
Inhomogeneous QCD phases at high baryonic po-
tential

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Fisica

Candidate

Filippo Anzuini
ID number 1473314

Thesis Advisor

Prof. Omar Benhar Noccioli

Co-Advisors

Dr. Massimo Mannarelli
Dr. Stefano Carignano

Academic Year 2016/2017



Thesis not yet defended

Inhomogeneous QCD phases at high baryonic potential
Master thesis. Sapienza – University of Rome

© 2017 Filippo Anzuini. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: filippo.anzuini@gmail.com

mailto:filippo.anzuini@gmail.com


Inhomogeneous QCD phases at high baryonic density

Filippo Anzuini



Contents

1 Introduction - The QCD phase diagram 1
1.1 Inhomogeneous color superconductivity and chiral condensates . . . . . . . 5
1.2 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Eigenvalue problem and qualitative Thomas-Fermi approximation 10
2.1 The Nambu-Jona Lasinio model . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Boosting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Thomas-Fermi approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Pauli-Villars regularization scheme . . . . . . . . . . . . . . . . . . . 17
2.2.2 Chiral condensate - ΩTF . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Improvement of the Thomas-Fermi approximation . . . . . . . . . . . . . . . 20
2.3.1 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 First fit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Second fit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Third fit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Improved Thomas-Fermi approximation . . . . . . . . . . . . . . . . . . . . 26

3 Inhomogeneous color superconductivity and chiral condensate 29
3.1 Eigenvalue problem for the chiral and the color superconductor condensates 30
3.2 Color superconductor as a perturbation . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Minimization with S0 = 0.01 MeV and S0 = 0.1 MeV . . . . . . . . 35

4 Ginzburg-Landau expansion 38
4.1 Ginzburg-Landau gradient expansion . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Improved Ginzburg-Landau expansion . . . . . . . . . . . . . . . . . . . . . 39
4.3 CDW with the improved Ginzburg-Landau expansion . . . . . . . . . . . . . 43
4.4 1D solitonic solution with improved Thomas-Fermi expansion . . . . . . . . 46
4.5 2D crystalline structures with the IGL expansion . . . . . . . . . . . . . . . 51

4.5.1 M1(x, y) with IGL expansion . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Comparison between different modulations . . . . . . . . . . . . . . . 52

Conclusions 56

i



A Calculation of the grand potential for the CDW modulation 58

B Quantum Chromodynamics-basics 63

C Gran Canonical Ensemble 67

Bibliography 69

ii



Chapter 1

Introduction - The QCD phase
diagram

The QCD phase diagram has not been completely explored. While a chiral broken and con-
fined phase is realized in the region corresponding to low temperatures T and low chemical
potentials µ, when T is increased (and µ is kept substantially small), observational data
from heavy nuclei collisions and lattice simulations supply the experimental and theoretical
evidence of deconfined physics (see Fig 1.1). On the other hand, the low T and high µ
region cannot be studied in a similar way: first of all, it is impossible to reproduce such
extraordinary densities in laboratory; secondly, QCD can not be handled as a perturbative
theory because, in the "intermediate region" for the chemical potential, quantum chromo-
dynamics interactions are still characterized by a relatively strong coupling, which blows
away the possibility of exploiting perturbative techniques; moreover, lattice calculations
cannot be performed due to the sign problem [1, 4, 17].
In order to cope with such difficulties, usually effective models are used. They encode
the main symmetries of full Quantum Chromodynamics in order to extract qualitative
considerations about the quarks behavior for low temperatures and intermediate or high
chemical potentials. It has already been proved how rich is the phenomenology that could
be encountered in the QCD phase diagram characteristic of Neutron Stars (the interme-
diate regions) [1, 2, 4, 7, 17]: homogeneous and inhomogeneous chirally broken phases, an
homogeneous color superconductor at higher chemical potentials and eventually a region
of competition where inhomogeneous and homogeneous phases struggle one against the
other [8, 17].
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1 – Introduction - The QCD phase diagram

Figure 1.1: Representation of the QCD phase diagram. Antonin Maire, 2011, CERN.The critical end point (CEP)
for QCD is where a second order phase transition is expected, as it is related to a first order phase transition line.

If we focus on the chemical potential axis (which corresponds to T ' 0), we can see
how a phase transition separates a region where it it possible to find nuclear matter in the
usual hadron gas/liquid state, from another one, in which the densities are so high that
the bindings of the nuclei are weak and we can actually describe the relevant degrees of
freedom in terms of quarks. Different authors [1, 5] have already underlined how this phase
transition is expected to be first order (that is, the phase transition is characterized by a
discontinuity of the free energy derivatives for some critical values of the thermodynamic
variables). The phase transition line, starting from the abscissa axis, should end up in a
second order critical point (or CEP, critical end point), where the first derivative of the free
energy of the system is continuous, but the discontinuity is due to the second derivative,
identifying a point where the function changes concavity, a flex point.
On the right of the first transition line we find a rich phenomenology, represented by the
occurrence of chiral condensation and, at even higher density, of a color superconducting
condensate.
Up to intermediate values of the chemical potential, the ground state of QCD is character-
ized by a chiral condensate, which comes from the coupling between a left-handed quark
and a right-handed antiquark (and vice versa). The condensate that forms is homogeneous,
independent of the spatial coordinates and so not spatially modulated. Nevertheless, it has
been shown [16, 17] that allowing for a spatial modulation of this order parameter leads
to the insurgence of a significant region of the QCD phase diagram where inhomogeneous
condensates are favored with respect to homogeneous ones.

Chiral symmetry breaking is the symmetry breaking pattern whose outcome is the
generation of a chiral order parameter given by the interaction between a quark and an
antiquark with opposite chiralities.
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1 – Introduction - The QCD phase diagram

We can start from the two flavor Lagrangian for quarks, observing that it possesses a
global symmetry described by the SU(2) isospin group and its algebra. Nevertheless, we
can broaden such symmetry when considering the chiral limit (massless quarks), as the
quark Lagrangian is now invariant under non simultaneous symmetry transformations be-
longing to the product tensor group SU(2)L⊗SU(2)R. Indeed, the free Dirac Lagrangian
for up and down quarks is symmetric under two categories of transformations [6]:

qR = URq = e−i
~τ
2
~ΘRq qL = ULq = e−iγ5

~τ
2
~ΘLq (1.1)

where q denotes the quark spinorial field and ~ΘR/L are respectively the right and left-
handed chiral angles that rotate the quark spinors. When the Lagrangian is characterized
by such invariance under global transformations, it possesses the chiral symmetry.
Equivalently, the left-handed and right-handed components for the quarks spinors can be
obtained applying the chiral projectors

PL =
1− γ5

2
PR =

1 + γ5

2
(1.2)

to the quarks fields.
In vacuum, chiral symmetry breaking is characterized by the formation of an homogeneous
condensate such that the expectation value is

〈q̄q〉 = 〈q̄RqL〉+ 〈q̄LqR〉 /= 0. (1.3)

When we have a non-vanishing expectation value such as (1.3), it prevents the La-
grangian of the system to be invariant under global transformations acting separately on
particles with opposite chiralities: the chiral symmetry is spontaneously broken, meaning
that the symmetric properties of invariance under global transformation of the chiral sym-
metry groups are respected by the Hamiltonian but not by the ground state. Nevertheless,
there is the possibility to reach a restoration of such symmetry at high temperature and
density [6] .

A color superconductor is characterized by a qq interaction. Bardeen, Cooper and
Schrieffer demonstrated that no free energy contribution is required for the formation of
particle pairs at Fermi surfaces. Consequently, the presence of even the faintest attractive
interaction between fermions on their common Fermi surface leads to the formation of
couples of particles (Cooper pairs). The instability of Fermi surfaces of free fermions in
high baryonic density systems makes the formation of Cooper pairs possible, but in the
case of color superconductivity the interaction is driven by the attractive forces developed
between two quarks, and the condensation generates a gap in the excitation spectrum.
This characterizes in a peculiar way color superconductors from ordinary superconductors:
while in the latter the attractive force driven by the ions in the lattice needs to overcome
the repulsive interaction of two electrons to form a pair, quarks naturally interact among
themselves through the strong force. As underlined in [2], the strong force can easily
overcome the repulsion due to the electric interaction between quarks, and the condensate
which characterizes color superconductivity is robust with respect to the typical Fermi

3



1 – Introduction - The QCD phase diagram

energy of such dense environments. The formation of a color superconductor has been
already extensively analyzed by different authors [1, 2, 3, 4], as the excitation spectrum
for deconfined matter could have a gap of O(100) MeV for values of the chemical potential
µ that are expected in the inner regions of Neutron Stars. Nevertheless, in order to
fully understand the potential impact that color superconductivity could have on physical
observables for compact astrophysical objects, it is necessary to describe the QCD phase
diagram corresponding to zero temperatures and intermediate/high values of the chemical
potential.
At asymptotic baryonic density, the expected ground state is given by the color-flavor-
locked (CFL) state. In this case, the density is such that a perturbative approach can
be performed determining the properties of this color superconducting state [1, 2, 5]: the
diquark condensate in the CFL phase is invariant under simultaneous transformations in
flavor and color space. This is possible because, for very high values of the chemical
potential µ, the strange quark mass can be neglected. Turning down the value of µ, the
non vanishing value of the strange quark mass prevents the order parameter to preserve
its SU(3)-flavor symmetry, and it could eventually disrupt the CFL phase for low values
of µ.
The occurrence of color superconductivity in two-flavor systems is characterized by the
presence of a non vanishing expectation value [1]

〈qTOq〉, (1.4)

where O denotes an operator in spinor, color and flavor spaces

O = Ocolor ⊗Ospinor ⊗Oflavor (1.5)

and it needs to be antisymmetric. Indeed, for the Pauli exclusion Principle

qTOq = Olmqlqm = −Olmqmql = −qTOT q −→ OT = −O. (1.6)

The construction of such operator could follow many paths, and each of these represents
a possible interaction between two different quarks that leads to the formation of the
condensate. At asymptotic densities, the most attractive pattern for the interaction is the
color-antitriplet channel for the diquark condensate. In full Quantum Chromodynamics
this takes place exchanging a single gluon between quarks, while in effective models (that
we shall adopt in this work) the interaction is modeled by a contact interaction. This
determines the formation of a condensate of the form

zMM ′ = 〈qT iCγ5τMλM ′q〉, (1.7)

where λM ′ is a Gell-Mann matrix, τM is an isospin matrix belonging to the flavor space
and C is the matrix of charge conjugation C = iγ2γ0.
We want to restrict the discussion to only two flavors and assume that the condensate is
given by

zMM ′ −→ z2,M ′ . (1.8)
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1 – Introduction - The QCD phase diagram

Subsequently, we can rotate in color space the vector z2,M ′ exploiting a global color trans-
formation and write

z22 = 〈qT iCγ5τ2λ2q〉. (1.9)

It should be stressed that when only two quarks couple, the resulting state cannot be
a color singlet state (but it is a flavor singlet, as we are considering only up and down
quarks). When performing the global color rotation, we are assuming that the condensate
involves only red and green quarks, while blue quarks do not condense.
Analyzing more in detail the symmetry properties of the 2SC condensate, we can write [4]

〈qq〉2SC ∝ εijε
abc, (1.10)

where i, j = 1,2 are the flavor indices for up and down quarks and a, b, c = 1,2,3 are the color
indices. The condensate is antisymmetric in color space (indeed, the attractive channel for
the condensation pattern is the antisymmetric antitriplet channel), it is antisymmetric in
Dirac space (the quarks fields are spinors); as quarks need to obey to the Pauli exclusion
principle, this imply that it must be a flavor singlet, i.e. antisymmetric also in flavor space.

1.1 Inhomogeneous color superconductivity and chiral con-
densates

When considering color superconductivity, pairs with null total momenta are favored above
the ones with finite total momenta. Conversely, when certain conditions (as an high chem-
ical potential) exert a stress over the Fermi surfaces, particles belonging to stressed (mis-
matched) surfaces need to spend part of their energy to couple. Since in such conditions
the formation of couples with vanishing momenta is precluded by energetic considerations,
diverse pairing patterns could be possibly explored, and certainly one of the most impor-
tant allows the formation of pairs with a net momentum. In this way, an inhomogeneous
condensate (space-dependent) is formed.
Crystalline color superconductivity (CSC) [5, 7] driven by the strong interaction between
pairs of quarks involves a condensate which is spatially modulated as a crystal. When
the radii of the Fermi surfaces are different, the creation of Cooper pairs requires an en-
ergetic cost proportional to δµ, which represents the difference between the two chemical
potentials of the two different species involved in the pairing. For small values of δµ, the
homogeneous BCS phase is still energetically favored. However, if δµ produces a critical
stress on the BCS pairing, it is not energetically favored anymore for the system to gener-
ate an homogeneous condensate.
As an example, we can consider one of the simplest modulations, given by the LOFF
structure, which assumes that the color superconductor condensate is given by a plane
wave modulation (or a superposition of plane waves). In this case, the order parameter
is spatially modulated as the pairing takes place between a quark with momentum k and
another quark with a momentum equal to −k + 2q [5]: this allows to both quarks to be
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1 – Introduction - The QCD phase diagram

situated on their Fermi surfaces respectively, while allowing them to couple with a re-
sulting modulation characterized by a total momentum given by 2q, whose magnitude is
given by the relative distance between the two species Fermi surfaces. While in the BCS
mechanism the formation of Cooper pairs can take place over all the Fermi surfaces, in
general the possibility of a coupling for inhomogeneous condensates is restricted to smaller
regions (more precisely to rings) across the Fermi surfaces. Indeed, as one quark has a
momentum equal to k and the other one equal to −k + 2q, the two quarks would reside
on two antipodal rings, and their Fermi surfaces will be separated by a radius of the order
of q. The regions where the coupling cannot happen are called blocking regions; they host
a species of quarks with a specific momentum which is not possessed by the other species,
and this would prevent the condensation.
Considering inhomogeneous chiral symmetry breaking in high baryonic density systems,
a spatially modulated order parameter is the result of the split of the respective Fermi
surfaces for particles and antiparticles. Indeed, if for low chemical potentials homogeneous
phases are due to the coupling of quarks and antiquarks, when we consider higher µ the
energy required to form a couple q̄q is at least given by 2µ, because Fermi surfaces for par-
ticles and antiparticles are strayed as a consequence of the different chemical potential for
the two species. As an aftermath, particle-hole pairing patterns could be explored instead
of quark-antiquark ones: indeed, being energetically too expensive to excite antiparticles
at high baryonic potentials, the pairing pattern passes through the formation of quark-
hole pairs, as both quarks and holes involved in the pairing pattern could reside on their
common Fermi surface. In this case, the pairs would carry a total finite momentum given
by the sum of the two momenta.
Different authors [1, 8, 17] have already shown that there is a region in the QCD phase
diagram where a competition between an inhomogeneous chiral condensate and a color
superconductor is expected and that divides the chirally broken, homogeneous phase and
the homogeneous 2SC phase. Indeed, if we allow [8] for both the interactions in the quark-
antiquark and in the diquark channel, considering a spatial modulation only for the chiral
condensate (in the form of a cosine for simplicity) while assuming that the color super-
conductor, given by a 2SC condensate, is homogeneous, the numerical minimization of
the free energy depicts the presence of a region at intermediate chemical potential (300
MeV < µ < 350 MeV) where the favored state from an energetic point of view is given by
the presence of non-vanishing expectation value for both condensates. For higher values
of the chemical potential, the parameters that describe the chiral condensate vanish, and
only a 2SC color superconductor is expected, in accordance with the usual picture of a
superconducting phase for deconfined quark matter at very high baryonic densities.
We argue that the fact that only one of the order parameters is spatially modulated is
due to the impossibility of considering both condensates to be space dependent, as this
complicates in an enormous way the diagonalization of the hamiltonian matrix.
Nevertheless, we will show that exploiting the perturbation theory and adopting a quali-
tative approximation for the chiral condensate contribution to the free energy, we are able
to reproduce a spatial modulation also for the diquark condensate: indeed, if we consider
in the region 300 MeV < µ < 350 MeV that the 2SC phase is characterized by a small
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expectation value while the chiral condensate is much more relevant, we are able to re-
produce such competition between the two phases, where the chiral condensate forces an
inhomogeneous 2SC order parameter to have its maxima where the chiral condensate has
its minima.

