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Preface

In this work we are going to perform a numerical analysis of the effects of neutron-

neutron correlation on the nuclear transition matrix element of neutrinoless double beta

decay process.

In a double beta decay process a very long-lived nucleus with mass number A and atomic

number Z disintegrates spontaneously in a nucleus with the same mass number and atomic

number decreased by two units, with emission of two electrons and zero or two anti-

neutrinos. In the standard model of particle physics this process is mediated by the weak

interaction and it always shows two anti-neutrinos in the final state, but if we consider the

neutrino as a “Majorana particle” which means that the same field describes the particle

and the antiparticle we can have a final state without neutrinos, in the Feynman diagram

of this process, we have a neutrino propagator which became part of the nuclear sector

of the transition matrix element, studying it, is possible to extract information on the

magnitude of the lightest neutrino mass, which is actually unknown.

The nuclear transition matrix element is a complex object to deal with because of the

nature of strong interaction between the nucleons, it is attractive to long distances and

highly repulsive for short length. A pure Shell Model approach is incorrect, we need to

add this short range correlation effects modifying the nucleons wave functions. The main

task of this thesis is to numerically study the effects of this correlations on the neutrinoless
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double beta decay nuclear matrix element for a 48Ca nucleus which it’s going to be used

in some new experiment.

After a brief overview on neutrino physics we will study beta decay phenomenology to

see how it can be used to increase our knowledge on neutrino masses. Then we move to

nuclear physics to study how we could modellize the nucleus in a many bodies physics

approach using the correlated wave function formalism. After that we will be able to write

down the analytical expression of the nuclear matrix elements whose will be numerically

analyzed and finally we will show our results.
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Introduction

Neutrinoless double beta decay (2β0ν) is a hypothetical nuclear transition in which

two neutrons undergo β-decay simultaneously without emission of neutrinos, if realized

in nature this will prove that neutrinos are Majorana particles and so, if ν is the field de-

scribing the neutrino it will be equivalent to his charge-conjugated field, therefore: ν = νc

such as particle would constitute a new kind of matter because no elementary Majorana

particles have been observed so far. Also the observation of ββ0ν will prove that total

lepton number is not a conserved quantum number in physical phenomena and this could

be linked to the cosmic asymmetry between matter and antimatter. But the main interest

for neutrinoless beta decay phenomenology is in the possibility, as will be shown in the

following chapter, to estimate the value of neutrino masses.

In this thesis we are going to numerically study the nuclear transition matrix element

for neutrinoless double beta decay in a 48Ca nucleus, in particular we focus on the effects

of the neutron-neutron correlation on it.

The first chapter is dedicated to an overview on neutrino physics and summarize our

knowledge of this particles, we are going to explain the neutrino oscillations phenomena

and why it proves that neutrinos are massive particles, then we’ll see a way to add massive

neutrinos to the standard model or particles physics ( the so called see-saw mechanism).

Finally we shown the actual situation of experimental measurement on neutrino proper-
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ties.

The second chapter talks about beta decay phenomenology, it shows the Lagrangian

responsible for nuclear beta decays and how to compute the decay width for single beta

decay process, two neutrinos double beta decay and for neutrinoless double beta decay

which is the case of our interest. We can see that neutrinoless double beta decay half

time is given by an effective mass term, a phase space term which is discussed in some

details and the nuclear transition matrix element term which will be the main task of the

following chapters.

In the third chapter we focus on nuclear dynamics, we see that it is a complex many

body problem due to the nature of the nuclear forces between the nucleons, and that we

need some approximation and assumption to solve it. We are going to use the simplest

approach is the nuclear shell model which is based on a mean field Hartree-Fock Hamilto-

nian, we assume that the motion of each nucleon isn’t influenced by the others, but, this

takes to some disagreement with experimental data, and so, we must move to a correlated

wave functions formalism.

The analytic form of the nuclear matrix elements that we want to compute is calcu-

lated in chapter four. Initially we give the general expression of them using a pure shell

model approach making use of 9-j symbols and Talmi-Moshinsky brackets express those

matrix element in the center of mass and relative motion frame. The we move to a cor-

related wave function formalism and we see how the addition of correlations changes the

nature of Fermi and Gamow-Teller nuclear transition.

In chapter five we are going to show details of our numerical computation. First of
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all we choose the nucleus to be used in the calculation, we choose 48Ca because it has a

simple shell model structure, then, after comparing shell model results with experimental

data we choose the subset of Hilbert states which participates to the decay, this will give

us some bound for the quantum numbers involved. After that we are going to show how

we obtained the analytical form for the correlation functions. And finally we are going to

explain how we implement the numerical computation.

On the final chapter we present the numerical results we obtained during our analy-

sis...

Throughout this Thesis we always use a system of units in which ~ = c = 1 where ~

is Plank’s constant and c is the speed of light.
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Chapter 1

Neutrino physics

Neutrinos 1 are electrically neutral, weakly interacting elementary fermion S = 1/2.

