenological meson-nucleon vertex-form factors and,
moreover, are very sensitive to assumed parameters. We therefore wish to leave
open the possibility of alternative approaches which treat the effects of vacuum
fluctuations more rigorously.

2. THE ENERGY DENSITY IN THE CHIRAL ¢-¢0 MODEL

In this section we will derive the form of the energy density which will be used
for the numerical calculations. The theoretical framework has been established in
Ref. [4], and we will frequently refer to the results of that paper. For the sake of
a self-contained presentation, however, we will first explain the essential ingredients
of the model before turning to the energy density.

2.1. The Model

The lagrangian of the present model is obained by adding the w meson pieces to
the familiar chiral ¢ model lagrangian [5]:

%= PLT — glp+in - 79)— 2,7,V 1 ¥ +3 [(0,8)" + (0,7)"]

2

1 2 JE
—ZG,,VG‘”—%—(¢2+n2)—z(¢2+u2)2+m—2"3 V.Vitep  (21)

This lagrangian consists of the fields ¥, ¢, n, and V* for the nucleon, the ¢ meson,
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the pion, and the w meson, respectively, and the coupling constants g, g, and A.
We further introduced G* = 0*V” — @"V*. The last term in (2.1) breaks the chiral
symmetry explicitly, and ¢ is the corresponding symmetry breaking parameter. The
symmetry is spontaneously broken by assuming u?<0. Since the ¢ and the w
meson fields have non-vanishing expectation values in the nuclear matter ground
state, which we denote by ¥ and w*, we translate the fields according to

p=0c+7 (2.2a)
Vi =@+ WH, (2.2b)

defining the new quantum fields ¢ and w*. The tilde in Egs. (2.2) indicates the
density dependence. The Green functions and accordingly also the energy density of
the system calculated from the lagrangian (2.1) are generally divergent. In order to
deal with these divergencies, we have to introduce renormalization constants for all
fields, coupling constants and mass parameters in (2.1), which will be fixed by
imposing renormalization conditions on the Green functions in free space (zero
density). The renormalization procedure consistent with chiral symmetry has been
discussed in Ref. [5] and applied to the case of nuclear matter in Ref. [4]. The final
form of the lagrangian, after introducing Egs.(2.2) and all renormalization
constants into (2.1), is [4]

¥ = =.¢(,p1\/[1: + gL + gCT (2.33)
with
2 5 2
"gMF = -‘l /122,1(52 - U2)2 - m___n +'_—m" (52 - 02)
4 2
2 5 2
+e(i—v)+ ﬁ”%"i i, (2.3b)

Lo=PLZNY —ty—0My—8Z (0 +IN-TYs) — 8, 2,7 (0" +W*)] ¥

43 (20,0 — (2,2 + 5, 2)a7]

1
+% [Z(8,m)* — (> + o, 2 )m?] — 2 Z,G,,G"

2 2
1
@_w}é@w#wu — g PZi(0? + 1) = 122, 50(0% + 1) (2.3¢)
SLer=o0o(c— (w2 + 6m,?)) + w,w*(m,* + m,?). (2.3d)

Here Z,, Z,, and Z, are the wave function renormalization constants for the
nucleon, the (o, ©) mesons, and the w meson, and Z,, Z,, and Z,, are the vertex
renormalization constants for the ¢ NN (and nNN) vertex, for the purely mesonic
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interaction vertices and for the wNN vertex, respectively. The lagrangian contains
the density dependent mass parameters #1,, #1,% and 71, together with their coun-
terterms, as well as the mass renormalization counterterm ém 2 for the w meson.
The lagrangian (2.3a) has been split into three parts, where %, is a constant
depending on the “mean fields” § and Ww*, % is that part which will generate the
loop terms in the energy density, and %t is a counterterm which ensures that the
fields ¢ and w* have vanishing expectation values in the nuclear matter ground
state, according to their definitions (2.2).

We now briefly discuss the definitions of all the parameters appearing in (2.3).
Considering the masses m,, m_, and m,, of the nucleon, the pion, and the w meson
in free space as fixed, the only free parameters are the ¢ meson mass m, and the
wNN coupling constant g,. The coupling constants g and 1 are defined by the

relations
my=gu (2.4a)

m,>—m,?=2i%? (2.4b)

where v is the vacuum expectation value of ¢, which is determined by symmetry
requirements (see later). The density-dependent mass parameters are defined by

iy = gb= mNE (2.52)
i, =m,2+ 335 — v?) (2.5b)
2 =m 2+ A(5% —v?). (2.5¢)

The mass counterterms in free space dmy, ém,?, om,>, and ém,?* together with the
wave function renormalization constants Z,, Z,,, and Z , are determined in the
usual way by imposing renormalization conditions on the single particle
propagators. Throughout this work we will use the renormalization points ¢ = m,’
for the nucleon and ¢*=0 for the mesons; ie., we impose the following seven
conditions on the renormalized self-energies in free space (characterized by a
subscript f):

0x

zN,(k=mN)=-67”f (K=mp)=0 (2.6a)
2 2 6an 2

2ok =0)= L,k =0)=—F (k*=0)=0 (2.6b)

Sk =0) =22 =0)=0 (260

Here X', is the transverse part of the w meson self-energy in free space. The
prescription (2.6¢) together with baryon current conservation gives [ 11]

om =0,  Zg,=Zy. (2.7)
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The mass renormalization constants in free space, which are now fixed by
Egs. (2.6), in turn determine the vertex renormalization constants Z, and Z; as well
as the density-dependent mass counterterms

5

Z,=1+2N (2.82)

my
om,? — ém,?

Z,=1 +W, (2.8b)
Sty = g(Z, — 1)i = 5mNS (2.92)
5,2 = m,? + 33X Z, — 1) — v?) (2.9b)
5,2 =6m 2+ AZ, — 1)(5 —v?). (2.9¢)

The “mean fields” § and W* are determined as follows [4]: Baryon current
conservation gives

wm=Le (2.10)
m(l)

where jp* is the baryon current in the nuclear matter ground state. Since in the
following we will work in the nuclear matter rest frame, we have W=jz=0. The
partial conservation of the axial vector current (PCAC) gives the implicit relation
(the Goldstone theorem) to determine 3,

-84, 1(0)=d(m,> + Z,(0))=c, (2.11)

where 4.(q) (X£.(q)) is the renormalized pion propagator (self-energy) in the
nuclear medium. The symmetry-breaking parameter is generally related to pionic
properties by ¢=F, M >, where F, is the pion decay constant and M, is the pole
position of the pion propagator in free space. On the other hand, due to the renor-
malization prescription (2.6b), Eq. (2.11) in free space becomes ¢ = vm,?, and hence
v is determined to be v=F, M */m,>. An explicit one loop calculation of the pion
self-energy shows that [5] M,~m,, and therefore v~ F,. From Eq. (24a), the
coupling constant g then takes the value g~ 10. We will use the value g=10
throughout this paper.

2.2. Form of the Energy Density

We start from the self-consistent two loop (Hartree-Fock) expression for the
energy density, which was derived in Ref. [4] from the lagrangian (2.3):

E=U+0U+E, +E, (2.12)
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Here U is the familiar two-humped “potential” including the contribution from the
w mean field,

2 2 2 2

o~ ~ my- .
+T(Uz—vz)—c(v—u)—7w02, (2.13)

and 6U is the counterterm

2_5m.2 2

5
‘Sm"svz i (52—02)2+—"21" (32— v?). (2.14)

oU=—-VEV +

It includes the subtraction of the vacuum expectation value (VEV) in order that E
of Eq. (2.12) vanish for zero density. The “ring energy” E, is given by
E=E/+E,'+ES (2.15a)

aw

with

r

o d% - .
Ey= —IJWTr(In(Sf 1S)—5,"'S) (2.15b)

E, 2[ _Tr(in(4,'4) - d,"'4) (2.15¢)

r d4k —1 -1
E'= 2 O )4(1 (4o '4,)—A,0714,). (2.15d)

Here S and 4, are the full renormalized propagators for the nucleon and the pion,
and 4 is the combined propagator for o and w defined in Ref. [4]. The propagators
characterized by f are the full renormalized propagators in free space, and

1

Sy(k) =— (2.16a)
° VR — iy — Oy + 06,
_ 1
A= for a=b=—1
- V=7 K —om 2
Ay = i T e e (2.16b)
g 0= g" Z w2 otherwise
_ 1
i (2.16¢)

0T Z ki omr
n (2.16a) we used
ke=kt—g,w",  8,=05(1—2n(k)8(ko))

with n(k) the Fermi distribution and >0 an infinitesimal quantity. The roman
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FIG. 1. The one-loop (Hartree-Fock) combined self-energy for ¢ and @ mesons, expanded in terms
of the nucleon Hartree propagator (full line). The meson lines refer to the RPA meson propagators. The
wavy line with dots denotes the ¢ or @ meson, and the dashed and dashed-dotted lines represent the
7 and o mesons, respectively. The circles stand for vertices, and the squares for vertex and self-energy
corrections.

indices (a, ) of the combined propagator 4 take the values —1 to 3, where the
index —1 characterizes the ¢ meson degree of freedom, and the Greek indices run
from 0 to 3. Finally, the loop contribution in (2.12) is given by

i d%k - _
l=§.|‘ (27[)4 (Tr(AZ)+3AﬂZ7!)+E1,mes' (217)

The first term in (2.17) is the familiar Fock term, while E, . is the contribution
of the purely mesonic loops. The unrenormalized self-energies 2 and X, in (2.17)
are shown graphically by the diagrams in Figs. la and 2a, respectively, if the full
lines are considered as the self-consistent Hartree—-Fock propagators. Equation
(2.17) is the two-loop term in the expansion of the energy density with respect to
the number of loops.

The variation of the energy density (2.12) with respect to the propagators S, 4,
and 4, gives the Dyson equations, which are in general coupled integral equations.
The presence of divergencies makes an exact solution of these integral equations
very difficult. The main purpose of this paper is to investigate if one can achieve

\ -
!\ ! (\ ) V2N
- - el et + --d -
L ’?-
@ (»
‘-Q-- + N - + N N
(]

FiG. 2. Same as Fig. 1 for the pion self-energy.
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a satisfactory description of the nuclear matter binding energy by making the
following two simplifications: First, to neglect the meson loops in (2.17), ie.,

Ees=0, (2.18)

and, second, to construct the meson self energies in (2.17) or Figs. 1a, 2a by using
the lowest order (Hartree) nucleon propagator S,, which is given by (2.16a) with
Zy=06my=0. In order to be consistent with this latter approximation, we also
have to replace S — S, in the counterterm contribution of (2.15b), ie.,

5,7 1S=(So ' +(Zy—1)E—61y) S So 'S+ (Zy— 1)k —6p)S,.  (2.19)

With these two approximations we obtain the Dyson equations by varying (2.12)
with respect to S, 4, and 4,

S=S5, (2.202)
A=Ag+ A, ZA=4,+ 4,114 (2.20b)
Bo=Ang+ A0 E 4, =401, 4, (2.20¢)
with
MIP=x%-x¢+6° 1616, (2.21a)
M,=%,—%.,+56, (2.21b)
S,=mj—my>  S,=m}>—m’. (2.21¢c)

The meson self-energies 2 here are the renormalized nucleon-loop contributions
(specified below) constructed from the Hartree propagator S,. Note that 4,and 4,,
in Egs. (2.20) include the self-energies in free space, and therefore the latter ones are
subtracted in Egs. (2.21).