1.2 Phenomenology

As discussed in numerous works [2, 3, 7], the realization of chiral and color superconduc-
tive condensates is thought to thrive in Neutron Stars or, more in general, in compact
astrophysical objects whose densities would be well above the nuclear saturation densities.
Nevertheless, whether such condensation patterns would happen or not is still unclear, as
the expected consequences of chiral and color superconducting phases would take place in
compact stars core, and the aftermaths of such presence could be masked by the inter-
mediate layers of such astrophysical objects that, conversely, are composed by standard
nuclear matter. Actually, a clear signature of the occurrence of quark deconfinement has
not been observed yet.

1.2.1 Neutron Stars

As the thermal energy generated in the core of a star is not able to sustain anymore the
gravitational force, the outer layers of the star begin to fall on the core [9]. If its mass is
in the range from ∼ 8M� to 20/30M�, the nuclear matter confined in the core hosts ther-
monuclear reactions which can synthesize all the elements until 56Fe is generated. The core
si destabilized by different processes, as the escape of neutrinos or the photodisintegration
of the synthesized iron. As the core mass exceeds the Chandrasekhar limit, the internal
gradient pressure can no longer balance the gravitational collapse. In this compression
process, extraordinary densities can be reached by the core, easily exceeding the density
of atomic nuclei; eventually, the outer layers are blown away by the shock waves produced
by the collapse, exploding in a supernova.
The central object, which is defined as the remnant of such process, is a Neutron Star,
whose structure is subdivided in different layers with typical solidnesses:

• Outer crust (∼ 0.5km). The density of the outer crust is in the range of 107g/cm3 ≤
ρ ≤ 4×1011g/cm3. The matter is composed of an electron gas and a lattice of heavy
nuclei. As the density increases in the most internal layers, neutrons start to drip
out of the nuclei.

• Inner crust (∼ 1km). In this region, a rich phenomenology is expected for nuclear
matter. The density ranges from 4× 1011g/cm3 up to 2.67× 1014g/cm3.

• Core (∼ 10km). The density increases from the value of 2.67 × 1014g/cm3 to at
least 1015g/cm3. It is still unclear the composition of the core. Some suggest that
heavy hyperons could be produced to minimize the internal energy of nuclear mat-
ter; nevertheless, at such densities, the occurrence of quark deconfinement could
actually take place, giving birth to a rich phenomenology, involving chiral and color
superconducting condensates.
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It is extremely difficult to infer the effective composition of a Neutron Star core, as
the observable effects that heavy hyperons and deconfined quarks could produce are very
faint.

Pulsar glitches

Pulsar glitches are observed as a sudden, slight increase of Neutron Stars angular velocity.
The complexity of such phenomenon requires a noticeable theoretical and computational
effort. The standard glitch mechanism assumes that the radiation emission makes the pul-
sar lose part of its angular velocity while the inner superfluid spins faster than the outer
crust. Given the fact that its vortices are quantized and bound to specific sites of the crust,
the superfluid cannot spin down. When the different spin velocities reach a critical value,
the vortices unpin from their original sites leading to a sudden increase of the pulsar crust
angular rotation.
Two phases of pulsar glitches can be inferred from observational data: the spin-up phase
(led by the unpinning of the quantized vortices) and a spin-down phase (distinguished by
the corotation restoration of the superfluid with the crust). The analysis of this second
stage with different models (see [10] for example) and the fit of the spin frequency with
observational data allow to determine important quantities characterizing the superfluid,
such as viscosity, stratification and compressibility. Despite this, these models are unable
to include the different timescales of the spin-down phase that are observed between the
glitches in the same pulsar. This is caused by the global nature of the mechanism that
underlies the glitches: the unpinning across the star interior of many of the quantized
vortices from their original sites. In addition to this, the various models can hardly take
into account the presence of a core and the interplay between the different components of
the fluid (neutral and charged particles), which are expected to be crucial for the glitch
dynamics.
Furthermore, the flow that causes such glitches is likely to be non-axisymmetric; indeed, it
can determine a quadrupole moment which would allow the system to emit Gravitational
Waves (GW). From the amplitude of the signal it is possible to infer constraints over the
fluid model parameters. In this way, Gravitational Waves could be exploited as an effec-
tive tool to model the Neutron Stars internal mechanism that leads to the production of a
glitch, as in [12].
Despite the theoretical effort to model the complex mechanisms of pulsar glitches, a new
interpretation to pulsar glitches is required, including superfluid neutral and charged com-
ponents interactions and relevant physical features that are expected in the inner regions of
Neutron Star, as the occurrence of quark deconfinement and heavy hyperons. The detection
of isolated Neutron Stars gravitational signals in the form of GW will unveil fundamental
internal properties characteristic of these compact objects, as gravitational waves can be
related with fundamental quantities characterizing the Neutron Stars structure.

This work is organized as follows: in Chapter 2 we will describe the problem of the diago-
nalization of the Hamiltonian for the inhomogeneous chiral condensate, explaining why it
is necessary to develop an approximate method that could describe the grand potential of
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1 – Introduction - The QCD phase diagram

this phase. We will introduce such method on a qualitative level, and we will show how
in this case it is possible to consider both the chiral and the 2SC condensate as inhomoge-
neous. In Chapter 4 instead, we will obtain a rigorous expansion for the thermodynamic
potential with which we will be able to describe the free energies for inhomogeneous chiral
condensates for every value of the chemical potential in the range 300 MeV < µ < 345
MeV, which is relevant for Neutron Stars cores.

9



Chapter 2

Eigenvalue problem and qualitative
Thomas-Fermi approximation

2.1 The Nambu-Jona Lasinio model

The Nambu-Jona Lasinio model [13, 14] was introduced in 1961 to describe the generation
of a gap (dynamical mass) through a contact interaction between nucleons. Indeed, the
self-energies terms in the perturbative approach induce the presence of a non-vanishing
effective mass M even in the chiral limit.
Subsequently, the model was exploited in QCD reinterpreting the spinor fields as quarks,
carrying spinor, flavor and color indices. It should be stressed that the model is non
renormalizable, that it does not include gauge bosons (gluons) and that the coupling
constant is effectively constant: it does not change as the running coupling constant of full
QCD. The model preserves the chiral symmetry of the theory but, due to its nature, it
does not describe confinement physics.
The Nambu-Jona Lasinio Lagrangian is given by

L = q̄(iγµ∂µ − m̃)q +G[(q̄q)2 + (q̄iγ5~τq)2], (2.1)

where q are the quark spinors and the Dirac, flavor and color indices have been suppressed
for simplicity. We are assuming that the quarks involved in the interaction are the up and
down quarks, which have three colors: blue, red and green. The first term in the above
expression is the free Lagrangian while the second term involves the coupling of the quarks
through a contact interaction represented by the G coupling constant, which is the same
for the scalar q̄q and the pseudoscalar q̄iγ5~τq interactions terms and which has dimensions
E−2: this signals that the model is not renormalizable, and it implies that in order to
eliminate the occurring divergencies, a regularization prescription should be included in
the model [18]. The γ5 matrix is the fifth Dirac matrix acting on the Dirac indices, while
the ~τ matrix is the Pauli matrix acting on the flavor indices. Eventually, the mass matrix
m̃ contains the bare masses of the up and down quarks, which are assumed to be the same.
From (2.1) it is possible to obtain the grand potential Ω

10



2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

Ω(T, µ) = −T
V
log[Z(T, µ)],

where Z(T, µ) represents the partition function whose explicit expression [19] is

Z(T, µ) =

∫
d[q̄]d[q]exp

(∫
V4

d4xE
[
LNJL + µq̄γ0q

])
(2.2)

with the four-volume integral domain V4 = 1
T × V , where T is the temperature and V

is the 3D space volume, being the integral performed in Euclidean space.
We will use throughout this work the mean field approximation, in which the condensates
are represented by their expectation values neglecting their fluctuations around the mean
value. Denoting with φs and φip the scalar and the pseudoscalar condensates expectation
values

〈q̄q〉 = φs 〈q̄iγ5τ iq〉 = φip, (2.3)

we can rewrite the NJL Lagrangian in the form

LMF = q̄Σ−1q − V

where Σ−1 is the inverse propagator in position space

Σ−1 = iγµ∂µ −m+ 2G(φs + iγ5φip)

and

V = G[φ2
s + (φip)

2].

Furthermore, we will consider only the pseudoscalar condensate pointing in the third
direction of the isospin space (it is possible to generalize it considering a global rotation
transformation in isospin space), so that

φip = δi,3φ
3
p

and, for simplicity, we rewrite φ3
p as φp. If we assume that the condensate, instead of being

homogeneous, is space dependent, we can write

φs −→ φs(~x) φp −→ φp(~x), (2.4)

where we have excluded the possibility for both condensates to be time-dependent. It
should be stressed that in general it is not feasible even a numerical analysis of such
systems if they are allowed to have a 3D spatial modulation; indeed, it is not possible to
diagonalize the Hamiltonian.
We introduce an effective inhomogeneous mass function given by

M(~x) = m− 2G(φs(~x) + iφp(~x)) (2.5)

11



2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

and the inverse propagator in coordinate space takes the form

Σ−1(~x) = iγµ∂µ −M(~x). (2.6)

In order to obtain the energy spectrum for the system of quarks we write the explicit
expression of the Hamiltonian

H(~x) = γ0[−iγi∂i +M(~x)], (2.7)

and so we can obtain the propagator expressed as

Σ−1(~x) = γ0(i∂0 −H(~x)). (2.8)

Now it is convenient to exploit the chiral representation introducing the bi-spinor χ(p)

χ =

PLq
PRq

 , (2.9)

where PL and PR are the projection operators. In this way, it is possible to separate
the Hamiltonian

H(~x) = H(~x)+ ⊗H(~x)−

but actually we can restrict ourselves to H+, as if we were dealing only with particles
but not antiparticles; indeed, the two sub-Hamiltonians have the same energy spectrum.
Expressing H+ on the chiral basis we can write

H+ =

 iσi∂i M(~x)

M∗(~x) −iσi∂i

 . (2.10)

In order to obtain the eigenvalues spectrum of this Hamiltonian, it is possible to handle
the problem only for periodic modulations of the chiral condensate, so assuming it could
be expanded through a Fourier series in such a way that

M(~x) =
∑
~Qi

M ~Qi
ei
~Qi·~x. (2.11)

We can write the Fourier transform of the Hamiltonian in momentum space as

H~pl, ~pm =
1

V

∫
d3xe−i~pl·~xH+e

i~pm·~x =

 −~σ · ~pmδ~pl−~pm
∑

Qi
M ~Qi

δ~pm−~pl− ~Qi∑
Qi
M∗~Qi

δ~pm−~pl+ ~Qi
~σ · ~pmδ~pl−~pm

 .
(2.12)

This is a matrix which is non diagonal and, furthermore, it is infinite in momentum
space. In the following we illustrate some methods to handle this Hamiltonian.
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

2.1.1 Boosting method

Following [15, 16, 17], we introduce the basics of the boosting method for one-dimensional
modulations. Exploiting the Lorentz symmetries of the problem, it is possible indeed to
simplify the eigenvalue problem of the Hamiltonian.
Suppose we have a Lorentz transformation representation given by S(Λ), and let us denote
the momentum operator for the free spinors as Pµ = (H,Pi). We can write

S(Λ)PµS−1(Λ) = ΛµνP
ν . (2.13)

It is obvious that when we consider condensates that depend on the spatial coordinates,
the system is no longer invariant under translations in those directions. Nevertheless, if we
consider, as an example, 1D modulations, the momentum operator P⊥ commutes with the
Hamiltonian of the system, meaning that it preserves the translational invariance along
the directions which are orthogonal to the condensate modulation. This commutativity
between P⊥ and H implies that the common eigenstates have to be labeled with the
eigenvalues corresponding to P⊥.
If we consider the eigenstates of H such that

Hqλ,0 = λqλ,0 P⊥qλ,0 = 0 (2.14)

and if Λµν is the matrix representation of the Lorentz transformation such that (λ, 0)µ

is transformed into
(
λ
√

1 + p⊥/λ2,p⊥
)µ

, imposing that

q
λ
√

1+p⊥/λ2,p⊥
=
(√

1 + p⊥/λ2
)− 1

2
S−1(Λ)qλ,0 (2.15)

it is possible to verify that

Pµq
λ
√

1+p⊥/λ2,p⊥
=
(
λ
√

1 + p⊥/λ2,p⊥
)µ
qλ,0. (2.16)

Thus, the energy spectrum of the system can be constructed considering a reference frame
in which transverse momenta are null. Then, for any value of p⊥, the eigenvalues can be
obtained by a boost.
Choosing a 1D modulation, in coordinate space we have

H =



i∂z 0 M(z) 0

0 −i∂z 0 M(z)

M∗(z) 0 −i∂z 0

0 M∗(z) 0 i∂z


, (2.17)

where we have explicitly shown the Dirac structure of the matrix. Considering simple
modulations would make the eigenvalue problem less complicated. For example, as shown
in [16], we can choose the modulation as

M(z) = 2Mcos(Qz), (2.18)

13



2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

where we assume that M is a constant amplitude. Substituting this expression in (2.12)
we get

H+
pi,pj =

1

V

∫
dze−ipjzγ0[−iγ3∂z +M(eiQz + e−iQz)]eipiz =

=
1

V

∫
dzγ0[e−i(pj−pi)zγ3pi +M(e−i(pj−Q−pi) + e−i(pj+Q−pi))] =

= γ0[γ3piδpi,pj +M(δpj ,pi+Q + δpj ,pi−Q)],

(2.19)

where pi, pj are two generic momenta in the z direction. We can see how an inhomo-
geneous condensate radically complicates the structure of the Hamiltonian. Indeed, two
generic momenta are coupled through the presence of the Kronecker delta functions due to
the presence of the condensate. Considering the coupling between two momenta (p1 and
p2 oriented along the z axis) we have the following blocks

Hp1,p1 = γ0[γ3p1δp1,p1 +Mδp1,p1+Q +Mδp1,p1−Q],

Hp1,p2 = γ0[Mδp1,p2+Q +Mδp1,p2−Q],

Hp2,p1 = γ0[Mδp2,p1+Q +Mδp2,p1−Q],

Hp2,p2 = γ0[γ3p1δp2,p2 +Mδp2,p2+Q +Mδp2,p2−Q].

