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5.2 Strange matter case 49

For our model this condition starts to be verified at density nB ≥ 0.35 fm≠3 that is
about twice the saturation density as expected in recent literature and discussed in
chapter 3. Regarding the charge neutrality condition, it remains as in nonstrange
case np = ne + nµ because the � has zero electrical charge. For this reason, it is
not possible to observe the strong deleptonization discussed in chapter 3, which
occurs when we consider negatively charged strange baryons that can directly replace
leptons in the neutral charge balance. Despite this, a reduction in electron and muon
concentrations can be noted (≥ 30%) as a consequence of the decrease in the proton
fraction for the conversion of part of neutrons into hyperons.
Following the same approach of the previous chapter, also for this case, we can recast
the equation of state in the form
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where the only additional terms compared to (5.13) are the Lambda integrals since
the parts related to the vector mesons vanish in the semplifications that lead to the
above equation. The trend of the pressure as a function of energy density for strange
matter is plotted in Fig. 5.7.

Figure 5.7. Comparison of the two equations of state with and without the hyperon �.
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data base. At a density of one nucleon per fm3 the CD-Bonn
model @17# gives the largest xp of 0.15, while the Nijmegen
I model @15# gives the smallest value of 0.10. The spread in
these values is comparable with the difference between VCS
and LOB results for A18 of xp5 0.09 and 0.14 at this den-
sity.
The dv term and the three-nucleon interaction increase

the symmetry energy, and push the xp barely above the Urca
limit at high densities. For the A181dv1UIX* model the
threshold is at a density of r50.78 fm23, and, as discussed
in the next section, stars must have a mass .2.0M( to
achieve such a density. However, this density is at the limit
of our calculations and of the input physics. For example,
admixtures of quark matter with hadronic matter, considered
in the next section, may affect the Urca process in matter at
such densities.
The U14-DDI ~FPS! model predicts values for xp that are

much smaller than those predicted by all other models con-
sidered here, and in fact go to zero for r;1 fm23. It is
based on the U14 NN interaction, also used in the U14
1UVII model. However, instead of adding the UVII three
nucleon interaction to obtain the empirical saturation density
of nuclear matter, it uses a density dependent modification
~U14-DDI! of the U14 NN interaction @9# chosen to repro-
duce the energy, density and compressibility of equilibrium
nuclear matter. Unlike the UVII interaction, this modification
reduces the symmetry energy, and thus the xp , at high den-
sity. The main advantage of using three-nucleon interactions,
instead of density dependent modifications of the two-
nucleon interaction, is that the former can be tested via ac-
curate calculations of the light nuclei. Unfortunately, the
available results @30# indicate that the UIX model may be
overestimating the repulsion between three neutrons, thus
overestimating the xp ; an improved version of the UIX
model is currently being developed.

V. NEUTRON STARS

Using the methods just described we obtain for each
model the EOS for cold, catalyzed beta-stable matter. At a
baryon number density of 0.1 fm23 they are joined onto an
earlier EOS in which properties of the crust material has
been treated more accurately @11#. The Oppenheimer-
Volkoff general relativistic equations for a spherically sym-
metric ~nonrotating! neutron star @1# are

dP
dr 52
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where L(r)5@122Gm(r)/rc2#21. The corresponding
equations for obtaining the moment of inertia, for a slowly
rotating star, are given in Appendix B. Starting from some
central mass-energy density r̃c , or equivalently from a cen-
tral number density rc , these equations are integrated out-
wards to a radius r5R , at which P is zero, thus yielding
the stellar radius, R , the gravitational mass of the star,
M5m(R), and the moment of inertia I .

The dependence of the neutron star mass on central
baryon density rc for the four models is shown in Fig. 11. In
order to estimate the effect of beta-stability on these results,
we show also the trajectories obtained by using the pure
neutron matter EOS for densities greater than 0.1 fm23,
joined to the crust results of Ref. @11#. Earlier results with the
FPS EOS @11# are included for comparison. For the same set
of results, the neutron star mass is plotted against the star
radius in Fig. 12.
The maximum masses for the five models illustrated in

Figs. 11 and 12 are listed in Table XI. While the models
based on only two-nucleon interactions have maximum
masses at or below 1.8M( , those for the two models con-
taining three-nucleon interactions have maximum masses
well above 2M( . The model that we believe includes most
of the necessary physics is A181dv1UIX*, which yields a
maximum mass of 2.2M( . This model achieves its maxi-
mum mass for a central baryon density rc51.14 fm23,

FIG. 11. Neutron star gravitational mass, in solar masses, vs
central baryon density, for the four models described in the text.
The full curves are for beta-stable matter, and the dotted lines are
for pure neutron matter. The vertical lines show the density above
which the matter is superluminal. The dashed curve, FPS, is from
@11#.

FIG. 12. Neutron star gravitational mass, in solar masses, vs
radius, in kilometers, for the four models described in the text. The
full curves are for beta-stable matter, and the dotted ones are for
pure neutron matter. The dashed curve, FPS, is from @11#.
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50 5. Results

In the graph the EOS of nonstrange matter is also present in order to show how
the pressure decreases when hyperon appears. The conversion of most energetic
neutrons into massive and slowly moving hyperon relieves the Fermi pressure exerted
by the baryons and make the equation of state softer, as it is illustred in the figure.
It should be stressed that, even if the graph 5.7 does not show the region at lower
densities to emphasize the pressure di�erence between the two situations under
examination, also in strange matter case we substitute the computed equation of
state with crust EOS at densities < n0. The deviation between the two trends starts,
of course, at ≥ 0.35 fm≠3 that corresponds to energy density and pressure values
respectively of ‘ ≥ 6 ◊ 1014 g/cm3 and P ≥ 6 ◊ 1034 dyne/cm2. The maximum
appreciable di�erence occurs at ‘ ≥ 2 ◊ 1015 g/cm3 where the pressure drops from
P ≥ 7 ◊ 1035 to P ≥ 3 ◊ 1035 dyne/cm2. It is practically reduced by fifty percent.
As a consequence, the gravitational mass of the star, expecially the maximum one, is
substantially lowered. The comparison of the mass-radius relation for strange matter,
numerically evaluated always with the 2P computational code, and nonstrange
matter is shown in Fig. 5.8.

Figure 5.8. Comparison of the two mass-radius relations for the EOS including � or not.
Even in this case as in Fig. 5.5, the horizontal band denotes the experimental
limits from analysis of PSR J2215+5135.

The maximum mass for the case with hyperon, reached at R ≥ 12 km, is ≥ 1.65 M§
that is evidently not compatible with recent observational data, as can be observed
from the graph.
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