Due to the Dyson equations (2.20b), (2.20c) the last terms in (2.15¢), (2.15d)
cancel against the loop term (2.17), and we are left with

E=U+06U+E, (2.22a)

with

o d% » i d% _
EL=—1J-(7)4Trln(SOf so)+§f(2—nFTr1n(A, 14)

3ir d% . ¢ d% ) N
3| Gy An)—thTr(So(émN——k(ZN—1)). (2.22b)

Let us now discuss the counterterm contribution éU. Since E is required in the two
loop approximation, one could in principle consider the ¢ and = self-energies in free
space in the same approximation to calculate the mass counterterms ém,? and dm 2
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required in Eq.(2.14). Due to our renormalization conditions (2.6) one can,
however, calculate these mass counterterms more conveniently directly from the
expression (2.22) for the energy density. For this purpose we use the general
relations, which hold for any fixed density,

%—?= —54,710) - c=i(m,> + om,> + £,(0))—c (2.23a)
Vol . oy ea s =
- 4o (0)=m,"+om,” + 2 ,(0), (2.23b)

which were exploited extensively in Ref. [4]. Equation (2.23a) states that, for exact
chiral symmetry (¢ =0), the minimization of E with respect to & at fixed density
leads either to a pole in the pion propagator at =0 (Goldstone mode) or to a
vanishing value for # and /1, (Wigner mode). The minimization condition obtained
from (2.23a) thus agrees with the Goldstone theorem (2.11). Due to Eq. (2.23b), the
condition —A4,7'(0)>0 decides which of the two modes is actually realized.
Although we use the same notations, note that the propagators and self-energies in
(2.23) also contain the two loop contributions (since we calculate E in the two loop
approximation), in contrast to the quantities in (2.20) and (2.21). In Appendix A
we demonstrate the relations (2.23), i.e., we derive the two loop expressions for the
o and = self-energies which are consistent with the expression (2.22) for the energy
density.

Using (2.23) in the free space limit (density p — 0, & — v) we obtain, using (2.22a)
(see also Egs. (A.1) and (A.12))

a_ETL = Ufnf(o) = —vém,’ (2.24a)
60 p=0,6=v
2
? iL =X (0)= —om,j?, (2.24b)
00° |p_0,5=0

where in the second steps we used the renormalization conditions (2.6b). Equa-
tion (2.24) determines the mass counterterms dm,> and ém,’ in terms of E,. Due to
chiral symmetry, E; depends only on #° rather than on #. Using this fact we obtain,
on putting (2.24) into (2.14),

OE,

O, TE,
o7

sU=—E P =2 2 .
U LIp—O‘v—v (U v ) 6(52)2 =050

_% (72 — %) (2.25)

p=0,0=1v

This expression shows that the counterterm 6U effectively subtracts the first three
terms in the expansion of E, for p =0 around #* = v® Therefore, the total energy
density E for p =0 behaves like (5> —v?)* as § > v.

The aim of the rest of this section is to bring the energy density (2.22) into a form
more clearly showing its finiteness and its physical content. Our final result will be
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given by Eq. (2.49). Since in the actual calculation we will not include the pionic
contribution in (2.22b), we shall omit it in the following formulae. (Problems
associated with the inclusion of the pionic contribution will be discussed in
Section 4.) It is convenient to split the Hartree propagator S, into two parts [2]

S() = SOF + SOD (2263)
with the “Feynman part”
1
Sop =z (2.26b)
k—rmy+id
and the “density part”
~ k ~
Sop = (K +my) ni%—)é(fco—Ek) {2.26¢)

with E, =./k*+m,% Then the nucleonic part in (2.22b) can be treated as in
Ref. [4] with the result

d*k d*k
_ j(2 & Tr ln(SOf—ISO) J(Z B Ekn(k)+gww [

. O
+4i | (2n)4ln<1 —kz_mN2+i5> (2.27a)

with
Sy =1 —m2 (2.27b)

For the combined o, w contribution in (2.22b) we can write, using the Dyson
equation (2.20b),

i ¢ d%k i ¢ d%k
zj(z )ATrln(AfﬂA) lj(z X (Ingg +21negy), (2.28a)

where we defined the longitudinal and transverse polarizabilities by [2]
det(1 —ITA;)=¢ &1’ (2.28b)

In order to derive their explicit expressions, we need the renormalized polarization
insertions in (2.21a). They are given by (see Fig. 1a)

=ty - d'q
I =r k=g [ 5

=20D(k) +ZO‘F (k) (2298)

Tr(So(k + ) So(q)) + orm,” —k*(Z ), —
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d4
(k)= E ) = —ig.? | ( 2734 Tr(3So(k +4) "So(q))
k'
_(guv_ k2 ) (Zm_ 1)
=2,p"(k)+ 2 (k) (2.29b)
d4
M) =200 = ~igg., | 5 TGP Solk +4) Sulg)). (229¢)

The “density parts” of these polarizations, characterized by a subscript D, involve
at least one factor Syp in the integrals of (2.29), while the “Feynman parts” involve
the combination Sy Sor in the integrals and include also the counterterms. The
combination Sy Sor does not contribute in (2.29¢c). The polarizations satisfy the
relations

k, Z*(k) =0. (2.30)

For future reference we note that the Feynman part of (2.29b) has the structure

kK
5 < g O > Eres (231)

defining the transverse self-energy Zrp. (In free space it coincides with Xy of
Eq. (2.6c).) Analogous to Eqs. (2.29) the polarizations /7 of (2.21a) will be split as

I =1, =15+ 43, (2.32a)
with
Mp=2,p
Hp=2,p— 24 (2.32b)
M =11 =5 + I (2.32¢)
with

H(UDMV = ZwDuv
I = E o = Tt (2.324)

-1 =xr-1, (2.32)

For the calculation of the determinant in (2.28b) it is convenient to choose k to lie
on the xaxis. Then the seven different non-vanishing components of I7** are
H71—1 HOO, ”ll’ H22=H33, ”—10=H0—1 Hfll =H171’ and HOI =H10. Equa-
tion (2.30) gives three relations (for a= —1,0, 1), and we are left with four inde-
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pendent components, which we will choose to be I7-'~!, [T®, I, and IT° '
Noting that the free-space propagator A; has the same tensor structure as the
unrenormalized propagator (2.16b), one can calculate the determinant explicitly
with the result

£L=(1_AafHa)(l_AwaL)_AawafHMz (2333)
er =1+ 4,0, (2.33b)

with the free space propagators

1
ey 234
4r A= 2 z.0) (2.342)
~1
A= g" 4= g™ . 2.34b

f g wf g k2 _me_ZTf(k) ( )

1T, has been introduced in (2.32a), and the other quantities in (2.33) are defined by

k2

H =n>°—m"= _|k|217w°° (2.35a)
2 2 2 K 2

HM =H0_] —Hlfl = —WHOWI (235b)

=1 (2.35¢)

Here L and T stand for the longitudinal and transverse part of the « meson
polarizations, and M denotes the mixed polarization with one external ¢ and one
external w meson leg. Equation (2.30) was used in deriving the second equalities in
(2.35a, 2.35b). By using (2.32d) we will also split the longitudinal and transverse
polarizations introduced above into their Feynman and density parts:

HLGLF+HLD (236&)
HT=HTF+HTD. (2.36b)

Note that due to the structure of (2.31) we have, for the Feynman parts,

IItg =~ g =21 — 2. (2.36¢)

Inserting Eqs. (2.33) into (2.28a) one obtains the expression for the combined o, w
contribution to the energy density. .

Next we turn to the last term in (2.22b). We first note that the factor £ in the
integrand can be replaced by /iy : If the density part of the Hartree propagator,
Eq. (2.26¢), is inserted into this term; the ¢ function leaves only the on-shell value
of the integrand, which means effectively K — 11y in the last term of (2.22b). When
the Feynman part (2.26b) is inserted we have, after a shift of the integration
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variable, Tr(Sop#) oc k?/(k* — my?) = 1 + rin/(k* —finyg®), and the “1” in this last
expression is cancelled by the subtraction of the VEV. We further use

onity —min(Zy—1) = (5mN my(Zn—1))= _—ENI . (237)
mx Mn p=mn
Here the first equality follows from Eq. (2.9a) and the second one from the renor-
malization condition (2.6a). Note that X'y, denotes the unrenormalized nucleon
self-energy in free space. Therefore, the last term in (2.22b) becomes

4k -
i | Gy Tr(Soldrin —E(Zy 1)
_ s d'k i’
=i Mo ﬁszU(z z TrSOD+12 2( —1nmN2>). (2.38)

Here we have performed the integral over Syg, and the divergent constant a is given
by

a=T2-9+1—-Inmy?

where I is the gamma function and » the number of dimensions.

So far we discussed the forms of the various terms in Eq. (2.22b). The results are
given by Egs. (2.27a), (2.28a), and (2.38). From these formulae one can directly
calculate the counterterm éU of Eq. (2.25). For this we note that for zero density
(p=0, but §#v) the polarizabilities (2.33) involve only the Feynman parts of the
polarizations and the mass shift 8, of Eq. (2.21c). A simple calculation gives

[ dk dn 1 on 2
(SU—4IJ. (27[)4 (kZ_mNz +§<k2—mN2> ) (239a)
_"J(z ) { ar<5a+5N2;f+56N22;;F>+5[A,,,(ac,+5N2;,F)]2} (2.39b)
1 2y 1 , 2
i Yo | OnZTr +5 08 2TF |+ 5 [durdnZ7r] (2.39¢c)
(2 ) 2 2
_511?%: , ("hN4“+mN25N+%5N2>- (2.39d)
-

Here, as in the following, we use the notation

o4
Oring

” 0’4

A = 4=
2 a(my*)?

(2.40)

N? = my rN? = mn?

The term (2.39a) comes from the nucleonic contribution in (2.22b); (2.39b) and
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(2.39¢) have been derived from the (o, w) contribution in (2.22b); and (2.39d) has
been derived from the last term in (2.22b). The mass shift §, is given by (2.27b).