(2.20)

Exploiting the analogy with crystalline periodic structures in condensed matter physics
(indeed, we are considering periodic modulations), we can express the generic momentum
pj as a sum of a wavevector in the First Brillouin Zone (IBZ) plus a vector that reflects the
periodicity of our problem (in our case, this is represented by Q). In this way, we can write
pj = k + jQ, where k denotes a vector belonging to the IBZ. In conclusion, the momenta
that couple are the ones that differ of a reciprocal lattice vector, which defines the periodic
structure of the condensate in the reciprocal space.
We want to make use of the boosting method expressing the hamiltonian matrix in a refer-
ence frame where the transverse momenta are null. Performing an unitary transformation
over (2.17) we can obtain a matrix (in coordinate space) of the form

H =



−i∂z M(z) 0 0

M∗(z) i∂z 0 0

0 0 −i∂z M∗(z)

0 0 M(z) i∂z


. (2.21)

Let us consider only the upper block

Hup =

[
−i∂z M(z)
M∗(z) i∂z

]
(2.22)

14



2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

and the coupling of two momenta only (say p1 = k + Q and p2 = k + 2Q). Using
the Fourier expansion (2.11) and limiting ourselves to 1D modulations involving only ±1
harmonics, the general structure of Hup in momentum space is given by

Hupp1,p2
=

[
H11 H12

H21 H22

]
= (2.23)



p1δ1,1 MQδ1,1+Q +M−Qδ1,1−Q p1δ1,2 MQδ1,2+Q +M−Qδ1,2−Q

M∗−Qδ1,1−Q +M∗Qδ1,1+Q −p1δ1,1 M∗−Qδ1,2−Q +M∗Qδ1,2+Q p1δ1,2

p2δ2,1 MQδ2,1+Q +M−Qδ2,1−Q p2δ2,2 MQδ2,2+Q +M−Qδ2,2−Q

M∗−Qδ2,1−Q +M∗Qδ2,1+Q p2δ2,1 M∗−Qδ2,2−Q +M∗Qδ2,2+Q −p2δ2,2


where δi,j ≡ δpi,pj and assuming that MQ = M−Q we have

p1δ1,1 0 0 MQδ1,2−Q

0 −p1δ1,1 M∗Qδ1,2−Q 0

0 MQδ2,1+Q p2δ2,2 0

M∗Qδ2,1+Q 0 0 −p2δ2,2


. (2.24)

We can obtain the eigenvalues of such matrix after a little of algebra:

0 = det(Hupp1,p2
− λ1) =

D∑
i=1

(−1)i+jdet(Hij − λii) =

= −(p1 − λ)(p2 + λ)[−(p1 + λ)(p2 − λ)− |MQ1 |2]

− |MQ1 |2[−(p1 + λ)(p2 − λ)− |MQ1 |2]

(2.25)

where we imposed Q = p1 − p2 ≡ Q1.
The four eigenvalues are

λ1 = −1

2

(√
4|MQ1 |2 + (p1 + p2)2 + p1 − p2

)
,

λ2 = −1

2

(√
4|MQ1 |2 + (p1 + p2)2 − p1 + p2

)
,

λ3 = +
1

2

(√
4|MQ1 |2 + (p1 + p2)2 + p1 − p2

)
,

λ4 = +
1

2

(√
4|MQ1 |2 + (p1 + p2)2 − p1 + p2

)
.

(2.26)
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

It is still difficult to diagonalize the Hamiltonian, although we are now coupling just
two momenta separated by a reciprocal lattice vector. In a more general situation, this
coupling is not restricted just to p1 and p2. In the "full" problem, we would get a matrix
H(k) for each wavevector of the First Brillouin Zone, and each H(k) is a matrix where k is
coupled to k±Q, k±2Q, ..., k±NQ. The general method to handle the diagonalization of
such kind of matrices is to perform a numerical computation of the eigenvalues imposing
a cutoff Λ (limiting in this way the allowed couplings of quarks which differ of a reciprocal
lattice vector jQ) [16, 17].

2.2 Thomas-Fermi approximation

The Density Functional Theory (DFT) has been originally developed to describe the be-
havior of interacting electrons in an external potential: it allows a drastic simplification of
such complex dynamics, as it is necessary to determine only the ground state density to
obtain all the relevant quantities of the system. The rationale of the DFT method hinges
on the Hohenberg-Kohn theorem, whose statement establishes a univocal relation between
the expectation value of any operator and the ground state density. Although the enor-
mous simplification, the theorem does not give any clue on how to determine such density.
The Thomas-Fermi method is a semi-classical approximation used to describe the spa-
tial distribution of the electronic cloud surrounding heavy nuclei. It describes the kinetic
energy and the electron-electron mutual interaction as a function of the number density
deduced from simple considerations on the volume occupied by N particles in the phase
space. Assuming that the maximum momentum is given by the Fermi momentum pF , the
distribution of electrons is assumed to be locally uniform in space volumes V . Still, the
number density is position-dependent.

We want to explore in this chapter whether the Thomas-Fermi approximation could be
a valid tool to curtail the difficulties encountered with the eigenvalue problem for the chi-
ral condensate. Furthermore, our true aim is to investigate the competion between the
chiral condensate and the 2SC diquark condensate, both spatially modulated. Analytic
solutions are not an option in this situation, and even a numerical computation is not
feasible. It is obvious that it is important to determine the validity or not of approxima-
tion methods that could describe the grand potential for inhomogeneous phases in order
to study the thermodynamic properties of quark matter where both the order parameters
are taken into account. Nevertheless, we want to underline that in this chapter the re-
sults that we will obtain need to be considered on a qualitative level; indeed, we will use
the Thomas-Fermi approximation and then we will apply correction terms actually forcing
the grand potential obtained with this method to reproduce the results of the numerical
problem obtained in [16, 17]. Our aim in this chapter is just to obtain a suitable, analytic
expression of the grand potential for the chiral condensate and to outline a perturbative
approach through which we can add an inhomogeneous 2SC condensate. In Chapter 4,
instead, we will outline a rigorous derivation for the grand potential that will not hinge on
previous results based on the hamiltonian diagonalization, and we will obtain an analytic
expression for the grand potential such that we will be able to reproduce the results of the

16



2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

numerical problem in every region of the QCD phase diagram at T = 0.
In this Chapter, we will first write the free energy that describes the homogeneous phase
and the one for the restored phase, which is reached when the order parameter tends to
zero. After that, we will define our qualitative Thomas-Fermi approximation. We will
work in the chiral limit (massless quarks).
Since the expression of the thermodynamic potential needs to be regularized, we will exploit
the Pauli-Villars regularization scheme.

2.2.1 Pauli-Villars regularization scheme

The explicit form of the thermodynamic potential is given by the sum of a kinetic term and
a condensate contribution. For the kinetic term (in which are present both the vacuum
and the medium contribution), we have [16, 17]

ΩK = −2Nc

∫
IBZ

d3k

(2π)3

∑
λ

[Eλ(~k)− µ
2

+ T log
(

1 + e−
Eλ(~k)−µ

T

)]
, (2.27)

where with Eλ(~k) we indicate the eigenvalues for homogeneous phases. If the spectrum
is symmetric around the origin, we can expand the kinetic contribution

ΩK = −2Nc

∫
IBZ

d3k

(2π)3

∑
λ>0

[
Eλ(~k)+T log

(
1+e−

Eλ(~k)−µ
T

)
+T log

(
1+e−

Eλ(~k)+µ

T

)]
, (2.28)

where we are considering only the positive eigenvalues. We can separate the two different
contributions given by the vacuum and the medium terms inside the previous expression,
rearranging the terms [16] in such a way that

ΩK = −2Nc

∫
IBZ

d3k

(2π)3

∑
λ>0

[
Eλ(~k) + T log

(
1 + e−

Eλ(~k)−µ
T

)
+ T log

(
1 + e−

Eλ(~k)+µ

T

)]
= −2Nc

∫
IBZ

d3k

(2π)3

∑
λ>0

[
Eλ(~k) + T log{

(
1 + e−

Eλ(~k)−µ
T

)(
1 + e−

Eλ(~k)+µ

T

)
}
]

= Ωvac + Ωmed.
(2.29)

Taking the limit for T → 0 we can see how the medium contribution Ωmed reduces to

lim
T→0

Ωmed = −2Nc

∫
IBZ

d3k

(2π)3

∑
λ>0

[
(µ− Eλ(~k))θ(µ− Eλ(~k))

]
. (2.30)

As a note to this limit, we underline that after a few seconds after their birth, Neutron
Stars are characterized by a temperature which is below a few keV, therefore much below
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

the energy scales considered here [7].
The condensate contribution instead is given by

Ωcond =
1

4G

∑
~Q

|M ~Q|
2, (2.31)

and it is evident how the medium and the condensate parts are not potentially diver-
gent. On the other hand, the vacuum contribution needs to be regularized. The Pauli-
Villars regularization scheme [17, 18] consists in substituting the eigenvalues as follows

E →
3∑
j=0

ca

√
E2 + jΛ2

PV , (2.32)

where the coefficients of the Pauli-Villars regularization method are given by cPV (0) =
1, cPV (1) = −3, cPV (2) = 3, cPV (3) = −1, while ΛPV is the energy cut off. Adopting this
regularization scheme

Ωvac = −
2NfNc

(2π)3

3∑
j=0

∫
d3p
[
cPV (j)

√
E2
hom + jΛ2

PV

]
, (2.33)

where Ehom =
√
p2 +M2.

The grand potential for the restored phase, Ωrest, is obtained by taking the limit forM → 0.

2.2.2 Chiral condensate - ΩTF

We now outline the Thomas-Fermi approximation in order to describe the grand potential
for inhomogeneous phases. As it has already been shown in previous works [15, 16, 17], the
favored spatially-dependent phase is described by a one-dimensional solitonic-like modula-
tion, expressed in terms of Jacobi elliptic functions

M(z) = ∆ν
sn(∆z|ν)cn(∆z|ν)

dn(∆z|ν)
, (2.34)

where sn, cn and dn are respectively the elliptic sine, the elliptic cosine and the delta
amplitude and whose period is given by

L(∆, ν) = 2
K(ν)

∆
, (2.35)

where K(ν) is a complete elliptic integral of first kind and ν ∈ [0,1] is the elliptic modulus.
The solitonic solution to the eigenvalue problem is characterized by two parameters, ∆
and ν. When we take the limit ν → 1, the periodic modulation reduces to a single kink,
because it reduces to an hyperbolic tangent. On the opposite, when decreasing the value
of ν, the shape of the mass function reduces to a sinusoidal modulation as shown in Fig
2.1
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation
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Figure 2.1: Plot of the modulation M(z) (eq.(2.34)) for different values of the elliptic parameter ν. The dot dashed
(blue) line represents the solitonic modulation for ν = 0.999. The dashed (yellow) line is for ν = 0.8 while the solid
line is for ν = 0.35.

Considering this modulation for the effective mass characterizing the chiral condensate,
the qualitative ΩTF0 approximation will be determined as follows :

• we substitute in Ωhom the homogeneous parameter M with the solitonic modulation
M(z). With such procedure, the grand potential is now dependent from the z-
coordinate. We define ΩTF0(z) = Ωhom(M(z)).

• we average the ΩTF0(z) over the dimension of a linear cell, which is determined by
the period of the spatially-dependent condensate. In this way, we obtain the mean
value of 〈ΩTF0(z)〉 over a period of the modulation.

As a first check, we verify that, in the limit of M → 0, 〈ΩTF0(z)〉 = Ωrest at a fixed
chemical potential µ, and Ωrest is the grand potential for the restored phase.
We now turn to the accuracy of the Thomas-Fermi approximation in describing the grand
potential for inhomogeneous phases. The comparison is performed exploiting the numer-
ical values for the ν and ∆ parameters of the modulation which are the results of the
minimization of the exact grand potential Ω [16, 17]. These are inserted not only in Ω (for
the respective chemical potential) but also in ΩTF0 . We get the results reported in Fig 2.2
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation
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Figure 2.2: Relative error between ΩTF0 and Ω. The values of the parameters are obtained through the numerical
minimization of Ω.

Clearly, ΩTF0 equals Ω in the homogeneous phase and is a good approximation for
inhomogneoeus phases.

2.3 Improvement of the Thomas-Fermi approximation

When we make a comparison between homogeneous and inhomogeneous phases for chiral
condensates, the differences are of the order of 0.01% [16, 17]. If we compare this order of
magnitude with the relative error of the difference between our approximation and the nu-
merical result, we see that we wouldn’t be able to resolve the energetic differences between
the restored and the inhomogeneous phases. Indeed, if we do not improve such approxima-
tion, the Thomas-Fermi method would be almost useless in the chemical potential window
characteristic for inhomogeneous QCD phases in the core of Neutron Stars.
There is an important observation that needs to be taken into account with our first as-
sumption on the Thomas-Fermi method. Assuming that the modulation was absent, we
obtained the thermodynamic potential and subsequently we "added" a dependency of the
condensate from the z coordinate. By doing this, we neglected all the non-diagonal el-
ements that complicate enormously the problem of the diagonalization which depend on
two different momenta in the Fourier representation of the hamiltonian matrix (see (2.19)).
As a consequence, we expect that the terms that the Thomas-Fermi approach neglects are
gradient terms, and we want now to add them to our approximation in order to improve
it, obtaining a form for the grand potential that would be close to the numerical result for
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

inhomogeneous phases.
The method we would like to exploit is very simple: we consider the Thomas-Fermi ap-
proximation and we add the gradients of the solitonic modulation with respect to the space
coordinate. We consider different fit functions (which, in general, depend on the chemi-
cal potential) multiplied to the gradients, in order to reproduce the exact result. We are
actually forcing the gradients we are adding to improve the initial Thomas-Fermi approx-
imation. Nevertheless, our scope in this chapter is to obtain an analitic approximation
that will give us the possibility to consider the chiral, inhomogeneous condensate and, at
the same time, the color superconductor (also inhomogeneous) in the 2SC phase. Indeed,
without such approximation, it would be impossible analitically and numerically to con-
sider both the condensates as spatially modulated.
In Chapter 4 instead, we will outline a mathematically rigorous procedure to obtain the
approximate grand potential for the chiral condensate.

2.3.1 Gradients

Considering the solitonic modulation introduced in (2.34), the gradient terms we are going
to add to our previous approximation are given by

|∇M(z,∆, ν)| =
∣∣∣∆2νcn(z∆|ν)−∆2νsn(z∆|ν) +

∆2ν2cn(z∆|ν)2sn(z∆|ν)2

dn(z∆|ν)

∣∣∣ (2.36)

Averaging over the period of the modulation we can introduce the quantities

A(∆, ν) =
1

L[∆, ν]

∫
|∇M(z,∆, ν)|2dz, (2.37)

and

B(∆, ν) =
1

L[∆, ν]

∫
|∇M(z,∆, ν)|4dz. (2.38)

2.3.2 First fit function

The first fit function we would like to use in order to reduce the difference between our
approximation and the numerical result is given considering both the terms A(∆, ν) and
B(∆, ν). The two fit functions (or the µ-dependent coefficients) will be such that

Ω ≈ ΩTF0 + c(µ)A(∆, ν) + d(µ)B(∆, ν), (2.39)

where

c(µ) = l0 + l1
µ

Λ
+ l2

(µ
Λ

)2
+ l3

(µ
Λ

)3
(2.40)

and

d(µ) = d0 + d1
µ

Λ
+ d2

(µ
Λ

)2
+ d3

(µ
Λ

)3
+ d4

(µ
Λ

)4
. (2.41)
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For simplicity, we imposed Λ = ΛPV .
In order to obtain such coefficients, we first consider d(µ) = 0 and we take

Ω(∆, ν, µ)− ΩTF0(∆, ν, µ)

A(∆, ν)
= c(µ), (2.42)

obtaining

310 315 320 325 330 335 340 345
μ(MeV)

-5.×10-6

5.×10-6

0.00001

ΔΩTF′ MeV
4

Figure 2.3: Relative error between ΩTF0
+ c(µ)A(∆, ν) and Ω. The values of the parameters ∆ and ν are obtained

through the numerical minimization of Ω.

We can see how the fit reduced of two orders of magnitude the difference between the
Thomas-Fermi approximation and the exact result in the region that goes approximately
from µ ≈ 315 MeV to µ ≈ 345 MeV.
Indeed, comparing the relative errors of the difference between the Thomas-Fermi approx-
imation with and without the first gradient correction, we can see how it reduces from
almost 0.07% at µ = 315 MeV to an order of almost 0.0001%. Comparing the numer-
ical values of the free energies, the difference between the Thomas-Fermi approximation
and Ω is reduced from O(107) MeV4 to O(105) MeV4. Adding the second gradient in our
expansion and proceeding similarly as before we get

Ω(∆, ν, µ)− ΩTF0(∆, ν, µ)− c(µ)A(∆, ν)

B(∆, ν)
= d(µ) (2.43)

and, as a consequence, the difference diminishes further
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Figure 2.4: Relative error between ΩTF1
= ΩTF0

+ c(µ)A(∆, ν) + d(µ)B(∆, ν) and Ω. As before, the values of the
∆ and ν parameters are obtained through the numerical minimization of Ω.

Therefore, forcing the gradients with this fit function, we see that the Thomas-Fermi
approximation with this improvement could reach values which are significantly close to
the exact result : for low chemical potentials, we have a relative error which is of the order
of 0.0001%, reaching even a smaller percentage for higher values of the chemical potential.
Considering the numerical values of the free energies, we find differences of O(105 MeV4),
while at higher values of µ we reach of O(104 MeV4) - O(103 MeV4), which are sufficient
for our qualitative results (considering that Ω has an order of magnitude of O(1010 MeV4)).

2.3.3 Second fit function

We consider a different fit function to find a way to consider only the square module of
the gradients, rather than considering also the fourth-power terms. This could be relevant
because we will have to perform a numerical minimization of the grand potential, which
could be computationally demanding.
The attempt we are going to make involves a fit of the ∆ parameter of the soliton solution
as a function of the chemical potential, exploiting the numerical results obtained in [16, 17],
thus considering

∆(µ) = ∆0 + ∆1µ+ ∆2µ
2 + ∆3µ

3 + ∆4µ
4. (2.44)

Having obtained the expression of the ∆ parameter of the soliton modulation, we can
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introduce the coefficient

c2

[
µ,∆(µ)

]
= h0 + h1

µ

∆(µ)
+ h2

( µ

∆(µ)

)2
+ h3

( µ

∆(µ)

)3
+ h4

( µ

∆(µ)

)4
(2.45)

to be added to the ΩTF0 expression. As in the previous section, we consider the
difference between ΩTF0 and the full result in order to obtain the hi numerical values of
the c2

[
µ,∆(µ)

]
fit function. In this way, we find the difference plotted below
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Figure 2.5: Relative error between Ω2 = ΩTF0 + c2(µ)A(∆, ν) and Ω. The values of the parameters ∆ and ν are
obtained through the numerical minimization of Ω.

In this case, we did not succeed in obtaining a gradient correction which is better than
the first attempt. Nevertheless, also in this case, we can see from plot above that even
in this case, we substantially reduced the difference between our approximation and the
exact result.

2.3.4 Third fit function

The last µ-dependent coefficient for the gradient expansion that we would like to test is
given by the introduction of an effective fit of the ∆ parameter as a function of the ν
parameter of the solitonic modulations at different values of µ

∆[ν(µ)] = s0 + s1µ+ s2µ
2 + s3µ

3 + s4µ
4, (2.46)
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which is represented in the following Figure
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Figure 2.6: Effective fit for the ∆ parameter as a function of the elliptic modulus ν.

This choice proved to be very efficient. Indeed, with this effective fit, we managed
to have not only a very good approximation, but at the same time to include the minor
possible number of terms in the gradient expansion of the Thomas-Fermi approximation,
namely only the term |∇M(z,∆, ν)|2.
Having obtained the effective parameter ∆[ν(µ)] as a function of the chemical potential,
we adopt the following expression for the coefficient of the squared module gradient term

c3

[
µ,∆(ν)

]
= σ0 + σ1

µ

∆(ν)
+ σ2

( µ

∆(ν)

)2
+ σ3

( µ

∆(ν)

)3
+ σ4

( µ

∆(ν)

)4
. (2.47)

Determining the σi coefficients as outlined for the other two fits and calling

ΩTF3(∆, ν, µ) = ΩTF0(∆, ν, µ) + c3

[
µ,∆(ν)

]
A(∆, ν), (2.48)

the difference with the full result reduces to

25



2 – Eigenvalue problem and qualitative Thomas-Fermi approximation
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Figure 2.7: Relative error between the ΩTF3
result and the numerical result Ω for different chemical potentials.

This fit function reduces the relative error of the difference between the Thomas-Fermi
approximation and Ω to orders of 0.0001 %, which correspond an energetic difference form
an order of O(105) MeV4 and even O(104) MeV4 for higher values of the chemical potential.
In the following, given the simplicity of this expression, we will use this expression for the
Thomas-Fermi improved approximation.

2.4 Improved Thomas-Fermi approximation

Despite we will use the values of the solitonic parameter derived from a numerical mini-
mization of the hamiltonian matrix [16, 17], it is still interesting to plot the form of the
grand potential that we approximated with the Thomas-Fermi. In this way, we can notice
whether our expression exhibits the same minima for the same values of the parameters or
not. In general, the ΩTF3 expression will not have the same absolute minima as Ω; indeed,
for high values of the chemical potential, there is a marked difference between the param-
eters that describe the minima of the approximated and of the numerical expression. It is
natural, nevertheless, that such a difference exists and that it could be marked when look-
ing at the values of the parameters. Indeed, when we improved our first Thomas-Fermi
approximation, we forced the fit functions on the values of the parameters at different
chemical potentials corresponding to the minima of Ω. This does not automatically induce
the presence of a minimum for ΩTF3 . What we have done with those fits was to force
the approximation to resemble, in the best way possible, the exact result using the correct
values of ∆ and ν from previous works [16, 17]. We report in the following Figure the two
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

dimensional plot for the improved Thomas-Fermi form of the grand potential

Figure 2.8: Plot of ΩTF3
at µ = 340 MeV.

For more clarity, we report the contour plot for ΩTF3 at µ = 340 MeV, where it is clear
in which regions the minima of the thermodynamic potential are situated
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2 – Eigenvalue problem and qualitative Thomas-Fermi approximation

Figure 2.9: Contour plot of the thermodynamic potential with the improved Thomas-Fermi approximation at
µ = 340 MeV.

As shown in Figure 2.9, the region for the minimum value of the thermodynamic
potential is restricted to a zone where the value of the ∆ parameter is maintained on a
value of 400 MeV while ν is approximately near the value of 0.6. If we compare, again,
this values with the non-approximated problem, we get ∆ = 280.222 MeV and ν = 0.377.
Furthermore, as µ grows, the difference between the minima for the approximated and the
numerical problem increases. Indeed, this tendency appears to be even more evident at
µ = 344 MeV, where for the Thomas-Fermi approximation we have ν ≈ 0.6 and ∆ ≈ 400
MeV, while the exact results are ν = 0.136 and ∆ = 267.191 MeV.
As explained before, it is natural to find such differences for the two grand potentials, as
we are forcing the improved Thomas-Fermi result to follow Ω.

From now on, for simplicity, we will rename our preferred form for the Thomas-Fermi
improved approximation ΩTF = ΩTF3 .
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Chapter 3

Inhomogeneous color
superconductivity and chiral
condensate

As introduced in the first Chapter, color superconductivity is expected to be the favored
state of deconfined quark matter at high values of the chemical potential. At asymptotic
densities, it has been already proved by numerous authors [1, 2, 3] that the favored state
is the CFL phase. Nevertheless, at lower baryonic densities, the CFL phase is expected to
be no longer favored, and other paths of condensation could become favored.
In this work, we will consider the condensation pattern corresponding to the 2SC phase,
where only two flavors of quark are involved (namely the up and down quarks). As shown
for the chiral condensate, we will employ the NJL model to describe the interaction between
quarks, substituting the gluon interaction with a point-like interaction. Furthermore, we
will work, again, in the mean field approximation, neglecting fluctuations around the mean
value for the condensate.
In the first Chapter, we introduced the non vanishing expectation value [1]

〈qTOq〉, (3.1)

where we specified that O is a total antisymmetric operator. Furthermore, we intro-
duced the form for the color superconductor given by (1.9), which we recall for simplicity

z22 = 〈qT iCγ5τ2λ2q〉.

With this choice of the pairing pattern, blue up and down quarks do not condense and
remain unpaired.
When considering both inhomogeneous chiral and 2SC condensates to be generated through
a point-like interaction in the NJL model, the form of the Hamiltonian matrix is drastically
complicated, and it is not possible to find a solution to the eigenvalue problem. We
will briefly outline the procedure to obtain the Hamiltonian matrix involving both the
homogeneous condensates and we will derive the expression for the grand potential in this
case. After that, we will use the analytic improved Thomas-Fermi approximation to deal
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3 – Inhomogeneous color superconductivity and chiral condensate

with the chiral condensation and we will, eventually, perform a functional minimization in
order to determine the inhomogeneous 2SC order parameter.

3.1 Eigenvalue problem for the chiral and the color super-
conductor condensates

The two flavor Lagrangian, involving only the degenerate lighter quarks (mup ≈ mdown),
is given by [1, 17, 23]

L = LDirac + q†µq + Lchir + L2SC , (3.2)

where µ is the chemical potential and

LDirac = q̄(iγµ∂µ − m̃)q. (3.3)

The term in the Lagrangian which describes the chiral condensation pattern is, as
before,

Lchir = G[(q̄q)2 + (q̄iγ5~τq)2], (3.4)

while the Lagrangian for the color superconductor is given by

L2SC = GD[(q̄iγ5Cτ2λ2q̄
T )(qTCiγ5τ2λ2q)], (3.5)

where GD indicates the quark-quark coupling in the color-antitriplet channel, C =
iγ2γ0 is the charge conjugation operator and τ2 is the second Pauli matrix in flavor space.
Adopting the mean field approximation, we can write the bilinear forms given by the
diquark condensation pattern as

(q̄q)2 ≈ 〈q̄q〉 (q̄q) + (q̄q) 〈q̄q〉 − 〈q̄q〉 〈q̄q〉 (3.6)

where we neglect the quadratic terms, which are the fluctuations around the expectation
value. Expanding the full Lagrangian, we get

L = q̄(iγµ∂µ −m)q +G
[
2 〈q̄q〉 (q̄q)− 〈q̄q〉2

]
+

+GD

[
〈qT iCγ5τ2λ2q〉

∗
(qT iCγ5τ2λ2q)− 〈qT iCγ5τ2λ2q〉 (q̄iCγ5τ2λ2q̄

T )− |z22|2
] (3.7)

and so we can write

L = q̄(iγµ∂µ −m+ 2G 〈q̄q〉)q −G 〈q̄q〉2 +

+GD

[
z∗22(qT iCγ5τ2λ2q)− z22(q̄iCγ5τ2λ2q̄

T )− |z22|2
]

=

= q̄(iγµ∂µ −M)q +
1

2

[
q̄SiCγ5τ2λ2q̄

T − qT iCS∗γ5τ2λ2q −
|S|2

2GD

]
− |M −m|

2

4G
,

(3.8)
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3 – Inhomogeneous color superconductivity and chiral condensate

where we identified the diquark gap as

S = −2GDz22 (3.9)

while, as in the case of the chiral condensation only, we defined an homogeneous effective
mass given by

M = m− 2Gφ, (3.10)

We introduce now the Nambu-Gorkov formalism, which is useful when considering color
superconductivity for compactness, defining

Q =
1√
2

 q
qC

 (3.11)

where qC = Cq̄T . The factor 1/
√

2 needs to be taken into account because we are
actually doubling the degrees of freedom of our problem, as we are considering q and qC

to be independent. In this way, the Lagrangian can be expressed in a more compact way

L = Q̄P−1Q− V (3.12)

where with P−1 we indicated the inverse Nambu-Gorkov propagator, which is a 2× 2
matrix in the Nambu-Gorkov space. Its explicit expression is given by

P−1 =

iγµ∂µ −M + µγ0 Sγ5τ2λ2

−S∗γ5τ2λ2 −iγµ∂µ −M − µγ0

 , (3.13)

while the term in the Lagrangian containing the condensates contribution is given by

V =
|M −m|2

4G
+
|S|2

4GD
. (3.14)

If we consider the condensates to be homogeneous in space, it is still possible to di-
agonalize the hamiltonian and to obtain the explicit expression for the eigenvalues of the
quarks that participate to the coupling. Indeed, the explicit expression of the grand po-
tential for the chiral and the 2SC color superconducting phases at zero temperature are
given by [1, 23]

Ω = −2Nf

∫
d3p

(2π)3

[
Eb(~p) + E+

S (~p) + E−S (~p)
]

+
|M −m|2

4G
+
|S|2

4GD
(3.15)

where

Eb(~p) =
√
p2 +M2

b (3.16)
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3 – Inhomogeneous color superconductivity and chiral condensate

for the blue quarks, while the eigenvalues for the quarks that are involved in the con-
densation pattern is given by

E±red,green =

√(√
p2 +M2 ± µ

)2
+ S2 ≡ E±S (~p). (3.17)

In this expression, the ± sign is for particles and antiparticles respectively. While,
as mentioned before, E±S (~p) represent the two contributions for the quarks and antiquarks
(respectively) involved in the 2SC pairing, the Eb(~p) eigenvalues correspond to the eigenen-
ergies of the unpaired blue quarks that do not take place in the condensation pattern
(indeed, the explicit expression of Eb(~p) does not include the S gap term for the 2SC
condensate). The numeric coefficient is given by the fact that the total thermodynamic
potential is expressed through the sum in flavor, color and spinor space (we have to con-
sider the possible spins and the fact that we are considering particles and antiparticles).
Furthermore, we have to add a factor 1/2, as we doubled the degree of freedom passing in
the Nambu-Gorkov space.