We have now derived the explicit forms of ail the terms in the energy density
(2.22), and it remains to add them together in such a way that the finiteness of the
whole expression becomes evident. For this, let us first separate the divergent parts
from the expressions (2.27a) and (2.28a). For (2.27a) we write

&k Pk
J(z 5 TrIn(Sy'S0) = 4J(2 E En(k)+ g,#% + ExC +0Ey (241a)

with

&k N Y
Ex© _4zj(2 z {ln<1_kz—mNz)+k2—mN2+§<k2—mN2)} (2.41b)

cdk (8 1/ oy ) |
5EN=—4tj( { N +5< Nz)}. (241c)

2n)* L k? —my? k? —my

The term E\C is finite, and the divergent term 6Ey is cancelled by (2.39a). Next
consider (2.28a). The density parts of the polarizations IT in (2.33) go as 1/k? for
k — o0 [2], while Feynman parts, as we will see later, behave as In k? in this limit.
Consequently, we write

e d%
’j Gyt T ) = By 4 Ex + 0Bz + SEy + OE, (2.42a)
with
i d%
ELC=—EJW{IHSL+Aof”a+AwIHL
1 2 1 2
+5(Aaf(6a+HaF)) +'2_(AwaLF) (242b)
o dk 1
ETC‘: —1 J (27.[)4 {]n 8T"'AwaT+‘2‘(AwaTF)2} (242C)
i %k
5E20=§f(2 X (At ,p+ A Iy p — 24 I 1p)
i d%k
=3 | Gyt UetZ oo + (4 Zon ') (2424)
i &k
Oax =3 [ Gyt Qeellur + AuelTe =24 ,1lTxe) (242¢)
&k ,
8y = [ i (B + )+ (AualTor ¥ + Al T} (2420)

595/194/2-12
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The terms E; € and E; are finite, while the terms E, of second order and 6E, of
fourth order in the coupling constants are divergent. We have to combine them
with the contributions (2.38) and (2.39) in order to get a finite result. Consider first
the term (2.42d). As explained before, the density parts of the self-energies involve
at least one factor Sy, in the integrals of (2.29). The combination Sop Sop will give
rise to a finite result when inserted into (2.42d). The resulting contribution is
the familiar exchange term, which we will call E7}, (see Eq. (2.45b) below). The
remaining terms involve the combination Sy Sop and, when inserted into (2.42d),
give , \
d’k d*k
1] Gy T Son) =~ Eneliom [ i T S0 (24)

Here Ly is the unrenormalized “Feynman part” of the nucleon self-energy (see
Fig. 3):

d'k d'k
Enek) =" [ 55z Sor(@) Aok~ ) + 1802 [ 557, Sor(@) P Abi—q). (244)

It is a manifestly Lorentz invariant function, and when we expand it around
¥ =iy, we obtain the second equality in Eq. (2.43). The term (2.43) combined with
the first term on the RHS of Eq. (2.38) gives a finite result. We therefore write

4

k ~
Tr(Son(drtn — B(Zyn— 1)) = £ + ES, (2.452)

SEyp — J (Z z

with the “exchange energies”

EQ) = 2 _[(2 )4J-(2 ) 4 ,4(k) Tr(Sop(g) Soplk +¢))

+55_J = J 7e 7 4udk) Tr(y, Sop(q) V" Sop(k +¢))  (2.45b)

(2n)* ) (2n)*
. d'k
Ef;)=_lENF|E=MNJ(2n) Tr Sop (2.45¢c)
with
M <
Znplicam=2nFlicm——— 2N (2.45d)
Py k=my
,./'\.\. rrf‘.f%
[ ) \. + 3

FiG. 3. Diagrams for the Feynman part of the nucleon self-energy (2.44). Here the full line denotes
the propagator Sy, and the dashed-dotted and wavy lines are for the free ¢ and w propagators,
respectively.
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From the general relation Xy = 2y + 0y —¥(Zy — 1) between the renormalized
and the unrenormalized nucleon self-energies it is seen that (2.45d) is indeed the
renormalized self-energy at k= iy and hence is finite.

Let us now add together all the remaining divergent terms, i.c., the second term
n (2.38), the terms (2.39b)-(2.39d) and (2.42¢), (2.42f). The second term in (2.38)
combined with (2.39d) gives

d'k 1 BN
— j L Tr(Sor(0n — iin(Zn — 1)+ (239d) === =N ¢, (2.46a)
(2 ) Nlpg=mn
where the constant C is given by
~ 2 3
C=rnt ln——mN‘éN =00 (2.46b)
my’ 2
Now adding together the divergent terms listed above we get
(2.46a) + (2.39b) + (2.39¢) + (2.42¢) + (2.42) = ES3 + EY (2.47a)
with
d*k 1 S
?; = (H(a Z)AU( 317( Z)Aw[)+_“— C (2'47b)
y 7 _[( )4 F TF 2 M| o

4
EV J-(;k) ((25 H( ”+[Han](_l))Adf2+3[HTF2]‘VI)A(uf2)' (2470)

Here IT'~?) (IT'~ V) denotes the value of the polarization /7 after the first two (one)
powers in an expansion around #,2 = my’ have been subtracted,

MV =M - ZiF (2.48a)

1
175»;2‘=17,~F—5N2§F—56N22;-’F (2.48b)

with i=¢ or T. In (2.47c) we further introduced the notation

[ =1 — (0nZip)™. {2.48¢c)

In the next section it will be shown that the expressions (2.47b) and (2.47c) are
finite.

We can now write down the final expression for the energy density (2.22). We
have to add Eqgs. (2.41a), (2.39a), (2.42b), (2.42c), (2.45a), and (2.47a) and obtain

E=E"+ E\+ E} + E3 + EV + E\C + E.C + E1©. (2.49)
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Here the quasiclassical contribution is given by

3

EC=U+4 [ dk

(2 )3 Ekn(k)+gwwop (250)

with U from Eq. (2.13). The three “exchange energies” E®*, being of second order
in the coupling constants, are given by (2.45b), (2.45¢c), and (2.47b), the fourth-
order term EV is given by (2.47c), and the “correlation energies” E are given by
(2.41b), (2.42b), and (2.42c).

2.3. Polarization Insertions and Stability Conditions

Let us inspect more closely some of the loop terms in (2.49). Our intention here
is, first, to show the finiteness of (2.49), second, to derive certain stability conditions
which will restrict the choice of the parameters, and, finally, to discuss the signs of
the various terms.

(a) Exchange terms and the fourth-order term E¥. The three “exchange
energies” E7}, i=1,2,3, in Eq.(2.49) can be represented graphically by Fig. 4.
According to our derivation, E‘(’” is due to the combination Sop Sop, £73, due to
SopSor» and Ef, due to Sop Sor in the diagrams of Fig. 4. The numerical evaluation
of the traditional Fock term Ef}, according to (2.45b) presents no difficulties [2].
As expected from the nonrelativistic picture, the ¢ meson contributes repulsion here
while the w meson gives an attraction. The term E‘;"z‘) of (2.45c¢) is due to the shift
my — Ay of the nucleon mass. Its evaluation requires the renormalized Feynman
part of the nucleon self-energy Z'\r. According to our definition (2.44), this quan-
tity involves the full meson propagators in free space. As we will discuss later in
connection with the introduction of cutoff functions, however, in the actual calcula-
tions we will neglect the free space meson polarizations. In this approximation, the
unrenormalized nucleon self-energy of (2.44) becomes

1675221\11-‘(17) = gz(mNFa(O)(ﬁz, Py )+ PF, m(P "~1N ))

+ 8, (— 4y F,O(F, ) + 2pF, (P2 my?))  (251a)

<+

FiG. 4. Graphical representation of the exchange energies in Eq. (2.49). The full line stands for the
Hartree propagator, and the dashed-dotted and wavy lines for the free ¢ and @ meson propagators,
respectively. Counterterm contributions are not indicated in the figure.
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with

F(p* m’)= — (1) T(2=5)+ £,(p*, m?),

£l pt m?) = j] dx x*In(m* + (m;2 —m?) x — p>x(1 —x)) (2.51b)
0

(a=0,w;a=0,1).

The renormalized self-energy at p =y is then found from (2.45d) as
1672 E e o, = £SO+ £, = 28,0200 = £, (252a)
with
L= 11900, ) — f 9y, my?)

(1 —x) +m x
mai(1 = x) +ml x

i
= j dx x*In (2.52b)
(0]

It is seen that o(w) contributes attraction (repulsion) to (2.52a) and hence also to
the term ET;, of (2.45c).

The evaluation of the next two terms E7}, and EY in (2.49) requires the Feynman
parts of the meson self-energies. These are obtained by replacing S, — Syr in
(2.29a), (2.29b):

z__kz 1 —
16725 = 4g7(k? — 4y, f dyln T =KX =)
my

— 8¢y 2ln—+ 8g2 (N’ — my?) (2.53a)
my?

iy’ —k*x(1 — x)

My’

1
167251y = 16g,,2k f dx x(1—x)In (2.53b)
(4]

For k=0 and #iy/my between 0.4 and 1, (2.53a) gives a large positive contri-
bution, which will strongly influence our later discussions. The polarizations I7,
introduced in (2.32) are obtained from the above expressions by subtracting the free
space values (i = my).

In order to show that the expressions (2.47b), (2.47¢c) are finite, we need the
asymptotic forms of the polarizations for large k. We obtain (i=0, T)

M5 o log k? + O[log k¥/k*] (2.54a)
T o O ik +O[1/k?] (2.54b)
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log k2
[IT£] " i +O0[1/k*] (2.54¢)
31
My =2 = —‘%ﬁ— C+O[1/k*] (2.54d)
2
1
I 2= g“; ZC+ O[1/k*7, (2.54¢)

where C has been given in (2.46b). Due to (2.54b), (2.54c), EV of (2.47c¢) is finite.
From (2.54d), (2.54¢) it follows that the divergence of the first term in (2.47b) is

given by
1 C 3 2 2 n
167{227[2<2g _3g(u>r(2—2)

This divergence is cancelled by the second term of (2.47b), as can be seen from the
form of the unrenormalized nucleon self-energy in free space, obtained by setting
My =my in (2.51). This shows that also the contribution (2.47b) is finite.