3.2 Color superconductor as a perturbation

In this section, we outline the perturbative approach that we used in order to obtain the
inhomogeneous 2SC color superconductor condensate. The problem is in general not ana-
lytically solvable, and we will exploit the approximation method developed in the previous
Chapter for the chiral condensation pattern. We would like to underline that the results
obtained in this section need to be considered on a qualitative level, due to the different
assumptions that we will employ to tackle this problem. Indeed, there is not a general
method to consider both the condensates spatially modulated even in 1D.
Furthermore, as stated previously, the approximation for the chiral condensate contribu-
tion to the grand potential has been obtained forcing the Thomas-Fermi functional form to
reproduce the numerical result introducing a fit function for the gradient correction term.
The task of outlining a rigorous derivation for an improved Thomas-Fermi approximation
for the thermodynamic potential will be presented in the next Chapter.

If we assume that the order parameter describing the 2SC color superconductor is suf-
ficiently small with respect to the chiral condensate, we can consider the quark-quark
condensate as immersed in an inhomogeneous background given by the solitonic order pa-
rameter for the chirally broken phase. In this sense, we can rewrite the eigenvalues obtained
in the previous section adopting a series expansion around a small S0 value for the 2SC
order parameter. The value of S0 will be chosen arbitrarily (but in such a way to maintain
the perturbative series under control), and in this work we will report the results of the
numerical minimization for two different values of S0 at two different orders of magnitude.
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3 – Inhomogeneous color superconductivity and chiral condensate

Keeping this in mind, we perform a series expansion centered in S0 of (3.17) and write

E±S (~p) ≈
√(√

p2 +M2 ± µ
)2

+ S2
0 +

S0(S − S0)√(√
p2 +M2 ± µ

)2
+ S2

0

+

[(√
p2 +M2 ± µ

)2]
(S − S0)2

2
((√

p2 +M2 ± µ
)2

+ S2
0

) 3
2

+O(S − S0)3.

(3.18)

Assuming that in the first term of the expansion S0 << M , we can consider this term
as a contribution to the thermodynamic potential given by the chiral condensate. So, if
we consider the term deriving from E+

S (~p), another one coming from E−S (~p) plus the one
given by Eb(~p) and that in general the eigenvalues for the chiral, homogeneous phase for
each quark color can be expressed as

E(~p) = ±
√
p2 +M2 ± µ (3.19)

for particles and antiparticles respectively, we can consider the total grand potential
for both the inhomogeneous phases as

Ω ≈ Ωchir + ∆Ω2SC (3.20)

The next step is to consider the Ωchir as the improved Thomas-Fermi approximation
for the grand potential (in the form that we indicated as ΩTF3 = ΩTF in the previous
Chapter), while ∆Ω2SC is a perturbation due to the presence of a small, non-vanishing
color superconducting order parameter.
Starting from the thermodynamic potential perturbative term for the 2SC condensate

∆Ω2SC(M,S0, S) = −2Nf

∫
d3p

(2π)3

[
E∗+S (~p) + E∗−S (~p)

]
+
|S|2

4GD
(3.21)

where, adopting the above mentioned series expansion, we have that

E∗+S (~p) ≈ S0(S − S0)√(√
p2 +M2 + µ

)2
+ S2

0

+

[(√
p2 +M2 + µ

)2]
(S − S0)2

2
((√

p2 +M2 + µ
)2

+ S2
0

) 3
2

+O(S − S0)3

(3.22)
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and

E∗−S (~p) ≈ S0(S − S0)√(√
p2 +M2 − µ

)2
+ S2

0

+

[(√
p2 +M2 − µ

)2]
(S − S0)2

2
((√

p2 +M2 − µ
)2

+ S2
0

) 3
2

+O(S − S0)3.

(3.23)

We will present the results of the functional minimization limiting ourselves only to
the first order term of the series expansions (3.22) and (3.23) (checking every time that
the numerical results obtained for S are such that the terms O(S − S0)2 and the higher
orders are smaller than the leading term).
In our calculations, we will assume that the coupling GD for the color superconductor is
equal to G/2 (where G is the coupling for the quark-antiquark channel) [24].

If we consider a non-zero baryonic potential in (3.22) and (3.23), we do not have the
possibility of getting an analytic expression for the integration over the quarks momenta:
we need to perform the integral numerically and then we minimize with respect to the order
parameter of the color superconductor condensate. The computational power required for
the minimization is remarkable, as we perform the calculations adopting the Pauli-Villars
regularization scheme. The choice of this regularization scheme is necessary, as we adopted
this method for the determination of the free energy of the chiral condensate. For high
values of µ and centering the series expansion in S0 = 0.01 MeV, the results describe a
very small amplitude with relevant fluctuations, and more computational power is required;
instead, when we take S0 = 0.1 MeV, we have the sufficient resolutive power to determine
the shape of the 2SC order parameter. For now, we just want to point out that the
procedure we outlined above for the functional minimization of the 2SC condensate as a
perturbation is possible even including a nonzero chemical potential.
The results describe a 2SC modulation which has the same period of the chiral modulation,
but there is a relative phase between the two, as the color superconductor has its minima
where the chiral modulation has its maxima and vice versa. We succeeded in reproducing
the expected behavior of the quark-antiquark condensate and the diquark one, but without
the restriction of considering only one of them as spatially modulated. Indeed, we can
say that we found the phase structure of the QCD diagram at intermediate and high
baryonic density depicted in [8, 17], where there is a region of competition between the
two condensates and, after the chiral symmetry restoration, an homogeneous 2SC gap S.
In addition to this, we obtained the results when both the condensates are inhomogeneous
using the favored effective mass shape modulation for the chiral condensate.
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3 – Inhomogeneous color superconductivity and chiral condensate

3.2.1 Minimization with S0 = 0.01 MeV and S0 = 0.1 MeV

We can see from Fig 3.1 the results of the numerical minimization when S0 = 0.01 MeV
for µ = 310 MeV

0.01 0.02 0.03 0.04

1

MeV

0.035

0.040

0.045

S(MeV)

Figure 3.1: Results for the numerical minimization with respect to the order parameter for the color superconductor
S, centering the series expansion for the eigenvalues at S0 = 0.01 MeV when µ = 310 MeV.

In Fig 3.1 we presented only the results for a low chemical potential; for higher values
of the chemical potential and S0 = 0.01 MeV, the resulting modulations exhibit serious
fluctuations. Indeed, the amplitude is so small that more computational power is required
to determine correctly the behavior of the S parameter as a result of the functional mini-
mization.
Nevertheless, centering the series expansion at S0 = 0.1 MeV, the amplitude of the the
order parameter is greater, and we have sufficient computational power to resolve it clearly.
Indeed, at µ = 310 MeV and S0 = 0.1 MeV, we obtained the results shown in Fig 3.2,
while in Fig 3.3 we compare how the modulation changes when the chemical potential
varies from µ = 310 MeV to µ = 344 MeV (close to the chiral restoration transition)
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Figure 3.2: Results for the numerical minimization with respect to the order parameter for the color superconductor
S, centering the series expansion for the eigenvalues at S0 = 0.1 MeV when µ = 310 MeV.
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Figure 3.3: Results for the numerical minimization with respect to the order parameter for the color superconductor
S, centering the series expansion for the eigenvalues at S0 = 0.1 MeV when µ = 310 MeV (orange, dashed line) and
µ = 344 MeV (purple, solid line).
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3 – Inhomogeneous color superconductivity and chiral condensate

We can see how the modulation is well defined for µ = 310 MeV, while for increasing
values of the chemical potential, the amplitude substantially reduces its value; this is not
surprising, as the numerical minimization is performed using the set of values for the chi-
ral condensate obtained from the numerical minimization of the thermodynamic potential
when only this condensate is taken into consideration; indeed, for increasing values of µ,
the chiral condensate vanishes (M → 0). The corresponding value for the color supercon-
ductor is not null in this region of the chemical potential, as shown in [1, 8]: this represents
the transition from the chirally broken phase to the restored one for the chiral condensate,
while above µ = 345− 350 MeV the color superconductor is expected to be characterized
by an homogeneous order parameter. In this way, we find (always on a qualitative level)
the phase diagram determined in [8]; actually, through our calculations, we are able to
overcome the first assumption made by the author, where, for the sake of finding an an-
alytic result for the eigenvalues of the problem and to make the numerical minimization
feasible, the 2SC condensate is assumed to be constant in space while the chiral condensate
is described as a cosine modulation.
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Chapter 4

Ginzburg-Landau expansion

In Chapter 2, we introduced a qualitative Thomas-Fermi approximation for chiral conden-
sates whose shape is given by the 1D Jacobi elliptic functions, which, as we already said,
are found to be the favored modulations at T = 0 and intermediate µ, namely the con-
ditions expected in the core of Neutron Stars. Previously, we forced the thermodynamic
potential to follow the exact result. Now we want to show that it is possible to obtain
an approximation for the grand potential Ω in which the Thomas-Fermi term represents
a series expansion with respect to one parameter of the condensate modulation (we will
obtain such functional form for a plane wave modulation), while for the second parameter
we find a gradient expansion a’ la Ginzburg-Landau. We will show how such expansion
is valid not only for every 1D shape, but even for higher dimensional modulations. This
result is extremely important, because in this way we rigorously obtain an approximate
thermodynamic potential that is valid in any region of the QCD phase diagram at T =
0. We will show, indeed, that not only we are able to reproduce with a very satisfying
approximation the results for the chiral density wave solution of the eigenvalue problem
and for the one dimensional solitonic modulation, but also the ones for 2D modulations.

4.1 Ginzburg-Landau gradient expansion

The Ginzburg-Landau theory of superconductivity gives an approximation for the thermo-
dynamic potential when the order parameter related to the spontaneous symmetry breaking
mechanism is small. Indeed, the expansion of the free energy of the system is possible only
in proximity of a second order phase transition, and in particular in the neighborhood of
critical points. Actually, not only the condensate must be small, but also its gradients.
Initially, the Ginzburg-Landau theory was conceived for ordinary superconductivity, but
it has been extensively adopted in case of quark deconfinement in presence of chiral and
color superconducting condensates [1, 3, 5, 16, 17].
We can adapt the Ginzburg-Landau expansion to the NJL model in the mean field approx-
imation, through which we assume that the condensate is represented by its mean value
neglecting fluctuations. In this context, always working in the chiral limit, and assuming
as before that the pseudoscalar contribution to the effective mass is pointing in the third
direction
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4 – Ginzburg-Landau expansion

φip = δi,3φ
3
p,

we can write the explicit expression for the grand potential

ΩMF (M) = ΩMF (0)+
1

V

∫
dV
[1

2
α2|M(~x)|2+

1

4
(α4,a|M(~x)|4+α4,b|∇M(~x)|2)+...

]
. (4.1)

The coefficients α that appear inside the expansion, multiplied for the effective mass and
its gradients terms, are functions of the chemical potential and the temperature, and they
do not depend on the particular expression of the condensate. Through their dependence
from T and µ, they determine the structure in the phase diagram for the effective mass.
The convention for the α coefficients is to label them with a number corresponding to the
total power with which the parameters of the modulation appear in the expansion.
Analyzing the signs of these coefficients, we can get an insight on the behavior of the
condensate and even define the position of phase transition regions in the phase diagram.
For example, when the α4,b coefficient is positive, we find the homogeneous phase, as the
gradient terms in the expansion are disfavored [17]. When α4,a > 0 and α2 < 0, the favored
solution has a nonzero mass given by

|M | '
√
− α2

α4,a
(4.2)

while |M | = 0 if α2 > 0. A phase transition occurs at α2 = 0 from the homogeneous
chiral broken phase to the restored phase. Indeed, we can trace in the phase diagram a
transition line. The onset for inhomogeneous phases is signaled by a negative sign for the
α4,b coefficient.
Through this brief introduction to this method, we showed how powerful the Ginzburg-
Landau expansion is, but actually we must keep in mind that this is possible only when
the order parameter, close to a second order phase transition, is small.

4.2 Improved Ginzburg-Landau expansion

We now present a rigorous derivation of an expansion for the free energy of dense, decon-
fined quark matter through which we are able to characterize the thermodynamic properties
of such system in every region of the QCD phase diagram at T = 0. We will show how
this method, which we will define improved Ginzburg-Landau (IGL) method, can success-
fully reproduce the grand potential for inhomogeneous chiral condensates in one or higher
dimensions. We will begin considering a simple plane wave modulation for the derivation
of ΩIGL and we will generalize the results for arbitrary periodic structures, presenting in
the following sections a comparison between our results and the ones obtained for the so-
lutions of the eigenvalue problem obtained through the numerical diagonalization of the
hamiltonian matrix.
Let us consider the 1D modulation

M(z) = ∆e2iqz, (4.3)
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4 – Ginzburg-Landau expansion

which is called chiral density wave (CDW), and suppose to consider a region of the QCD
phase diagram at high chemical potential and zero temperature, where the modulation is
characterized by a small ∆ amplitude. When we work in the neighborhood of a transition
line, the Ginzburg-Landau theory suggests that we can approximate the grand potential
through a gradient expansion for both the parameters that characterize the condensate.
If we begin expanding the thermodynamic potential with respect to the ∆ parameter, we
would get an expression of the form

Ω = Ω0 + Ω2(q)∆2 + Ω4(q)∆4 + ... (4.4)

where, in principle, Ω2(q) and Ω4(q) could be arbitrary functions of the q parameter.
Expanding also in the second parameter q, we would get an expression of the form

Ω = Ω0 + c20∆2 + c22∆2q2 + c24∆2q4 + ...+ c40∆4 + c42∆4q2 + ..., (4.5)

where the coefficients cij have the first index corresponding to the power of ∆, while the
second to the q parameter.
We want to show that Ω0 = Ωrest (which is the grand potential of the restored phase) and
we will write all the terms that do not depend on q as the Thomas-Fermi approximation
ΩTF (∆) (that is given by the functional form of the thermodynamic potential for an
homogeneous effective mass, where we substitute the homogeneous order parameter M
with the spatial average of M(z)). In this way

ΩTF (∆) ' Ω0 +
∑
i

ci0∆i. (4.6)

We start considering the series expansion (4.4), assuming a condensate whose shape is
represented by (4.3).
The CDW modulation eigenvalues could be found analitically [16, 17, 20], and they are
given by

λ± =

√
p2
z + ∆2 +±2q

√
p2
z + ∆2. (4.7)

Using the boosting method, introduced in Chapter 2, we can obtain the 3D eigenvalues
from the one-dimensional λ±, which are given by

E± =
√
p2
⊥ + λ2

±. (4.8)

Using the Pauli-Villars regularization scheme we can write, at T = 0,

Ω = −
NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
∑
σ=±

[
EσPV + (µ− Eσ)θ(µ− Eσ)

]
=

= −
NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
∑
σ=±

ωσ.

(4.9)
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Now we would like to write an expansion, following the expression (4.4), in such a way
that

Ω = Ω0 +
∂Ω

∂(∆2)

∣∣∣
∆=0

∆2 +
1

2

∂2Ω

∂(∆2)2

∣∣∣
∆=0

∆4 + ... (4.10)

identifying the different terms with

Ωrest = Ω0, Ω2(q) =
∂Ω

∂(∆2)

∣∣∣
∆=0

, Ω4(q) =
1

2

∂2Ω

∂(∆2)2

∣∣∣
∆=0

. (4.11)

Starting from the Ω0 term, we can integrate separately the vacuum and the medium
contribution (that we have already isolated in (4.9)). Referring to the results presented in
the Appendix A, we can obtain the analytic expression for the vacuum contribution of Ω0

obtaining

Ωvac
0 =

3

4

NcNf

4π2
Λ4 log[

27

16
] (4.12)

and for the medium contribution instead

Ωmed
0 = −

NcNf

12π2
µ4, (4.13)

which are independent of q, as they should. In this way, we verified that actually Ω0

corresponds to Ωrest.
Now we focus on the second term of the (4.11) expansion. The full, explicit computation
is developed in Appendix A. We have

Ω2(q) =
∂Ω

∂(∆2)

∣∣∣
∆=0

= −
NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
∑
σ=±

∂ωσ
∂(∆2)

. (4.14)

Separating the different contributions that come from the vacuum and medium terms
we have

Ωvac
2,1 = −3

NcNf

8π2
Λ2 log

(4

3

)
,

Ωvac
2,2 = −q

NcNf

4π2

∑
k

ck

[
(q −

√
q2 + kΛ2) log(kΛ2) + 2

√
q2 + kΛ2 log(q +

√
q2 + kΛ2)

]
,

(4.15)

for the vacuum terms while for the medium part we get

Ωmed
2,1 =

NcNf

4π2
µ2,

Ωmed
2,2 = q

NcNf

4π2

[
(µ− q) log

( |µ− q|
q

)
− (µ+ q) log

( |µ+ q|
q

)]
.

(4.16)
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Now, if we expand the terms of Ω2 that depend on q for small values of this parameter,
we find the Ginzburg-Landau coefficients. Indeed, expanding Ωvac

2,2 and Ωmed
2,2

Ωvac
2,2 + Ωmed

2,2 =
NcNf

4π2

{
Λ2
[
(2− log(

32

3
) + log(

Λ2

q2
))
q2

Λ2
+

11q4

9Λ4
− 17q6

27Λ6
+ ...

]
+

+ µ2
[
− (2 + log(

µ2

q2
))
q2

µ2
+

q4

3µ4
+

q6

10µ6
+ ...

]} (4.17)

and simplifying the above expression, we get

Ωvac
2,2 + Ωmed

2,2 =
NcNf

4π2

[
− log

(32µ2

3Λ2

)
q2 +

1

3

( 11

3Λ2
+

1

µ2

)
q4+

+
( 1

10µ4
− 17

27Λ4

)
q6 +

( 230

567Λ6
+

1

21µ6

)
q8 + ...

]
.

(4.18)

If we recall the series expansion introduced in eq.(4.5), we have that we can group all
the terms that do not depend on the wavevector q inside the Thomas-Fermi expression
for the grand potential (eq. (4.6)), while Ω2(q) contains all the terms of the form c22q

2 +
c24q

4 + c26q
6 + ... If we look at the CDW modulation (4.3), we see that we can write all the

terms that appear with even powers of the q parameter as a gradient expansion in terms
of the plane wave modulation, in such a way that

Ω ' ΩTF (∆)+α4(µ)|∇M |2+α6(µ)
(

3|M |2|∇M |2+
1

2
|∇2M |2

)
+α8(µ)|∇3M |2+α10(µ)|∇4M |2

(4.19)
where we adopted the convention of labeling the Ginzburg-Landau coefficients with indices
that indicate the total power of the product of the parameters that describe the modulation
of the chiral condensate. We truncated the gradient expansion at the total power of ten, as
it will suffice for our purposes. In eq. (4.19) we added the |M |2|∇M |2 term, which comes
from the c42∆4q2 contribution in eq. (4.5), as it has the same power of |∇2M |2.
The explicit expressions of Ginzburg-Landau coefficients are

α4(µ) = −
NcNf

16π2
log
(32µ2

3Λ2

)
,

α6(µ) =
NcNf

96π2

( 11

3Λ2
+

1

µ2

)
,

α8(µ) =
NcNf

256π2

( 1

10µ4
− 17

27Λ4

)
,

α10(µ) =
NcNf

1024π2

( 230

567Λ6
+

1

21µ6

)
.

(4.20)
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We would like to underline as the present expansion, given in terms of the Thomas-
Fermi term plus the Ginzburg-Landau-like gradient expansion, does not depend on the
specific modulation we are considering (or its dimensionality), as the coefficients depend
only on the chemical potential. More precisely, they depend on both µ and Λ. The depen-
dence on the regularization scale is due to the fact that the underlying theory is the NJL
model regularized with the Pauli-Villars regularization scheme.
The above calculations have been performed considering a plane wave, but we can gener-
alize such results to all the periodic modulations, rewriting the expansion as

Ω ' ΩTF (
√
〈|M(z)|2〉) + α4(µ)|∇M |2 + α6(µ)

(
3|M |2|∇M |2 +

1

2
|∇2M |2

)
+

+ α8(µ)|∇3M |2 + α10(µ)|∇4M |2.
(4.21)

In the above expression, we substituted the argument of the Thomas-Fermi term with√
〈|M(z)|2〉. Indeed, when we consider the ΩTF (

√
〈|M(z)|2〉) contribution, we have to per-

form a spatial average above the modulation period. This simply reduces to
√
〈|M(z)|2〉 =

∆ for a CDW, but in general the expression could be much more complicated for other
modulations. Furthermore, with the above notation, we indicate that the gradient terms
too need to be spatially averaged

|∇M |2 ≡ 〈|∇M |2〉 . (4.22)

This is unessential for a plane wave modulation as the CDW appears with its modulus,
but this definition matters when we will consider more complicated modulations.
In the next section, we will illustrate how this approximation is actually a powerful tool
to handle not only of 1D modulation, but also 2D crystalline structures.

4.3 CDW with the improved Ginzburg-Landau expansion

When we consider a chiral density wave (that we write again for simplicity)

M(z) = ∆e2iqz (4.23)

in the improved Ginzburg-Landau approximation, we get an expression as

Ω ' ΩTF (
√
〈|M(z)|2〉 = ∆) + 4α4q

2∆2 + α6

(
12∆4q2 + 8q4∆2

)
+

+ 64α8q
6∆2 + 256α10q

8∆2.
(4.24)

We can determine through a numerical minimization at different chemical potentials the
values of the parameters ∆ and q. Furthermore, we can actually compare our results
with the ones found in [16, 17], where the numerical computation is presented. For the ∆
parameter of the modulation we obtain the results reported in Fig 4.1
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Figure 4.1: Comparison between the values of ∆ obtained through the minimization of the free energy as a function
of the chemical potential µ with two different methods. The dotted line (orange) corresponds to the numerical values,
while the dashed line (purple) is obtained minimizing the improved Ginzburg-Landau grand potential eq.(4.24).

while for the wavevector q we have
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Figure 4.2: Values of q obtained through the minimization of the free energy as a function of the chemical potential
µ with two different methods. The dotted line (orange) corresponds to the numerical values while the dashed line
(purple) is obtained minimizing eq.(4.24).

We can see how the two parameters that minimize the thermodynamic potential are
well reproduced by our approximation. There is a difference of almost 3-4 MeV for the
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onset of the inhomogeneous phase with respect to the numerical computation (signaled by a
discontinuity in both the parameters, as it happens through a first order phase transition).
Indeed, in our approximation, we find that this happens at 306 − 307 MeV, while from
the numerical results we find that this occurs at 310 MeV: before this threshold, the q
parameter that minimizes ΩCDW has a null value, meaning that the order parameter is
homogeneous.
However, we can argue that this difference is not substantial, and that in general the values
of the parameter determined with the IGL expansion are greater than the ones determined
from the numerical computation (we will show that this is true not only for the chiral
density wave, but also for the solitonic solutions and in general also for higher dimensional
crystalline structures). With a good approximation level, we can actually predict the
occurrence of inhomogeneous phases in the QCD phase diagram, remembering that there
is an error of the order of the MeV when adopting the improved Ginzburg-Landau method
for the thermodynamic potential.
Plotting in Fig 4.3 the difference between the full thermodynamic potential for the CDW
modulation ΩCDW and Ωrest compared with our IGL grand potential minus Ωrest, we can
see how we are able to reproduce with a very good approximation the energetic difference
between inhomogeneous and the chiral restored phase
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Figure 4.3: Plot of the difference between ΩCDWIGL and the thermodynamic potential for the restored phase as a
function of µ (purple, dotted line); in orange (dashed), difference between the numerical result for ΩCDW and Ωrest
for different values of the chemical potential.

As we have already outlined before, there is a slight difference between the prediction of
the value of the chemical potential at which the onset for the inhomogeneous takes place.
Nevertheless, we can see how our approximation is able to describe the thermodynamic
properties of the inhomogeneous chiral density wave: we are allowed to determine whether
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inhomogeneous phases are energetically more favored with respect to the restored phase.
In the next section we will prove with similar numerical results that we can obtain even
better predictions for the thermodynamic potential in the case of the 1D soliton solution,
which are found to be the favored one-dimensional modulations.

4.4 1D solitonic solution with improved Thomas-Fermi ex-
pansion

We will now present the results for the 1D soliton solutions. We recall that the modulation
is given by

M(z) = ∆ν
sn(∆z|ν)cn(∆z|ν)

dn(∆z|ν)
, (4.25)

where sn, cn and dn are respectively the elliptic sine, the elliptic cosine and the delta
amplitude and whose period is given by

L(∆, ν) = 2
K(ν)

∆
(4.26)

where K(ν) is a complete elliptic integral of first kind and ν ∈ [0,1] is the elliptic modulus.
We now report the results for the numerical minimization of the parameters that charac-
terize the solitonic modulation for each value of µ in the inhomogeneous window for QCD
phases in high baryonic density environments. For the ∆ parameter we obtain the results
shown in Fig 4.4
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Figure 4.4: Minimization results for the 1D solitonic solution parameter ∆ obtained from eq. (4.21) (dotted, purple
line) compared with the results from the numerical computation (dashed, orange line) as functions of the chemical
potential µ.

while for the elliptic modulus ν we have
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Figure 4.5: Minimization for the 1D solitonic solution parameter ν (dotted, purple line) compared with the results
from the numerical computation (dashed, orange line) as functions of the chemical potential µ.
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As previously discussed, these results describe parameters that are characterized by
higher values with respect to the ones obtained from the numerical method.
Indeed, if we compare these results with the ones obtained in [16, 17], we can see that
our ∆ parameter is slightly larger: as an example, around µ = 310 MeV, the numerical
minimization describes an elliptic modulation with a value for ∆ ≈ 295 MeV and a value
for the elliptic modulus of ν ≈ 0.997. We can actually confirm in our approximation
the ν minimized result, but the improved Ginzburg-Landau expansion predicts a result of
∆ ≈ 315 MeV, which corresponds to a difference of about 5%.
The agreement that we obtained between our approximation and the numerical result for
this modulation is excellent. Indeed, if we plot the differences between the restored phase
and the grand potential from the numerical problem and the one derived through the
improved Ginzburg-Landau expansion, we have the results in Fig 4.6
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Figure 4.6: Plots of the energetic difference between the free energy for the solitonic modulation and the restored
phase with the numerical computation (purple, dashed line) and with the IGL expansion (orange, dotted line) as a
function of the chemical potential µ.

We can see from Figure 4.6 how our result remarkably reproduces the numerical com-
putation results. We have to stress how the approximated result ΩTF − Ωrest tends to
be under Ω−Ωrest, meaning that the IGL method tends to overestimate the energy gain.
Nevertheless, considering how such eigenvalue problem is almost impossible to be resolved
for periodic lattice structures more complicated than a plane wave or the 1D solitonic so-
lution (even a sinusoidal order parameter cannot be resolved in an analytic way), we are
allowed to say that the results obtained through the IGL method are remarkable.
In the next section, we will show how it is possible to use this method to study higher
dimensional modulations.
Before doing that, we would like to report the results obtained through the improved
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Ginzburg-Landau approximation for 1D sinusoidal modulation of the form

Mcos(z) = M cos(kz). (4.27)

and compare it with the CDW and the soliton ansatz.
Performing also the minimization with respect to the parameters M and k at different
values of the chemical potential, we find the results shown in Fig 4.7
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Figure 4.7: Minimized parameters for the single cosine modulation for different values of the chemical potential µ.
The dashed (orange) line describes the values of the M parameter, while the dash dot line (purple) represents the
k parameter.