The integrals in (2.47b), (2.47¢) are calculated numerically by performing a Wick
rotation (k* - 1*= —ky> —k?* we will use a hat on a quantity to characterize its
Wick rotated expression). We obtain, leaving out the free space meson self-energies,

% 7= ..
16n2ES, = fo P dl( T L 2) (2.55a)

¢ )
+F [gz(fa(O)(mNza mNZ) + fa(”(mNH’ mNz))

+ g,2(— 41,0 (mE m?) + 21, (m 2, my) ] (2.55b)
c 3, .,
S ro-n (2 255
s 1e-9(5 8- %) (2:550)
Lo 20,0, "+ 71" | U] "
V= - | Pg| =& oF 3= ) 2.56
167 2[0 ( (Ftm.>) 3 P ma) 39

If one does not introduce a cutoff function, one should make use of the asymptotic
expansion given in (2.54d), (2.54¢) to subtract a suitable function from the
integrand in (2.55a) and add it again, thereby cancelling the divergent term (2.55¢)
analytically. (For example, a possible choice concerning the ¢ meson contributions
in (2.55) would be the function 3Cg?/2n?-1/((* + p®) (I 4+ m,?)), where u is an
arbitrary mass.) However, as we will explain later, we will evertually introduce a
cutoff function, which enables us to calculate the two terms (2.55a), (2.55b)
separately. We will then see (in Section 3.2) that the contribution of the ¢ meson to
Z'ne is negative and hence the ¢ meson part of the term (2.55b) is positive. (Note
that C <0.) The ¢ meson term in (2.55a) cancels part of this repuisive contribution,
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which can be understood from the fact that I7,'"? <0 for small 2. For the
o meson the situation is just reversed; ie., the w meson part of the sum
(2.55a) + (2.55b) gives attraction.

The fourth-order term EV of Eq. (2.56) will turn out to depend very strongly on
the assumed value for m,. We have 5, <0, and also both T .~ and [/7,:2]"" "
are negative for small /2. Roughly speaking, for m, < 1.2 GeV one gets a repulsive
contribution from (2.56). For higher m,, however, the mass shift 6, becomes
increasingly important and EY turns into an attractive contribution. The « meson
term in (2.56) will be seen to be small compared with the ¢ contribution.

(b) Correlation energies. Next we turn to the correlation energies in
Eq. (2.49). For the nucleonic contribution we have the simple Hartree expres-
sion (2.41b), which can be given analytically as [3, 4]

m 4 ﬁz 2
ENC=_8—:{F(}’N); _VN=<—§‘> s

F(y)=p"Iny—=(p*—1)+2(p—1) (2.57)

N | W

For yn <1 we have Ey>0. The positive sign is easily understood from the fact
that E\© is nothing but the energy of the Dirac sea minus the vacuum value

. &k
E\¢= _4[(—271_)3 (\/rﬁN -f-kz—\/mN2 +k?) 4 counterterms. (2.58)

The longitudinal and transverse correlation energies have been given in (2.42b),
(2.42c). For their numerical evaluation we will perform a Wick rotation
(ko = @ = iky). If we include both the explicitly density dependent and the Feynman
parts in the meson propagators, the imaginary parts of the self-energies have the
correct (negative) sign, which implies that the propagators have neither zeros nor
poles for complex k,> [8]. This leaves the possibility of real (physical) poles and
poles on the imaginary k, axis (tachyon poles). For the system to be stable the
latter ones have to be avoided, which imposes the “stability conditions”

£()>0 (2.59a)
éx()>0 (2.59b)

for all values of the Euclidean four vector /= {(w, k). An instability of the system
occurs if a pole at k,>> 0 passes the origin in the complex k,> plane and moves to
the tachyon region k,2 <0 [87]. Hence, in practice it is sufficient to impose the con-
ditions (2.59) for @ = 0. We should note that our above discussion holds only if the
Feynman parts of the polarizations are included. In the widely used approximation
of including only the density parts, the propagators can have poles at complex k’,
and one obtains different results when the Feynman parts are neglected before or



408 LIU, BENTZ, AND ARIMA

after the Wick rotation. In the numerical calculations to be discussed in Section 3
we will investigate the approximation of neglecting the Feynman parts in the Wick
rotated expressions.

Let us discuss the low momentum limits of (2.59), where Eq. (2.59a) imposes a
rather strong condition on the choice of the parameters. We have for /= (w, k) -0
(see Appendix B)

_ mo*z + ZGF(O) mw*2

£4(0) P (2.60a)
*2 P
60) =" SR (1 Py (2:600)

g

Here we used the notations

Pk k2

*2 _ > 2 _ o~ 2 2 el
m =2+ Z,p(0) =, +4g f(zn)3 F37(0) (2.61a)
16725 ,0(0) = 8g ( it — my? — 3yl | i 2.61b
oF g\ My —my my nm 2 (2.61b)
N
my*r=m,2+ Hyp(0)=m,> + g, Ei (2.61¢)
F
2 ~ 2
g m 1
FHW N #EH[Se 2} _ . | 2.
o =N (mwz 8 <E) m,*2+zﬁ(0)) (261d)

In the above formulae, the limits £k —0 of a quantity A(k) are denoted as
A(0)=lim, _ ,lim, _, , A(k) and 4“9(0)=lim, _,lim, _ , A(k). (The two limits do
not commute, since the particle hole excitations vanish in the former but not in the
latter limit.) We further used Ep=./pg>+ny’, and N =2p Ec/n* is the
density of states at the Fermi surface in the Hartree "approximation. The mass
parameters m_ *? or (m,*>+ X _¢(0)) are the “self consistent” ¢ mass parameters in
a one-loop calculation; i.e., they agree with the quantity —4,7'(0) of (2.23b) if the
energy density E equals EQ°" or E'¥) = EQCL 4 E\© (see Eq.(2.49)), respectively.
Similarly, m_*? is the self-consistent ® meson mass parameter in a one loop
calculation [4]. Finally, F,'"' is the dimensionless /=0 Landau-Migdal parameter
calculated from the one-loop energy density EY) in the usual way [4, 12]. We see
that the condition (2.59a) implies

m,*?+ X :(0)>0 (2.62a)
1+ F,'>0. (2.62b)
The conditions (2.62) are necessary in order that the meson propagators are free of

Tachyon poles at low momenta, i.e., in order that the energy density is real. They
do not guarantee the stability of the two loop energy density (2.49) with respect to
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variations in # for fixed density, nor with respect to variations in the density. Since
we calculated these meson propagators in the one loop approximation retaining
only the nucleon loop, the conditions (2.62) derived above agree with the following
stability conditions to be imposed on the Hartree energy density: 8°E“"/05* > 0 for
fixed p, and 02E*/0p? >0 at the extremum of E‘¥)(p). We will come back to this
correspondence in the next section. Eq. (2.59b) for /— 0 imposes no further condi-
tions. We have §:(0)=m,**/m,* and ££"(0) = 1.

Turning now to the high momentum region, we note that the k?In(—k?)
behaviour of the polarizations (2.53) leads to zeros of the polarizabilities at space
like momenta (k> <0). In particular, the meson propagators (2.34) in free space
have tachyon poles. This problem occurs also for the photon propagator in Q.E.D.
One possibility to avoid the tachyon pole has been proposed in Ref. [13] and con-
sists in introducing the chain approximation in the spectral function of the Kallén-
Lehmann representation. The resulting propagators are different from (2.34) and
free of Tachyon poles. In this work, however, we will avoid the tachyon poles
caused by the Feynman parts of the polarizations by introducing a meson—nucleon
vertex form factor. This point will be further discussed in the next section. Without
the introduction of vertex form factors there is also the possibility that for high
density and/or small values of 1y the density part of the transverse polarization
IT1, causes ér to become negative. For example, for g, =15, p=0.5fm > and
Min/my = 0.6, I rp /(I +m,?) becomes less than —1 at @~ 0, k| ~450 MeV. The
reason for this is very similar to that for pion condensation: The transverse part of
the nonrelativistic w meson exchange potential contains a é function piece which is
attractive in this channel. Since this instability occurs at rather high values of [k|,
it can, unlike the case of pion condensation, be avoided by introducing a meson—
nucleon cutoff function. Another possibility is to introduce a phenomenological
two-body interaction (nonrelativistically usually written in momentum space as
4nf*/m,’g (6, -6,)), which simulates the effects of exchange and short range
correlations. For example, the choice g, =0.1 eliminates the singularity mentioned
above, as does also a dipole form factor with 4 =1 GeV.

Returning now to the correlation energies (2.42b), (2.42c), a Wick rotation gives
the following expressions which will be used for the numerical calculations:

1 o] n/2 . . ﬁg 17
ELC:EEL l3dlj0 smzBdB{lnaL-—lzﬁ_ma2 12+I’I;lw2
1 (6, +1,:\*> 1/ I 2
+§< P+m 2F> +§<lz+l;r: 2) } (2.63a)
1 2 ) 1 1/ 1T 2
ETC=ZF3L pdljo s1n29d9{ln8T—12+r: 2+5<12+: 2) } (2.63b)

Here the Wick rotated polarizabilities are given by
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s ﬁa ﬁL ﬁMz

&L= (1 + 2 +ma2)(1 TPy mwz) + P rm)P+mp) (2.64a)
iy

= ‘ 2.64b

et 1 12+mw2 ( )

Here tan 6 = |k|/w, and we again approximated the free space meson propagators
by their lowest order forms. If all self-energy pieces in (2.63a) are neglected and
only the mass shift §, is retained, E, € is equivalent to the “zero-point oscillation”
energy of the o field discussed in the Introduction,

1 3k
E - 3 f g—)s- (/7,2 + k2 —/m,? + k?) + counterterms, (2.65)
i

which is attractive and known to cancel large parts of the nucleonic contribution
(2.58) [3). The effect of the density part of the ¢ polarization IT, in (2.63a) has
been roughly estimated in previous calculations [1, 3, 4] by replacing m,% - m_*?
in (2.65), where m_*? is given by Eq. (2.61a). Note, however, that in the opposite
limit of w — 0 followed by |k| — 0, I7,5 is negative and very large due to the attrac-
tive nature of the particle hole interaction mediated by ¢ meson exchange. Physically
we expect that this effect, which is partially cancelled due to the presence of the
w meson (i.e., the mixing term in (2.64a)), will enlarge the attractive contribution
due to E. €. On the other hand, the Feynman part IT,; is positive and very large at
small momenta and, as we shall see, can even change E.© into a repulsive contribu-
tion. We will come to this point later. The contribution due to E+€ will turn out
to be small in our subsequent calculations.