Below the chemical potential threshold for the onset of inhomogeneous phases, we find
the results characteristic for an homogeneous order parameter M: for µ < 308 MeV indeed
the effective mass for the condensate is minimized with a value of almost M = 300 MeV,
while the wavevector is null. These results indeed corresponds to the well know values
of the homogeneous chiral order parameter. As in the case of the CDW modulation, the
critical chemical potential µ at which a modulated condensate is favored with respect to an
homogeneous one is shifted of almost 3-4 MeV with respect to the numerical result. Despite
the difference for the onset with the numerical computation, we are able to reproduce the
results for the single cosine modulation found in [16].
Plugging the results from the numerical minimizations in the effective masses for the 1D
modulations considered in this work and plotting the respective energetic differences with
respect to the restored phase, we find the results in Fig 4.8
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Figure 4.8: Plots of the difference between the free energies of different inhomogeneous order parameters in one
dimension for different values of the chemical potential µ obtained with the IGL method and the restored phase.
The dashed (orange) line describes the difference between the CDW free energy and the restored phase. The dotted
(purple) line is the one-dimensional cosine free energy minus Ωrest, while the dash dot (blue) line is the difference
of thermodynamic potential for solitonic modulations and the free energy of the restored phase.

Through the improved Ginzburg-Landau expansion, we confirm the results found in
[16, 17]: we find that the CDW modulation is disfavored both with respect to the single
modulation and to the solitonic one. Furthermore, as shown by the authors in [16, 17],
we confirm that the single cosine modulation is almost degenerate to the solitonic order
parameter in almost all the inhomogeneous window for chiral condensates.
The success obtained with lower dimensional shapes for inhomogeneous order parameters
furnishes a clear hint of the efficiency of our approximation method; in this way, on one
hand we have the possibility to employ the grand potential obtained through the improved
Ginzburg-Landau expansion to determine the thermodynamic properties of these phases,
while on the other hand we have an analytic, simple method to deal with such phases. The
lengthy and computational demanding numerical method can be replaced by a relatively
simple expression for the grand potential.
It is natural to extend this method to higher dimensional modulations.
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4.5 2D crystalline structures with the IGL expansion

We now want to present the results for simple two-dimensional modulations, represented
by sums and products of cosines that depend on the space coordinates x and y, namely

M1(x, y) = T1 cos(k1x) cos(k1y) M2(x, y) = T2 cos(k21x) cos(k22y),

M3(x, y) = T3(cos(k3x) + cos(k3y)) M4(x, y) = T4(cos(k4x) + sin(k4y)).
(4.28)

For theM1(x, y) modulation we have the possibility, again, to confront the results obtained
from the improved Ginzburg-Landau expansion with the numerical results [16, 17]. After
this, we will report the comparison between the thermodynamic potentials for these 2D
modulation and the favored solitonic solution with respect to the restored phase.

4.5.1 M1(x, y) with IGL expansion

As already done for one-dimensional modulations, we will now present the results of the
minimization of the grand potential.
In this case, the results we obtained are shown in the following Figure

300 310 320 330 340
μ(MeV)

50

100

150

200

250

300

350

MeV

Figure 4.9: Plots of the T1 (dashed, orange line) and k1 (purple, dotted line) parameters of theM1(x, y) modulation
that minimize the grand potential for different values of the chemical potential µ.

If we compare our results with the ones for the numerical computation shown in [17],
we can see how our parameters are very close to the numerical minimization before and
after the onset for inhomogeneous phases. For µ < 308 MeV, our results indicate that the
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optimized value for the T1 parameter is T1 = 300 MeV, which is actually the correct result
for the minimization of homogeneous phases, while k1 is null.
However, as previously seen in the case of the CDW and the 1D cosine modulations, the
onset for inhomogeneous phases is predicted to be at a lower critical chemical potential
(µ ' 306− 307 MeV) with respect to the one found by the authors in [16, 17]. Therefore,
we can confirm that also for 2D structures there is a small difference of almost 3-4 MeV
for the chemical potential value at which the preferred phase for the chiral condensate is
inhomogeneous.
Using these values for the parameters of the M1(x, y) modulation, plugging everything
inside the improved Ginzburg-Landau expansion and plotting the free energy difference
between this inhomogeneous phase and the restored phase, we have the results shown in
the following Figure
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Figure 4.10: Plot of the difference between the thermodynamic potential ΩIGL for the M1(x, y) modulation and
the restored phase as a function of µ in the "inhomogeneous window" of the chemical potential.

If we compare the values of the energetic difference in (4.10) with the ones in [17] for the
same modulation, we can see how we are able to reproduce the thermodynamic properties
of this 2D modulation.

4.5.2 Comparison between different modulations

Performing the same calculation for the M2,M3 and M4 proposed crystalline structures,
we obtain the energy difference of the grand potential for these modulations with respect
to the restored phase, and we can determine which of these forms of the chiral condensate
is favored above the others shown in the following Figures. We find that there is no energy
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difference between these inhomogeneous condensates. Furthermore, we compared these 2D
crystalline structures with the results found for the plane wave modulation and the soliton
chiral condensate. For M1(x, y) and M2(x, y) we have the results reported in Fig 4.11
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Figure 4.11: Energy difference between the thermodynamic potentials for M1 and M2 and Ωrest solid (orange) line
at different chemical potentials. The difference between the free energies of the CDW and the solitonic modulation
and the restored phase are reported in dotted (magenta) and dash dot (blue) lines respectively.

From Fig 4.11, we can see how the one dimensional modulations are favored with respect
to 2D lattice structures given by M1 and M2 throughout the inhomogeneous window.
If we compare the results of the minimizations for the parameters ofM3(x, y) andM4(x, y),
we have the results shown in Fig 4.12 and Fig 4.13
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Figure 4.12: Plots of the T3 (dashed, orange line) and k3 (dotted, blue line) parameters of the M3(x, y) modulation
that minimize the grand potential for different values of the chemical potential µ.
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Figure 4.13: Plots of the T4 (dashed, orange line) and k4 (dotted, magenta line) parameters of the M4(x, y)
modulation that minimize the grand potential for different values of the chemical potential µ.

It is clear from Fig 4.12 and Fig 4.13 how the two modulations have the same optimized
parameters.
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Plotting the free energy difference between the M3(x, y) and M3(x, y) grand potential and
the restored phase, compared with the results for the CDW and solitonic modulations, we
find the results in Fig 4.14
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Figure 4.14: Energy difference between the thermodynamic potentials forM3 andM4 and Ωrest at different chemical
potentials (purple, solid line). The difference between the free energies of the CDW and the solitonic modulation
and the restored phase are reported in dotted (magenta) and dash dot (orange) lines respectively.

We can see that from our results, in agreement with what has been previously deter-
mined [16, 17], the 1D solitonic shape for the chiral condensate is the favored one through-
out the inhomogeneous window of the chemical potential which corresponds to intermedi-
ate baryonic density regions, relevant for Neutron Stars. Nevertheless, even a CDW shape
for the chiral condensate is more favoured than 2D sinusoidal modulations. As already
introduced, after the first order phase transition, that in our improved Ginzburg-Landau
expansion occurs at 306-307 MeV, the modulationsM1,M2,M3,M4 are degenerate in their
energy difference from the restored phase.
We can argue that this predilection for the 1D solitonic modulation is due to the fact that
the Jacobi elliptic functions are able to interpolate in a better way the transition from
the homogeneous phase to the chiral restoration phase at µ ' 345 MeV. Nevertheless,
we are always adopting the mean field approximation, so we are actually neglecting the
fluctuations on the top of the mean field solution. It seems, from results which are beyond
the present work, that 1D modulations would be largely affected by these fluctuations,
while 2D and 3D modulations would show a much more robust structure against these
fluctuations [17].
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Conclusions

In this work, we studied the occurrence of inhomogeneous QCD phases at zero tempera-
ture and intermediate/high baryonic potential for deconfined quark matter, which are the
conditions expected in the Neutron Stars (NS) cores. We derived the explicit expression of
the hamiltonian matrix for an inhomogeneous chiral order parameter in the Nambu-Jona
Lasinio model, highlighting the necessity of an approximation method to describe the ther-
modynamic properties of inhomogeneous chirally broken phases.
We introduced a qualitative approximation for the free energy that we called the improved
Thomas-Fermi method. In this way, we reproduced the grand potential obtained through
the numerical diagonalization of the hamiltonian matrix when considering a soliton-like
ansatz for the chiral order parameter. The improved Thomas-Fermi approximation allowed
us to consider for the first time the competition between inhomogeneous chiral condensa-
tion and the insurgence of a modulated color superconductor in the 2SC phase in the range
for the chemical potential 300 < µ < 350 MeV (the inhomogeneous window of the QCD
phase diagram) at T = 0. Adopting a perturbative approach for the color superconducting
order parameter, we were able to overcome the assumptions made by Sadzikowski in [8]
to consider the competition between this two different phases: a 1D cosine modulation for
the chiral condensate and an homogeneous 2SC color superconductor. Indeed, we found
the QCD phase diagram structure obtained by different authors [1, 8, 17] but without the
restriction of considering only one of the order parameters to be modulated. Proceeding in
the direction of increasing chemical potential at T = 0, the numerical minimization of our
approximate grand potential indicated the presence of a region where an inhomogeneous
chiral condensate coexists with a 2SC inhomogeneous condensate, while, for increasing
values of µ, we found a chiral restoration transition and an homogeneous color supercon-
ducting condensate. If on one hand we confirmed the previous results, on the other hand
we enriched the QCD phase diagram structure considering the coexistence of two inho-
mogeneous order parameters. Moreover, our approximate approach allowed us to consider
the favored soliton-like modulation for the chiral condensate [16, 17], instead of assuming
a sinusoidal modulation for the sake of finding an analytic result.
After this, we rigorously derived an approximation of the grand potential for inhomoge-
neous, chirally broken phases of dense quark matter. We showed that it is possible to
express the thermodynamic potential as the sum of a Thomas-Fermi contribution plus gra-
dient terms which appear with the Ginzburg-Landau coefficients for a chiral density wave
(CDW) modulation. Being these coefficients dependent only on the chemical potential
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and the regularization scale Λ for the NJL model, we demonstrated the validity of this ex-
pansion throughout the inhomogeneous window of the chemical potential. We called this
expansion the improved Ginzburg-Landau (IGL) method. We showed how this powerful
tool can reproduce the free energy of 1D and 2D modulations with a very good approxi-
mation for every value of the chemical potential at T = 0. Indeed, we reproduced the free
energies for the CDW, the solitonic and the single cosine modulations and also for known
two-dimensional crystalline structures. In addition to this, we determined the grand po-
tential for bidimensional lattice structures that couldn’t be analyzed before because of the
complexity of the diagonalization of the hamiltonian matrix even with numerical methods.
With the IGL method we confirmed the results found in [17], where it is shown as in the
mean field approximation one-dimensional modulations are favored with respect to bidi-
mensional lattice structures. We stressed how the improved Ginzburg-Landau expansion
identifies the onset for inhomogeneous phases at a lower chemical potential (around 306-307
MeV) with respect to the numerical results (which occurs at µ = 310 MeV). Nevertheless,
we demonstrated how the simple IGL expression for the thermodynamic potential can
substitute the lengthy and almost unfeasible numerical diagonalization of the hamiltonian
matrix.
The importance of the IGL model and the competition between inhomogeneous phases
are due to their direct application to the physics of compact stellar objects as Neutron
Stars. The recent discovery of the gravitational and the electromagnetic signals from a
merger of Neutron Stars is probably the most important step toward the determination
of the internal structure of NS. Despite the fact that it has been revealed the signal from
only one binary system, in the near future it will be possible to compare the measures
from many Neutron Stars mergers, obtaining a statistically relevant set of data that could
possibly give a decisive hint on the structure of these compact objects.
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Appendix A

Calculation of the grand potential
for the CDW modulation

Starting from the Ω0 term, we can integrate separately the vacuum and the medium con-
tribution (that we have already isolated in (4.9)).
We can obtain the analytic expression for the vacuum contribution obtaining

Ωvac
0 = −

NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz

[
E+
PV + E−PV

]
=

3

4

NcNf

4π2
Λ4 log[

27

16
]. (A.1)

For the medium contribution, we have to integrate

Ωmed
0 = −

NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz

[
(µ−E+), θ(µ−E+) + (µ−E−)θ(µ−E−))

]
. (A.2)

Taking into consideration the θ functions the integration extrema are

θ(µ− E+) ≡ µ > E+ → 0 < p⊥ <
√
µ2 − (|pz|+ q)2 (A.3)

and

θ(µ− E−) ≡ µ > E− → 0 < p⊥ <
√
µ2 − (|pz| − q)2. (A.4)

In both cases p⊥ must be positive (as we already used polar coordinates for the integral
over the transverse momenta).
From (A.3) we can see that µ must be such that µ > q, indeed the integration domains for
pz, we get

E+ → µ >
√

(|pz|+ q)2 −→ −µ− q < |pz| < µ− q (A.5)

and
E− → µ >

√
(|pz| − q)2 −→ −µ+ q < |pz| < µ+ q. (A.6)
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In this way, we can write the medium contribution to the thermodynamic potential as

Ωmed
0 = −2

NcNf

4π2

{
θ(µ− q)

[ ∫ µ−q

0
dpz

∫ √µ2−(pz+q)2

0
dp⊥p⊥(µ− E+)+

+

∫ µ+q

0
dpz

∫ √µ2−(pz−q)2

0
dp⊥p⊥(µ− E−)

]
+ θ(q − µ)

[ ∫ µ+q

−µ+q
dpz

∫ √µ2−(pz−q)2

0
dp⊥p⊥(µ− E−)

]}
.