3. RESULTS AND DISCUSSIONS

In this section we will show the results for the binding energy per nucleon based
on the expression (2.49) and analyze them in detail. This will be done in two steps:
First, in Section 3.1, we neglect the Feynman parts of the meson polariza-
tions (2.29); i.e., the polarizations in this case include the familiar particle-hole
excitations and the Pauli principle corrections to the NN excitations. Second, in
Section 3.2, the Feynman parts will be re-included. Our conclusion will be that we
cannot achieve a satisfactory description of nuclear matter within the framework
discussed so far. In particular, if the Feynman parts of the meson polarizations are
included the saturation of the binding energy is lost. After analyzing the situation
we will see that, once the vacuum fluctuations are considered, the meson loop con-
tributions to the meson polarizations (see Fig. 1b, 2b) should be taken into account
simultaneously with the nucleon loops. Therefore, in Section 3.3, we will estimate
the influence of these meson loops on the correlation energies. This modification of
the correlation energies leads to a recovery of the saturation.
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In all subsequent calculations we fix g =10 due to reasons discussed earlier. We
further use my =939 MeV, v=93.9 MeV due to (2.4a), m,=783 MeV, and in
(2.4b) and (2.13) we use m, = 140 MeV. The free parameters are m, and g,,.

3.1. Feynman Parts of Polarizations Neglected

Here we include only the pieces X,p and X, of Eq.(2.29). Their analytical
expressions are given in Ref [14], and in Appendix C we give the corresponding
formulae after Wick rotation. No meson—nucleon vertex form factors will be
included in the present subsection.

First we discuss the stability conditions (2.62) for X _=0. To satisfy (2.62a)
makes no essential difficulties, but Eq. (2.62b) imposes severe restrictions. For
normal densities m_*? decreases as /v deviates from unity towards smaller values,
and accordingly the parameter F,'’ of Eq. (2.61d) becomes more negative. For
example, choosing g,=g=10 and m,=1GeV, the possible values of i/v are
restricted to #/v = 0.8 for all densities p <0.4 fm ~>. For higher densities this lower
limit decreases gradually but slowly. From this and Eq. (2.61d) we see that we need
rather high values of g, and/or m, in order to have some freedom in varying &
when minimizing the energy density with respect to 7 for fixed p. For medium and
high densities (p = 0.15 fm ~3), there is also an allowed region of small #/v.

The Wick-rotated polarizabilities £, and £ are shown in Fig. 5 for a small value
of @ (w=20MeV) as a function of |k|. The density is chosen as p =0.15fm "3, and
/v =10.85. The other parameters are

m,=11GeV, g, =111 (3.1)
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FiG. 5. The Wick rotated longitudinal (full line) and transverse (dashed line) polarizabilities of

Eq. (2.64) without the Feynman parts in the meson self-energies. The case shown here refers to
p=0.15fm >, §/v =085, w=20MeV.



412 LIU, BENTZ, AND ARIMA

We see that for medium values of the three momentum £, deviates very much
from unity, in contrast to £ér. The value of &, at |k| =0 is approximately given by
(2.60a). The sudden increase of §; at low |k| is due to the particle-hole excitations
in the mixing part I7, of Eq. (2.64a). (Note that the particle-hole excitation pro-
cesses vanish for |k| =0, w#0.) The contributions of particle-hole excitations in
I1, are negative for small o, but they are overwhelmed by the mixing term due to
the large g,,. This shows the important role of the g-» mixing in order to satisfy
the condition (2.59a). The sharp peak of §;, shown in Fig. 5 persists only for low w.

The results for the binding energy per nucleon are shown in Fig. 6a. Here, in
addition to the choice (3.1), we show the results obtained by slight changes of g,,.
The nucleon effective mass is shown in Fig. 6b. The prominent features of this
calculation are, first, that for densities p = 0.16 fm —* we do not find a minimum of
the energy density as a function of § and hence no stable nuclear matter state, and,
second, that for certain parameters nuclear matter saturates at about half of the
normal nuclear matter density with a rather low binding energy. We found that this
situation cannot be improved by choosing a different parameter set or by intro-
ducing meson—nucleon vertex form factors. The following discussion analyzes the
results of Fig. 6.

Figure 7 shows the binding energy per nucleon for some fixed densities as a func-
tion of #/v. For p <0.16 fm —* each curve shows a minimum, and the corresponding
“physical” values #, and Eg/4 have been used to draw Fig. 6. According to
Eq. (2.23a), 7, is a solution of the equation

c
~ 2
2,0 = - (2 -5), (32a)
and the curvature at § =, is given by
M **=m>+ X ,(0) (3.2b)
a b
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F1G. 6. Binding energy per nucleon (a) and the nucleon effective mass (b) calculated by neglecting
the Feynman parts in the meson self-energies. The three lines refer to different values for g,,: g, =10.9
(dashed-dotted line), g,=11.1 (full line), g,=11.3 (dashed line). The o mass is m,=1.1 GeV.
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As shown in Appendix A, the two loop self-energies in these expressions are given
by

21=21D+21F+2a,mes+521 (a=0’,7'[), (33)

where the first two terms constitute the nucleonic contribution (2.29) shown in
Figs. 1a, 2a, the third term is the meson loop contribution of Figs. 1b, 2b, and 42,
is the contribution of the vertex and self-energy corrections to the nucleon loop
diagrams, see Figs. 1c, 2c. It is evident from Fig. 7 that for p ~0.16 fm ~* the mass
parameter M ** becomes zero, and beyond this density Eq. (3.2a) no longer has a
solution. This situation, which is very similar to the one observed already in the
quasiclassical approximation [4], is shown in more detail in Fig. 8, which
illustrates Eqs. (3.2) for a fixed density p=0.15fm 3. The dashed double-dotted
line in Fig. 8a shows the right-hand side of Eq. (3.2a), and the full line the two-lcop
pion self-energy X (0). There are two solutions to Eq. (3.2a), one corresponding to
a minimum of the energy density and the other to a maximum, see also Fig. 7. If
we increase the density further, the two solutions coalesce, and beyond that density
the full line in Fig. 8a lies above the dashed double-dotted one such that Eq. (3.2a)
has no solution. The quantity M, ** of Eq. (3.2b) is shown by the fuil line in Fig. 8b.
For i =0, we still have M, * =670 MeV, but for higher densities M,* vanishes at
the physical point §,. The same quantities are shown as functions of the density in
Fig. 9. Since Eq. (3.2a) is satisfied at every density, the dashed double-dotted and
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FiG. 8. Effective pion (a) and sigma (b) mass parameters for p =0.15 fm ~* as functions of i/v. For
explanation, see text.

the full lines in Fig. 9a coincide. Since —#1,? is an increasing function of the density
(see Eq. (2.5¢)), so is the self-energy 2 .(0). The square of the “pion effective mass”

M **=m+%.(0) (34)

is equal to ¢/B,=m,?*-v/d, for every density. From Fig. 9b we see again that M *?
is a decreasing function of the density. Actually it vanishes for p~0.16 fm 2.
A vanishing M, *? means [4] that the Landau-Migdal parameter F, of the quasi-
particle interaction approaches — oo, and the system collapses due to the infinite
amount of attraction.

Figures 8 and 9 also show the various contributions (3.3) to the self-energies.
(The explicit expression of the mesonic contribution X, _.(0) is given in
Appendix A.) The dotted lines in Figs. 8b,9b show the quasiclassical mass

parameter m,*? of Eq. (2.61a), the dashed-dotted line includes the Feynman part
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FiG. 9. Effective pion (a) and sigma (b) mass parameters as functions of the density. For explana-
tion, see text.
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2.r(0), and the dashed line includes further the mesonic piece X, .(0). It is
already well known [4] that in the quasiclassical approximation the o mass is
quenched, while the inclusion of the Feynman part 2 gives rise to a very large
enhancement. The former effect leads, as we discussed above, to a collapse of the
system in the quasiclassical approximation, while the latter effect leads to a
stabilization of the system once the one nucleon loop contribution to the energy
density is added to the quasiclassical result. Figs. 8b, 9b, however, show that the
meson loop term X', .. brings the ¢ mass again close to the quasiclassical result.
We also see that the term 62, of Eq. (3.3) due to the 6 NN vertex correction and
the nucleon self-energy correction is small. In a similar way, the different contribu-
tions to the pion self-energy are shown in Figs. 8a, 9a. The dotted line shows the
quasiclassical part X ,(0) and the dashed—dotted line also includes the Feynman
part 2 ¢(0). The latter one is negative and large. The meson loop term 2 ...
however, gives a very large positive contribution, and the final result for X (0) is
again rather close to the quasiclassical part, 2 ,(0).

The above discussion on the meson self-energies shows the following two points:
First, the reason for the instability of the system at normal densities (p = 0.16 fm ~*)
is quite similar to the reason for the instability in the quasiclassical approximation:
The effective o mass (3.2b) is a decreasing function of the density and finally
vanishes at normal densities, leading to an infinite amount of attraction in the
Landau-Migdal force. Second, the very large positive contribution to the effective
o mass due to the Feynman part 2, which in the one loop calculation [4] leads
to a drastic weakening of the attraction and thereby to a stabilization of the system,
is cancelled by the mesonic loop terms of Fig. 1b. A similar cancellation takes place
also for the pion self-energy. This latter point, which will be taken up again in the
next subsection, already gives us a hint that in the present model the nucleon and
meson loops should be treated together.

Let us now discuss the individual contributions to the total binding energy per
nucleon shown in Fig. 6a. A qualitative discussion of the various contributions has
already been presented in Section 2.3. In the present approximation of neglecting
the Feynman parts of the meson self-energies in the calculation of the energy den-
sity, we have Ef}, = E¥ =0 in Eq. (249). The exchange energies Ef}, and E7) per
nucleon are shown in Fig. 10. We see that the traditional exchange energy Ef}, is
small compared with the term E7}, due to NN excitations, and, moreover, the o and
o contributions to Ef}, tend to cancel each other. In the present calculation we do
not use meson—nucleon vertex form factors. As we will see in the next subsection,
E?, is reduced very much if a vertex form factor is introduced. E7;, of Eq. (2.45¢)
is determined by the Feynman part of the nucleon self energy '\ at & = iy, which
has been given in Eq. (2.52). For example, with the presently used parameters we
have for p=0.13fm > (in/my=0.89), Znp(f=riy)=(—52.0+2242) MeV =
172.2 MeV, where the first and second numbers are due to o and w, respectively.
Altogether, we get a large repulsive contribution due to the exchange energies,
which is mainly due to the @ meson term in E7;,. The correlation energies E€ per
nucleon are shown in Fig. 11. The dominant term is the large attractive longitudinal
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correlation energy E, €, which is partially cancelled by the nucleonic term E\. In
the Hartree approximation E; ¢ reduces to (2.65). In a Hartree calculation employ-
ing high values of m,, as used also in the present calculation, this term is of the
same order of magnitude as E\¢ with the opposite sign [3]. The additional large
attraction shown in Fig. 11 comes mainly from the particle-hole excitations in the
o meson self-energy. Again we have to point out that the inclusion of vertex form
factors would reduce E; ©. The transverse contribution E1€ is very small in spite of
the large value for g,. Finally, the quasiclassical contribution (2.50) gives a large
repulsion with the presently used high values for g, and m,. (For p=0.1 fm ~* this
term contributes about 60 MeV to Eg/A4.) This fact, among others, probably points
out the inadequacy of the present approximation: The lowest order term is highly
repulsive, and all the attraction comes from the higher order correlations. Note that
we were forced to use high values of g, and m, in order to satisfy condition (2.62b),
or, more generally, (2.59a).

We mentioned above that for medium and high densities the conditions (2.62)
are satisfied also for small values of §/v, suggesting the possibility of an abnormal
state. Such a state, however, was not found in the actual calculation: If one uses
large m, (m, z 1 GeV), the condition (2.59a) turns out to be violated for finite |k|.
For smaller values of m, condition (2.59a) can be satisfied, but the energy per
nucleon has a maximum at §~ 0 rather than a minimum and, moreover, is positive
and very large.

Alltogether, with the present approximation we are unable to give a satisfactory
description of the nuclear matter binding energy: The saturation occurs at low den-
sities and at medium and high densities nuclear matter is unstable. The reason for
this instability is a pole in the two loop expression of the ¢ propagator at zero
momentum. At low densities (p~0.1 fm*) the binding energy results from a
delicate cancellation mainly between the attractive correlation energy and the
repulsive exchange energy.

3.2. Feynman Parts of the Polarizations Included

We now wish to discuss how the situation changes when we include the Feynman
parts of the polarizations (2.29) in the calculation of the energy density. It is clear
from Eq. (2.61b) or Fig. (8b) that the piece 2,¢(0) is very large and positive, at
least for values of ¥ relevant for the normal state. Its inclusion reduces the attractive
contribution to the parameter F,'"” of Eq. (2.61d) and thus makes condition (2.62b)
easier to satisfy. This is reminiscent of the one loop (Hartree) calculation where the
inclusion of the nucleon loop term in the energy density stabilizes the system. Due
to the presence of this large positive piece in the ¢ propagator we can employ a
small value for g, without violating (2.62b). For example, for the choice

m,=1.35GeV, g,=35 (3.5)

Eq. (2.62b) leads to the restriction 0.55<#/v <095 in the range of densities

595/194/2-13
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0.1 fm > < p <04 fm~> (The upper limit imposed on the possible values of /v is
due to the fact that ' (0) >0 as § > v.)

In Section 2.3 we discussed the necessity to include meson—nucleon vertex form
factors in order to prevent tachyon poles in the free space meson propagators. In
the calculations to be discussed below we employ a dipole type form factor,

AZ

F(k2)=k7__7, (3.6)

choosing 4 =850 MeV. This means, in particular, that we multiply all meson self-
energies by F?(k*). Once this is done, the free space meson self-energies do not
modify the propagators drastically. For example, with the parameters given above
we have |Z,(?)/(? +m,?)| <0.14 for all 2. For the w meson the influence of the
free space self-energy is very small even for higher values of g, [11]. We will there-
fore approximate the meson propagators in free space by their lowest order forms.
The form factors have also to be introduced into the nucleon self-energy (2.51a).
This modifies the functions £,'“)(u?, u?) (u =My or my) of Eq. (2.51b) as follows:

@2 2) o £ @2 42 A2) = % e a l‘z(l—x)2+mazx
fcz (ﬂ,ﬂ) fac (,u,[l,A) 3 dxx ln

A —mz2 /) Jo w21 —x) + A%x
A4 ! x

— | dx X 5 —s———. 3.7

+A2—ma2£) sy

Introducing this modification into (2.52) we obtain the self-energy X\ p(p =)
and EJ}, of Eq. (2.45¢). The modified exchange energy E7}, is obtained by multi-
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FiG. 12. Same as Fig. 5 for the case that the Feynman parts are included in the meson self-energies.
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plying the polarizations in (2.55a) by F*(1), introducing the replacement (3.7) into
Eq. (2.55b) and leaving out the term (2.55c).

Figure 12 shows the longitudinal and transverse polarizabilities for the same case
as in Fig. 5 (p =0.15fm >, §/v =0.85, and w =20 MeV) using the parameters (3.5)
and A =850 MeV. For |k| — 0 the value of £, is close to (2.60a). As we increase |k|,
the negative contribution of the particie-hole excitations’in 1T, of Eq. (2.64a) causes
¢, to decrease. The mixing term /T,,> now plays a minor role due to the smaller g,,.
This is in contrast to the case shown in Fig. 5, where due to the large g, the
particle-hole excitations in IT,,> dominate over those in IT,, leading to a sharp
increase for small |k|.

In spite of the fact that the stability condition (2.59a) is now easier to satisfy, it
turns out that we cannot improve the situation for the nuclear matter binding
energy. On the contrary, even the saturation at low densities found in Section 3.1
is lost. The full line of Fig. 13a shows the binding energy per nucleon calculated
with the parameters (3.5) and A4 =850MeV. The dotted line represents the
quasiclassical contribution of Eq. (2.50). We found that, once the parameters are
chosen such that one has binding at some medium densities (which in particular
requires a high value for m_ as we will discuss soon), at lower densities one has no
binding, while at higher densities the binding energy increases until nuclear matter
becomes unstable due to M,*? — 0 as found also in the previous subsection.

The binding energy per nucleon Egz/A4 of Fig. 13a shows a highly pathological
behaviour. In particular, due to the general relations [4]

d
P;F;(EB/A)=53F—EB/A (Oep =ep —my)
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FiG. 13. Binding energy per nucleon (a) and the nucleon effective mass (b) calculated with the
parameters (3.5) and 4 =850 MeV. The Feynman parts of the meson self-energies are included. The
dotted line in (a) shows the quasiclassical contribution and the full line the total result.
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with ¢ the Fermi energy and Ny the density of states at the Fermi surface, it is seen
that for small densities der grows steeply, reaches a maximum before Ez/A of
Fig. 13a reaches its maximum, and then falis off. The parameter F, decreases
monotonously from positive to negative values. All these features are just opposite
to those obtained from a saturating binding energy curve. Nevertheless, we will
continue to discuss the results in detail, since some of the contributions to the
binding energy will be left unmodified even if one goes beyond the present
approximation scheme.

Selecting some densities, the binding energy per nucleon is plotted against §/v in
Fig. 14. Again, as in Fig. 7, we find that beyond a certain density (p ~0.26 fm —3)
the binding energy curves show no minima but decrease monotonously from their
values at #i/v =~ 1 until they enter the region §/v < 0.55, where Eq. (2.62b) is violated.
According to our discussion in Section 3.1, this means that M *? of Eq. (3.2b)
vanishes at §=d, for p~0.26 fm > The n and ¢ mass parameters are shown in
Figs. 15 and 16. Figure 15 illustrates Egs. (3.2) for fixed p=0.2 fm 3, and Fig. 16
shows the mass parameters as functions of the density. The curves in Figs. 15 and
16 are qualitatively very similar to those in Figs. 8 and 9, and therefore a similar
discussion as given in Section 3.1 holds also here. Note that in this section we used
the o mass parameter m_*>+ X _,(0), shown by the dashed—dotted lines in Figs. 15b
and 16b, as an “input” in the calculation of the energy density, since our meson
propagators now contain also the Feynman parts X2’ besides the density parts 2.
Figures 15b and 16b, however, show that the “output” self-energy X,, which in
addition contains also the meson loops and other two loop corrections, returns
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FiG. 14. Binding energy per nucleon as a function of #/v for various densities: 0.1 fm =3 (full line);
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towards the quasiclassical mass parameter m,*2. The same feature is observed for
the pion in Figs. 15a and 16a. This shows that, as far as the meson propagators are
concerned, the present calculation is highly non-selfconsistent. We will come back
to this point in the next subsection.

We now discuss the individual contributions to the binding energy per nucleon.
Figure 17 shows the three parts of the exchange energy of Eq. (2.49). The contribu-
tions E7}, and E7;, can be compared with those in Fig. 10, noting that now we
employ a much smaller g, and a meson-nucleon vertex form factor. From this
comparison it is seen that the traditional exchange energies Ef}, are not very
sensitive to the cutoff, since the momentum transfer is limited, but the E7;, are very
sensitive. Namely, the use of A4=850MeV reduces them by a factor 8 to 9
compared to the case 4= co. The new contribution E7}, has already been discussed
qualitatively in Section 2.3, and we have the following contributions to Eq. (2.55)
for p=02fm > (#iy/my=0.89): The unrenormalized free space nucleon self-
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energy (ic., the term [...] in Eq.(2.55b)) takes the value Zy\p(k=my)=
(—127.4 4+ 44.8) MeV = —82.6 MeV, where the first and second numbers are due to
o and o, respectively. The constant C takes the value C = —0.00246 GeV*. As dis-
cussed before, the sign of Ef} is determined by the term (2.55b), which dominates
over (2.55a). As in all parts of the exchange energy, ¢ and w tend to cancel each
other. Figure 18 shows the contribution due to the fourth order term (2.56). Since
the w contribution is negligiblely small, we show only the term due to the ¢ meson.
As discussed in Section 2.3, it depends very sensitively on m, and, moreover, also
on the cutoff mass A. For high values of m, we have attraction as shown in Fig. 18.
Although EV is finite for 4 — oo, it becomes unphysically large in this limit. The
correlation energies are shown in Fig. 19. Again we encounter a very high sensitivity
to m,: The longitudinal correlation energy E, © gives attraction only for high values
of m,. The possibility to have a repulsive longitudinal correlation energy is due to
the large positive Feynman part 2 ,.. As m, increases, the (negative) mass shift J,
becomes increasingly important and the whole contribution turns into an attractive
one. This feature, together with the behaviour of EY discussed before, forces one to
use high m, in order to have attraction at least for some densities.

In our calculation including the Feynman part of the o self-energy, the abnormal
state is pratically ruled out by the condition (2.60a). This is so since at 7~ 0 the
piece X, r(0) is negative and very large in magnitude. Only at extremely high
densities the term m_ *? in (2.60a) dominates over X, ¢(0), see Ref. [4].

In conclusion of this part, the use of the full nucleon loop term in the meson self-
energies does not improve the situation for the nuclear matter binding energy found
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in Section 3.1, but on the contrary makes it worse: There is no saturation as a func-
tion of the density, and beyond some density (p = 0.26 fm~* in the present calcula-
tion), the system becomes unstable with respect to variations in 3. The reason for
this instability is the same as found in the previous subsection; i.e., as we approach
this density from below, the ¢ meson exchange part of the Landau-Migdal force
gives an infinite amount of attraction.