(A.7)
Performing both the integrations in p⊥ and pz we get

Ωmed
0 = −2

NcNf

4π2

[
θ(µ− q)µ

4

6
+ θ(q − µ)

µ4

6

]
= −

NcNf

12π2
µ4. (A.8)

In this way, we verified that actually Ω0 corresponds to Ωrest.
Now we focus on the second term of the (4.11) expansion. We have

Ω2(q) =
∂Ω

∂(∆2)

∣∣∣
∆=0

= −
NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
∑
σ=±

∂ωσ
∂(∆2)

, (A.9)

that we can rewrite in a different way considering that

∂ωσ
∂(∆2)

=
∂ω

∂(∆2)
=

∂ω

∂Eσ

∂Eσ
∂(∆2)

, (A.10)

where

∂ω

∂Eσ
=

∂

∂Eσ

(
EσPV + (µ− Eσ)θ(µ− Eσ)

)
=

3∑
k=0

ck

( Eσ√
E2
σ + kΛ2

)
− θ(µ− Eσ)− (µ− Eσ)δ(µ− Eσ)

(A.11)

while

∂Eσ
∂(∆2)

=
∂

∂(∆2)

(√
p2
⊥ + λ2

σ

)
=

1

2Eσ

(
1 + σ

q√
p2
z + ∆2

)
. (A.12)

(we recall that λσ =
√
p2
z + ∆2 + 2qσ

√
p2
z + ∆2 ). In this way, we can rewrite the Ω2(q)

term as

Ω2(q) = −
NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
∑
σ=±

[
1

2Eσ

(
1 + σ

q√
p2
z + ∆2

)( Eσ√
E2
σ + kΛ2

−

− θ(µ− Eσ
)]
.

(A.13)
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We consider separately the different terms given by

Ωvac
2,1 = −

NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
1

2

∑
k

ck√
E2
σ + kΛ2

Ωvac
2,2 = −

NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpzσ
q

2
√
p2
z + ∆2

∑
k

ck√
E2
σ + kΛ2

(A.14)

for the two vacuum contributions emerging from the Ω2(q) term and

Ωmed
2,1 =

NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpz
θ(µ− Eσ)

2Eσ

Ωmed
2,2 =

NcNf

4π2

∫ ∞
0

dp⊥p⊥

∫ ∞
−∞

dpzσ
q

2Eσ
√
p2
z + ∆2

θ(µ− Eσ)

(A.15)

for the medium terms.
This time we start from the medium contributions, and remembering how the presence of
the θ functions modifies the integration extrema, we can write for the Ωmed

2,1

Ωmed
2,1 =

NcNf

4π2

{
θ(µ− q)

[ ∫ µ−q

0
dpz

∫ √µ2−(pz+q)2

0
dp⊥p⊥

1

E+
+

+

∫ µ+q

0
dpz

∫ √µ2−(pz−q)2

0
dp⊥p⊥

1

E−

]
+ θ(q − µ)

[ ∫ µ+q

−µ+q
dpz

∫ √µ2−(pz−q)2

0
dp⊥p⊥

1

E−

]}
,

(A.16)
whose result is given by

Ωmed
2,1 =

NcNf

4π2
µ2. (A.17)

We need to pay particular attention to the term Ωmed
2,2 , because we need to evaluate

Ω2 for Q = 0, and this term could be potentially divergent in the infrared (pz ' 0).
Nevertheless, performing the integral, we can see how actually the divergences cancel out.
Indeed, for ∆ = 0, we see that

Ωmed
2,2 = q

NcNf

4π2

{
θ(µ− q)

[ ∫ µ−q

0

dpz
pz

∫ √µ2−(pz+q)2

0
dp⊥p⊥

1

E+
+

+

∫ µ+q

0

dpz
pz

∫ √µ2−(pz−q)2

0
dp⊥p⊥

1

E−

]
+ θ(q − µ)

[ ∫ µ+q

−µ+q

dpz
pz

∫ √µ2−(pz−q)2

0
dp⊥p⊥

1

E−

]}
.

(A.18)
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If we integrate first over the transverse momenta, we obtain

Ωmed
2,2 = q

NcNf

4π2

{
θ(µ− q)

[ ∫ µ−q

0

dpz
pz

(
µ−

√
(pz + q)2

)
−

−
∫ µ+q

0

dpz
pz

(
µ−

√
(pz − q)2

)]
− θ(q − µ)

[ ∫ µ+q

−µ+q

dpz
pz

(
µ−

√
(pz − q)2

)]}
.

(A.19)
Actually, performing the integration over pz, Ωmed

2,2 does not present any divergency
in the infrared. Adopting the technique for improper integrals which present an infrared
divergence, we can perform the integration considering an infinitesimal ε

Ωmed
2,2 = q

NcNf

4π2

{
θ(µ− q)

[ ∫ µ−q

ε

dpz
pz

(
µ−

√
(pz + q)2

)
−

−
∫ µ+q

ε

dpz
pz

(
µ−

√
(pz − q)2

)]
− θ(q − µ)

[ ∫ −ε
−µ+q

∫ µ+q

ε

dpz
pz

(
µ−

√
(pz − q)2

)]}
,

(A.20)
which gives

Ωmed
2,2 = 2q log(q) + (µ− q) log

(µ− q
ε

)
− µ log

(µ+ q

ε

)
− q log[ε(q + µ)]−

− µ log
(µ+ q

q − µ

)
− q log

(
1− µ2

q2

)
.

(A.21)

The final result is

Ωmed
2,2 = q

NcNf

4π2

[
(µ− q) log

( |µ− q|
q

)
− (µ+ q) log

(µ+ q

q

)]
. (A.22)

For the integration of the vacuum contributions to Ω2 instead we have

Ωvac
2,1 = −

NcNf

4π2

∫ ∞
−∞

dpz

∫ ∞
0

dp⊥p⊥
∑
σ

∑
k

ck
1

2Eσ,k

∣∣∣
∆=0

=

= −3
NcNf

8π2
Λ2 log

(4

3

) (A.23)

while for the second we get

Ωvac
2,2 = q

NcNf

4π2

∫ ∞
0

dpzpz
∑
σ

∑
k

σck
√

(pz + σq)2 + kΛ2

= −q
NcNf

4π2

∑
k

ck

[
(q −

√
q2 + kΛ2) log(kΛ2) + 2

√
q2 + kΛ2 log(q +

√
q2 + kΛ2)

]
.

(A.24)
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Eventually, we can write

Ωvac
2,1 = −3

NcNf

8π2
Λ2 log

(4

3

)
,

Ωvac
2,2 = −q

NcNf

4π2

∑
k

ck

[
(q −

√
q2 + kΛ2) log(kΛ2) + 2

√
q2 + kΛ2 log(q +

√
q2 + kΛ2)

]
,

(A.25)

while for the medium part

Ωmed
2,1 =

NcNf

4π2
µ2,

Ωmed
2,2 = q

NcNf

4π2

[
(µ− q) log

( |µ− q|
q

)
− (µ+ q) log

( |µ+ q|
q

)]
.

(A.26)

62



Appendix B

Quantum Chromodynamics-basics

Quantum Chromodynamics (QCD) is the non-abelian gauge theory of strong interactions.
The charge associated to the gauge group is called color. If Quantum Electrodynamics is
described by the U(1) abelian group, the symmetries of strong interactions are described
by a SU(3)color non abelian group. The SU(3)color generators do not commute, and this
allocates a color charge to the force carriers, which are the gluons, the gauge bosons of
QCD.
For each flavor, three possible color states are allowed for each quark

qf (x) =

q
f
r (x)

qfg (x)

qfb (x)

 . (B.1)

This color triplet transforms under local-color transformation of SU(3) as

qf (x) −→ q′f (x) = Uc(x)qf (x). (B.2)

A generic local finite transformation is expressed through an exponential form

Uc(x) = exp[iαSθ
a(x)Ga], (B.3)

whose infinitesimal expression is given by

exp[iαSθ
a(x)Ga] ' 1 + iαSθ

a(x)Ga. (B.4)

where αS is the coupling constant, a = 1,...,8 are the color indices and Ga are the group
generator conventionally expressed as

Ga =
λa
2
, (B.5)

where λa are the Gell-Mann (3x3) matrices. Furthermore, they verify the commutation
relation

[Ga, Gb] = ifabcGc (B.6)
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(fabc are the group structure constants).
In order to achieve local gauge invariance, the gluon gauge bosons must be introduced,
which are the massless mediators of the strong force. Adopting the standard notation for
such gauge fields, they will be denoted as Aa(x). For local gauge invariance, is necessary
to include in the Lagrangian a term which would describe free gluons and, in addition, the
ordinary derivative must be modified including the minimal coupling with the gauge fields

Dµ = ∂µ + iαSA
a(x)Ga. (B.7)

Inserting this expression in the kinetic term for quarks we get

L =
∑
a,b,f

qf (x)aiγ
µ[Dµ]abq

f (x)b. (B.8)

Requiring local gauge invariance one obtains that

Aaµ −→ A′aµ = Aaµ − ∂µθa(x)− αSfabcθbAc,µ (B.9)

and including the kinetic term for free gauge bosons in the Lagrangian we get

L =
∑
f

qf (x)aiγ
µ[Dµ]abq

f (x)b −
1

4
GaµνG

µν
a (B.10)

where Gµνa stands for the non abelian analogue of the Maxwell tensor for Electrody-
namics. Its expression is given by

Gaµν = ∂νA
a
µ − ∂µAaν + iαS [Aµ, Aν ]. (B.11)

Summarizing, the query for invariance under local color transformations led us to the
introduction of gauge boson whose transformation properties guarantee such request. The
striking difference between QCD and QED is that the force carriers have a color charge.
This implies that quantum chromodynamics is characterized by gluons interactions among
themselves.
We now would like to outline the basic notions necessary for the description of the most ele-
mentary interactions in QCD as representative examples of how quantum chromodynamics
works among quarks and antiquarks.

Quark-antiquark interaction

Let us consider an up quark and down antiquark interacting through the exchange of a
gluon.
In the fundamental representation for the quarks, the product of a quark and an antiquark
is given by a color singlet or an octet state

3⊗ 3 = 1̄⊕ 8.
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Applying the Feynman rules to a couple belonging to an octet state formed by R-antiG
quarks for example, because of color conservation, the outcome would be again a pair
R-antiG. The Feynman amplitude is given by

−iM =
[
ū(3)c†3

(
− iαS

λa
2
γµ
)
u(1)c1

]
×
[
− igµνδab

q2

]
[
v̄(2)c†2

(
− iαS

λb
2
γν
)
v(4)c4

]
,

(B.12)

where

c1 = c3 =

1
0
0

 c2 = c4 =

0
1
0



which are vectors indicating the quarks-antiquarks colors.
The attractive/repulsive action of the gluon exchange depends on the color factor, whose
sign is determined by the Gell-Mann matrices elements that appear in the Feynman am-
plitude and by the color-vectors.
For an octet state we have

cF =
1

4

[
c†3λ

αc1

][
c†4λ

αc2

]
=

1

4
λα11λ

α
22 = −1

6
(B.13)

Indeed, for an octet state, we have a repulsive force between the quark and the antiquark.
On the other hand, considering a singlet state given by

1√
3

(
RR̄+GḠ+BB̄

)
(B.14)

the outcome of the interaction would be in general a pair color-anticolor (as B-antiB
for example). In this case, the color factor is

cF =
1

12
Tr
(
λαλα

)
=

4

3
(B.15)

Being the color factor positive, the resulting force in the singlet channel is attractive.

Quark-quark interaction

We start taking in consideration two quarks. Since quarks are in the fundamental repre-
sentation, their product can be an antitriplet or a sextet

3⊗ 3 = 3̄⊗ 6.

An example of an antitriplet is given by
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1√
2

(
GB −BG

)
,

which of course is antisymmetric, while a symmetric state (sextet) could be expressed
as

1√
2

(
RB +BR

)
,

or
GG.

Considering a color sextet state, the Feynman amplitude of the process would be given
by

−iM =
[
ū(3)c†1

(
− iαS

λa
2
γµ
)
u(1)c3

]
×
[
− igµνδab

q2

]
[
ū(2)c†2

(
− iαS

λb
2
γν
)
u(4)c4

]
,

(B.16)

while considering a triplet state we would get

−iM =
[
ū(3)c†1

(
− iαS

λa
2
γµ
)
u(1)c3

]
×
[
− igµνδab

q2

]
[
ū(2)c†2

(
− iαS

λb
2
γν
)
u(4)c4

]
,

(B.17)

where we have indicated the color vectors as

cr =

1
0
0

 , cg =

0
1
0

 , cb =

0
0
1

 ,
which specify the color orientation in color space of the quarks. With q instead indicates

the momentum of the gluon.
The attractive/repulsive action of the gluon exchange depends, again, on the color

factor, whose sign is determined by the Gell-Mann matrices elements that appear in the
Feynman amplitude and by the color-vectors of the interacting particles.
For qq interactions, a repulsive force is exerted in the sextet channel (color factor >0),
while an attractive one in antitriplet channel (color factor <0), because the potential is
given by

Vqq = cF
αS
r
. (B.18)
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Appendix C

Gran Canonical Ensemble

In quantum regimes, the Gran Canonical ensemble allows for variations of the total number
of particles of the considered system. Such fluctuations swing around the mean value of
particles N̄ .
The Gran Canonical distribution is deduced considering a subsystem S which can exchange
energy and particles with a reservoir. When looking at the complete system (S + reser-
voir), in conclusion, the total energy and the number of particles is fixed.
In order to define the distribution which could describe the thermodynamics of the sub-
system S, the starting point is considering the probability that the subsystem is found in
the infinitesimal phase space volume dΓs.
Subsequently, we obtain the sought distribution

ZGC =
∑
N

e
µN
kBT

N !h3N

∫
dp3Ndq3Ne

− E
kBT , (C.1)

where ZC is the canonical partition function.
All the relevant thermodynamic quantities can be determined through ZGC . Indeed, con-
sidering a system whose particle number fluctuations are negligible we can write

ZGC =
∑
N

e
µN
τ ZC ' e

µN̄
τ Z̄C = e

µN̄−F (T,V,N̄)
kBT , (C.2)

where F (T, V, N̄) stands for the Helmholtz free energy.
The thermodynamic potential for the grand canonical ensemble is given by

Ω = F − µN (C.3)

where µ is the chemical potential. Expressing it in its differential form we get

dΩ = dF − d(µN) = −SdT − pdV −Ndµ. (C.4)

Subsequently, we can determine the physical quantities that describe the system
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(∂Ω

∂T

)
V,µ

= −S;

(∂Ω

∂V

)
T,µ

= −p;
(∂Ω

∂µ

)
T,V

= N ;

where S indicates the entropy of the system, p its pressure and N is the number of
particles. From (C.2) we can see that if we express

Ω = −kBT ln(ZGC) (C.5)

we can deduce all the information required to describe the system.
We now want to show how the Gran Potential is actually the pressure when divided for
the volume of the system. We introduce the Gibbs thermodynamic potential (which is an
extensive quantity)

G = F + pV −→ dG = −SdT + V dp+ µdN. (C.6)

Being an additive quantity, we can express G as

G(T, p,N) = Ng(T, p) (C.7)

and

µ =
( ∂G
∂N

)
T,p

= g(T, p) −→ G = µN. (C.8)

Eventually,

Ω = F − µN = G− pV − µN = −pV. (C.9)
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