3.3. Role of the Meson Loops in the Meson Polarizations

In the last two subsections we have seen that the two approximations introduced
in Section 2.2 (see the discussion around Eq.(2.18)) are not appropriate for a
description of the nuclear matter binding energy. If we avoid the approximation
(2.18), our developments have to be changed in the following respects: First, we
have to take into account the two line irreducible meson loop contributions in
Eq. (2.17), and second, due to the variational principle, the meson self-energies also
include the meson loop diagrams shown in Fig. 1. We have to say little about the
former effect, but we wish to discuss some points concerning the latter one. Actually,
we have already seen in Figs. 8, 9, 15, and 16 that these meson loops affect the total
meson self-energies very much. For k=0, the large nucleon loop contribution due
to X is cancelled by the meson loops. In the Hartree approximation, the cancella-
tion between the diagrams of Figs. la and b can be understood as follows: In this
approximation, the correlation energies are given by (2.58) and (2.65). The
nucleonic contribution (2.58) is due to the negative energy Dirac sea, while the
mesonic contribution (2.65) comes from the positive energy bosonic zero-point
oscillations. The cancellation between these two terms is physically quite trans-
parent and has been discussed in many previous works [1, 3,4]. The first and
second derivatives of these terms with respect to x =7/v determine the pion self-
energies of Figs. 2a and b, and the o self-energies of Figs. 1a and b, respectively.
Since the dependence of (2.58) and (2.65) on x is similar ((2.58) is a function of
x2=1+(x>—1) and (2.64) is the same function of 1+ 2(x?—1)), it follows that
there is also a cancellation between the nucleon loop and meson loop diagrams of
Figs. 1 and 2. This observation further supports our supposition that in our model
the fermionic and bosonic terms should be taken into account simultaneously.

An exact assessment of the meson loops goes beyond the scope of the present
work. In principle, as mentioned above, we should solve the Dyson equation which
now appears as an integral equation, then use the modified o self-energy in the
calculation of the correlation energy (2.63), and include also additional mesonic
two loop diagrams in the energy density. In this section we only wish to estimate
the influence of the additional meson self-energies on the longitudinal correlation
energy (2.63a). The forms of the mesonic pieces X, ., (=0, 1) have been given
in Appendix A. In the Hartree approximation they reduce to [4]

3i%m,?

167

2 mes(0) = G(y,) (3.8a)
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with
m,’
Gy, )=y,Iny,—y,+1; Yo=7 3 (3.8b)
and
0
Zo.mes(o) = A~ (ﬁzn.mes(o)) (38(:)
ov
32m 2
= * H 3.8d
= (»,) (3.8d)
with
- 0Ys
H(y,)= ya+v% Iny,—y,+ 1L (3.8¢)

To avoid the tachyon pole we replace y, — y,* = m,**/m,? with the quasiclassical
o mass parameter of Eq. (2.61a). As in other cases [4], this ad hoc replacement is
not unique. One can perform this substitution in (3.8a) and then calculate 2, ...(0)
from the general relation (3.8¢c) between the n and ¢ self-energies at k =0. In this
case, which we will call prescription (a), one has y,— y,* in (3.8d), (3.8e).
Likewise, one could first calculate 2, .. (0) in the pure Hartree approximation and
then substitute y, — y,* (prescription (b)). The results differ due to the derivative
term in (3.8¢). We will show the results obtained with both prescriptions.

The piece (3.8d) is negative for y, <1 (or y,* < 1) and cancels large parts of the
nucleon loop term X' (0). In order to estimate the effect of this cancellation on the
binding energy, we simply add (3.8d) to the o polarization I7, in the expression for
the longitudinal correlation energy (2.63a), leaving the other parts of the energy
density unchanged. This is, off course, a very crude and, moreover, non-unique
treatment. Nevertheless, it might provide insight into the way an additional self-
energy piece which strongly cancels with the large Z ¢ affects the results for the
binding energy.

It turns out that the above prescriptions lead to a saturating nuclear matter state.
We found that one can choose many possible parameter sets (g, m,, 4) with
similar results. Here we use the set

8o =255, m,=0.84 GeV, A4=0.835GeV. (3.9)

Figure 20 shows the results for the binding energy per nucleon and the effective
nucleon mass. We plot the quasiclassical contribution and the total binding energy
per nucleon obtained with both prescriptions (a) and (b). With the parameter set
(3.9), the condition (2.62b) cannot be satisfied for densities p <0.04 fm °; ie.,
nuclear matter is unstable at very small densities. For any reasonable parameter set
one finds that prescription (a) tends to give too low saturation densities
(p~0.13fm~3). From Fig 20a it is seen that the total loop correction to be
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discussed below is repulsive. The results shown in the following refer to
prescription (a).

Figure 21 shows the binding energy for some fixed densities as a function of #/v
and should be compared with the previous results in Figs. 7 and 14. Since the pre-
sent treatment is only an approximate one, we will not repeat the entire discussions
on the effective meson mass parameters here. We just note that M, *? of Eq. (3.2b)
is now an increasing function of the density, as can also be seen from the curves in
Fig. 21. ,

The individual contributions to the binding energy are shown in Figs. 22 to 24.
Consider first the correlation energies of Fig. 24. Since the large positive piece X ¢
is largely cancelled in the present calculation, the longitudinal correlation energy
E.“ is again strongly attractive as in Section 3.1. In particular, we are not forced
anymore to employ high values for m  in order to get attraction from the correla-
tion energy. The exchange energies of Fig.22 show a behaviour which is
qualitatively similar to Fig. 17, except for the larger Ef},. As in all previous cases,
the total exchange energy is repulsive. The contribution of the fourth-order term EY
is shown in Fig. 23. For the presently adopted lower value of m_ the second term
in the numerator of (2.56) dominates the first term, leading to a strongly repulsive
contribution.

The above findings are summarized as follows: If the meson loop contribution to
the o self-energy, Eq. (3.8d), is invoked in order to cancel the large nucleon loop
term X' p in the correlation energy, we are able to account for the saturation
properties of nuclear matter. The quasiclassical contribution itself is saturating, and
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FiG. 24. The correlation energy contributions to the total binding energy per nucleon shown by the
full line in Fig. 20a. Dashed-dotted line, E\; dotted line, E1<; dashed line, E,<; full line, total correla-
tion energy contribution.
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FiG. 25. Graphical representation of Eq. (A.4). For explanation of the symbols, see the caption to
Fig. 1.

the total loop correction to it is repulsive, resulting from a cancellation between the
attractive correlation energy and the repulsive fourth-order term EY and the
exchange energies.

4. SUMMARY AND CONCLUSIONS

In this paper we studied the binding energy of nuclear matter in the chiral o-w
model. Our motivation for choosing this model was to incorporate some of the
general chiral symmetry constraints [4, 5] into an actual nuclear matter calcula-
tion. For the calculation of the binding energy we used an approximation to the
Hartree-Fock scheme. This approximation consisted in the following: First, we
neglected the two-line irreducible meson loops and, second, we used the nucleon
Hartree propagator S, is order to construct the meson self-energies. Our finding is
that these approximations do not allow an adequate description of nuclear matter.
We arrived at this conclusion in two steps: In the first one we took into account
only the explicitly density dependent part of the meson self-energies, leaving out the
vacuum polarization pieces. We then found: (a) The stability condition (2.59a) is
too stringent due to the large attraction from the ¢ meson exchange potential. We
pointed out that for the same reason nuclear matter is unstable in the quasiclassical
approximation. One must use rather high values for m, and g, which leads to a
very repulsive quasiclassical contribution to the binding energy. Moreover, the
possible range of values for §/v is very limited, and this restriction is not relaxed
very much as the density increases, except for very high densities. (b) Nuclear
matter is unstable for densities p = 0.16 fm =3, The reason for this is that the effec-
tive ¢ mass parameter (3.2b) including the two loop contributions is a decreasing
function of the density and vanishes around p ~0.16 fm ~, It is, however, possible
to achieve saturation of the binding energy for smaller densities.

In the second step we included the vacuum polarization pieces in the meson
propagators. This actually means to add a very large positive term to the ¢ meson
self-energy. We found: (a) The stability conditions are then less stringent. (For the
same reason nuclear matter is stable in the Hartree approximation if one adds the
nucleon loop contribution to the quasiclassical result.) Nevertheless, (b) the binding
energy does not saturate, and for p =0.26 fm > nuclear matter is unstable. The
reason for this instability is similar to the one discussed before: Though we now use
a highly enhanced effective o mass (i.€., m,**+ 2 _£(0)) in the calculation of the
energy density, the final ¢ mass parameter (3.2b) decreases with increasing density
and vanishes for p~0.26 fm *. Contrary to the case discussed before, it is not
possible to achieve saturation before this density is reached. Rather, the attraction
increases without limits as we approach this density from below.
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One by-product of the above calculation was the finding that the cancellation of
the large vacuum polarization contribution to M, *? comes mainly from the meson
loops in the o self-energy. We pointed out that in the Hartree approximation this
cancellation is physically quite transparent, since it can be traced back to the can-
cellation between negative energy fermionic and positive energy bosonic zero point
oscillation energies. We included the effect of the meson loops in a very rough
manner in the correlation energy, neglecting all additional modifications. We found
that this leads to a saturating nuclear matter state without instabilities even at high
densities. The quasiclassical contribution itself saturates, and the loop contributions
give an overall repulsion.

Here let us make a few remarks concerning the pionic contributions, which we
did not consider in the present work. If the pion is included in the two steps
discussed above, one meets the following difficulties: In the first step (vacuum
polarizations neglected) pion condensation occurs and makes the pionic correlation
energy complex. The attractive particle-hole contributions cause the pionic
polarizability to become negative for w~0 and finite |k|. What remains from the
large cancellation between the repulsive NN Pauli correction piece and the attrac-
tive contribution due to the on® coupling is a repulsive contribution to the pion
self-energy, but this is not sufficient to prevent pion condensation. This instability,
which is similar to the one discussed for the transverse w meson contribution in
Section 2.3, can be avoided by including a phenomenological two-body force which
in the nonrelativistic limit reduces to the familiar g'(s, - 6,)(t, - t,)-type interaction
[15]. More serious difficulties come up in the second step: As is clear from Figs.
8a and 9a, the vacuum polarization contribution to the pion self-energy is negative
and very large. As a result, even for small deviations of §/v from unity, the pionic
mode becomes unstable. However, as we discussed in Section 3, there are again
large cancellations due to the meson loop contributions to the pion self-energy.
Thus, if the pion is included, the consideration of the meson loop contributions
becomes ever more important.

Our above discussion indicates that in the chiral g-w model one should always
take into account the fermionic and bosonic contributions on the same footing.
This was pointed out earlier for the case of the Hartree approximation [1, 3] and
persists if the exchange and correlation energies are included. A quantitative assess-
ment of the bosonic loop contributions is a challenging task for future works.

APPENDIX A

(1) Demonstration of the Relations (2.23) in the Present Approximation

First we differentiate the energy density (2.22) with respect to 5. We have, from
Egs. (2.13), (2.14), (2.9c), and (2.8b),

%(U+5U)=5(ﬁ1,,2+6rh,,2)—c. (A1)
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For the derivative of the loop part E; we have

__ ;%
So=—1 ov
d*k aS N ~
1 d% o4 64
Ef(_zn_)‘*{T (A 60) 34, 6v}' (A2)

Here we used (2.8a). Performing a partial integration in the last two terms we get,
using (2.20b), (2.20c) and the forms (2.16),

S,=— J(d“k‘, {82, Tr So+ g Tr[ Sy (S — E(Zy—1))1}
y o d% 'k o5 . 0%,
+34 z;_uj(z 4o+ 4+ f(z )4{T 47434, } (A3)

Using the forms of the unrenormalized self-energies (see Egs. (2.29) for L), we
arrive at
d*k d*k
S,=—gZ, | —=TrS A% 4, A
i ggf(zn)4r0+3l Avj(z)( +4,)
4

&'k
-2 Gyt THSTZR) | (A4)

Here the quantity Zy is the one loop nucleon self-energy constructed from the full
meson propagators 4 and 4. S, is shown graphically in Fig. 25. We now show the
relation

—s =5 (0)=A,+8, (A.5)

with the nucleonic contribution (see Figs. 2a, c)

Ak, k)

d*k
An=ing Tr {Zﬁsso?sso'*'}’sso S0+2y5S0VSSOZNSO} (A.6)

(2n)*
and the mesonic contribution (see Fig. 2b)

d*k

B,,=i,1221[(2 5 (4o+ 54,4 2i04,4,T(—k: k, 0)). (A7)
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Concerning the mesonic vertices T, we follow the notations and conventions of Lee,
Ref. [5]. The nNN vertex correction A, in (A.6) satisfies [4]

Ak, k)= 2~{V5»2N} (A.8)

Putting this relation into (A.6), one finds

A,=— —z j(‘;]} r S, —ig—zngkyTr(Sole). (A.9)
The on’ vertex in (A.7) satisfies [4, 5]
FT(—k;k, 0)=i(4,' — 4", (A.10)
and using this we obtain
2k
Bn=3iZZ£f(2 (o +4,) (A11)

From Egs. (A.4), (A.9), and (A.11) we see that Eq. (A.5) is satisfied.
Let us now turn to the second derivative of the energy density will respect to 3.
We have
52

52 (U+3U) =12+ 3.2, (A.12)

as follows from (A.1), (2.5), and (2.9). In order to calculate the derivative of (A4),
we use the relations

2k
Ak, k)= — 0 (;( ) (o NN vertex correction)
o4, ~(k
TO; k, —k)= T() (om? vertex) (A.13)
A —1
T(0, k, —k;)=ia—°~—(k—) (o® vertex).
ot
Then we obtain
0*E, . 0S, -
= 1 a: = . 4
Froaial i 2,0)=4,+B, (A.14)

with the nucleon loop contribution (see Figs. ia, c)

Ak, k
];4Tr{ZgS02+iSOZ °(g )+2S032N} (A.15)
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and the meson loop contribution (see Fig. 1b)

_ 0 o _aiay [ 4K
B, == (0B,) = 3i Zij(z (4, +4,)
o d%
_34 vZ,.J’( (4. TO.k, ~K3) 4.+ 4,70k, —K) 4). (A16)

Equations (A.5) and (A.14) are the expressions for the unrenormalized =, ¢ self-
energies which are consistent with our expression (2.22) for the energy density. In
the actual calculation described in the main text we leave out the pionic term in £}
of Eq. (2.22b). In this case the quantity S, (see Eq. (A.4)) does not include the term
involving 4,. Consequently, also in the quantities B, (Eq.(A.11)) and B,
(Eq. (A.16)) we have to leave out the terms involving 4,.

(2} Formulae for the Meson Loop Terms

Our applications in Sect. 3 require the forms of the meson loop contributions
(A.11) and (A.16) for the case that 4, is constructed from the nucleon loop term
including the o-w mixing and that the term involving 4, is neglected. 4, can be
expressed conveniently by using the longitudinal polarizability ¢, of (2.33a) as
follows:

17 2
A W) =k*—m>2—H, +—— - A17
a ( ) ma a+k2_mw2+”L ( a)
A"
ZELI“—Af . (A.17b)
T derdly

The last term in (A.17a) is the ¢ self-energy with intermediate one w meson states;
i.e., the effect of the g-w mixing. Relation (A.17b) is easily derived from (A.17a) by
using the form (2.33a). Therefore the o meson part of (A.11) is given by (Z,=1 in
the present approximation)

d*k

0)=3ii? k
S 0)=302% [ 553 4,K)
) d*k
— 32 j o (A, = A~ (e +38,) 4,8 (A.18a)
. dk
+3mj(2n)4 (A g+ (e +8,)4,2). (A.18b)

The term (A.18a) is finite as follows from (2.54a) and from 17, oc 1/k* for k — .
The renormalized self-energy is then given by

Z o mes(0) = Z nes(0) + 01 (A.19)

595/194/2-14
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where the counterterm is calculated from Eq. (2.9¢). As a result we obtain

792 d4k (—1) 2
Frmeal0) =30 [ 555 (4= = (Mg =M™V +3) 4,7), (A20)

2
where 7, " is defined by Eq. (2.48a). Expressing 4, as in (A.17b), the numerical
evaluation of (A.20) presents no difficulties. As explained in the main text, 4, is
approximated by its lowest order form, and meson—nucleon vertex form factors are
multiplied to the self-energies. The corresponding self-energy of the ¢ meson is then

calculated by numerical differentiation according to the formula (compare
Eq. (A.16))

0

Ea,mes(o) = 6_5

(027, mes(0)). (A.21)

If all polarizations in are neglected, (A.20) and (A.21) reduce to the Hartree expres-
sions given in Egs. (3.8).

APPENDIX B

k = 0 Limits of the Polarizabilities

In the limit of small k, the forms of the density parts of the polarizations in
Eqgs. (2.32) and (2.35) are [14]

I, é,
lz)z 2+F0(C0'—¢(s)) (Bl)
mﬂ mG
I
m“§= —F,(1—s’") d(s) (B.2)
HM2 2.2 2 B3
= FF(1—- 50 67(s) (B3)
I vl
o =F, = (1= (1—5%) 4(s)). (B4)
m, 2
Here we used the notations
g g
F(,:NF{H)(I _UFZ)F’ Fw=NF(H)# (BS)

with

2ve E? p —
NF(H)=_%’ vF=E_F’ Er=, /pF2+mN2; (B.6)
F
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1 1 3 14+ vp
=1+-= —— — B.7
C“ 1+21—1)F2 4vFln<1—vF>’ (B7)
s l+s ko
P(s)=1 5 <1n ‘] _s. inf(1— |s| )>, = Tklop (B.3)

If ko — 0 followed by |k| -0, we have s -0 and ¢ — 1. If |k| - 0 followed by
ko — 0, then s — 00, ¢ -0, and s°¢ —» — 1. If we use (B.1) to (B.4) in (2.33a) we
obtain

— ma*z + ZO‘F(O)

Fa¢ 2., 2
= O A e | (89

with the quasiclassical o meson mass parameter

m,*>=m,>+ lim lim M, ,(k)=m>+m*F,C
ko—0 k| — 0

(B.10)

a3

which agrees with Eq. (2.61a). By first setting |[k| =0 or k,=0 in (B.9) we obtain
the two limits (2.60a), (2.60b). The transverse polarizability becomes in the £ -0
limit '

2

8T=1+va7F(1—(1—s2)¢(s)). (B.11)
APPENDIX C

Wick Rotated Forms of the Density Parts of the Meson Self-energies

The density parts of the meson self-energies have been given analytically in
Ref. [14]. The Wick rotated forms (k, — iw) are as follows, using I = w? + k? with
k the magnitude of the 3-momentum,

2

g N

5= 2n) (P — (4> + ) 1) (C.1)
12 g 2 ,

HLD‘_’P(zn);; (—=p,+k - 1) (C.2)
Pl8gw . .\

= (G2 2
g 2

k*—w? Ly P >
=g (T oot 3 (Sl -rn) e
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with
Ex+p
= = E ——1 LA 44 .
po=[" g g =tn(peme—T3mm (L)), (©5)
E,=/md+q,  Er=./md+ pe, (C.6)
v Egc+p
[.== ZFETHPF Y
o k[2EFL1+wL2+2k1n<E —PF> ozL3] (C.7)
Y14
=3 [QE? —w*—a?)L, +4EzwL,+ 8kp; ] (C.8)

12_‘_ [(8EF ‘—6EF(D2)L1 (12EF2CU_(U3)L2

E
+2(k* + 6%k ) In <ﬁ> —a’L,+ 8pFEFk:|. (C.9)
Ex— pr
Here « and the L, are given by
a= k. /1+4m3P (C.10)
(EC?+ 0’ EY)? + 0?)
Ll=1n[(EG)zﬁsz)(E;)erwz)] (C.11)

E(H) E&) E() (+)
L,=2 |:arctg< - )—arctg( + >+arctg (——‘—)—arctg <E >]
w w w w

(C.12)
(E)—a)lEC—a)(E +a)(E) +a)
L,=In|—* 5
o ‘(E‘“—a)(E<;>—a)(E<++>+a)(E<>+a), (C.13)
and the E‘}’ are defined as
E(i+)=EpFik+EF (C14)
E)=E, .~ Er. (C.15)

One may verify explicitly that for any /= (w, k) there are no singularities in the
polarizations (C.1) to (C.4).

The above forms of the Wick rotated polarizations have been checked by numeri-
cal calculation as follows: According to Eq. (2.45a)

eX X r;l N d4k
E(1]+E(2)—5E2D+tr—nﬁf e J(z 4 T Son, (C.16)

N

where 0E,p is given by Eq. (2.42d). In the calculation described in the main text,
the exchange energies Ef}), E7;, were calculated from Eqgs. (2.45b), (2.45c). Likewise,
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we can calculate the RHS of (C.16) directly by performing a Wick rotation in the
integral (2.42d) and using the Wick rotated forms of the polarizations given above.
If we introduce a meson—nucleon vertex form factor as described in the main text,
both terms on the RHS of (C.16) are individually finite. The numerical calculation
of the RHS of (C.16) agreed with the LHS calculated from Egs. (2.45b), (2.45¢),
which confirms the analytical expressions (C.1) to (C.4).

10.

11.
12.
13.

14.
15.
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