Because they are affected only by the weak interaction, they are able to travel great dis-

tances through matter without interact with it. Neutrinos are produced by radioactive

decay, or nuclear reactions such as those that take place in stars nuclei, in nuclear reac-

tors, or when cosmic rays hit atmospheric atoms. About 65 billion solar neutrinos per

second pass through every square centimeter perpendicular to the direction of the Sun in

the region of the Earth. The neutrino existence was postulated first by Wolfgang Pauli

in 1930 to explain how beta decay could conserve energy. In 1942 Wang Ganchang first

proposed the use of beta-capture to experimentally detect neutrinos, then in 1956 Cowan

Reines et. al. published confirmation that they had detected the neutrino, a result that

was rewarded almost forty years later with the 1995 Nobel Prize.

In the electroweak interactions standard model, neutrinos are consider as a massless lepton

described by a two components spinor with definite chirality (left-handed). But neutrinos

oscillations experiment have proved that neutrinos are massive particles (see [2]) and so,

they are the lightest massive elementary fermions. We also known that there are only tree

1the name was proposed by Enrico Fermi
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light2 active neutrinos families. So, standard model must be extended to include massive

neutrino, this can be done in two ways as shown in [1]. If we want neutrinos to be Dirac

particles we must add to the standard model Lagrangian a neutrino mass term similar to

the ones used for leptons and quarks:

LD = −mD (ν̄LνR + ν̄RνL) (1.1)

where νR and ν̄L are respectively the positive helicity neutrino field and the negative helic-

ity anti-neutrino field that we must add because neutrinos are now massive particles, and

mD = yv/
√
2, with y dimensionless Yukawa coupling coefficient and v/

√
2 is the vacuum

expectation value of the neutral Higgs field after electroweak symmetry breaking. Unlike

the massless neutrino case, in which we had only the two-component spinor νL, now we

have four independent components two from νL and two from νR.

The second way to add neutrino mass terms to the standard model Lagrangian in unique

to neutrinos. Has said by Majorana in [5], for neutral particles, one can remove two

degrees of freedom by imposing the Majorana condition:

ν = νc (1.2)

where νc = Cν̄T is the Charge-conjugated of the field ν. The Majorana condition implies

that

νR = (νL)
c (1.3)

this result can be obtained by decomposing both left-hand and right-hand side of eq.(1.2)

and it proves that the positive chirality component of the Majorana neutrino νR depends

on its negative chirality counterpart νL. We can use this result in the Dirac mass term

and obtain the Majorana mass term:

LL = −1

2
mL (ν̄L(νL)

c + (ν̄L)
cνL) (1.4)

2 mν < mZ/2
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where mL is a free parameter with dimension of mas. This Lagrangian mass term it’s

called negative chirality mass term and implies the existence of a weak isospin triplet scalar

(a Higgs triplet), with neutral component acquiring a non-vanishing vacuum expectation

value after electroweak symmetry breaking. If positive chirality fields also exist this is not

the only possibility, in this case we may also construct a second Majorana mass term, a

positive chirality mass term:

LR = −1

2
mR (ν̄R(νR)

c + (ν̄R)
cνR) (1.5)

In the standard model, right-handed fermion fields are weak isospin singlets, ad a conse-

quence, the mass parameter mR is not connected to a Higgs vacuum expectation value,

and could be arbitrarily high.

All tree mass term convert negative chirality states into positive chirality ones. Chirality

is therefore not a conserved quantity in both cases. Majorana mass terms also convert

particles into their own antiparticles and therefore they are forbidden for charged particles

because of the charge conservation. But it’s not over, processes involving Majorana mass

terms violate the conservation of standard model total lepton number by two units, which

is no more a good quantum number.

And so, the most general mass term will have the following form:

Lmass = LD + LL + LR =

= −mD (ν̄LνR + ν̄RνL)−
1

2
mL (ν̄L(νL)

c + (ν̄L)
cνL)−

1

2
mR (ν̄R(νR)

c + (ν̄R)
cνR) (1.6)

which can be rewritten as:

Lmass = −1

2

(
ν̄cL νR

)( mL mD

mD mR

)(
νL
ν̄cR

)
+ h.c. (1.7)
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We can see, that, if mD 6= 0 the fields νL and νcL have not definite mass. To obtain definite

mass fields we need to diagonalize the mass matrix by requiring that:

UT

(
mL mD

mD mR

)
U =

(
m1 0
0 m2

)
(1.8)

we can parametrize U as a product between a diagonal matrix and a rotation matrix:

U = R(θ)ρ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
ρ1 0
0 ρ2

)
(1.9)

with: ρk ∈ C and |ρk|2 = 1. R matrix is obtained by imposing:

RT

(
mL mD

mD mR

)
R =

(
m′

1 0
0 m′

2

)
(1.10)

And so, we have:

tan(2θ) =
2md

mL −mR

m′
1,2 =

1

2

[
mL +mR ±

√
(mL −mR)2 − 4m2

D

]
(1.11)

The phases in ρ matrix are chosen due to have real and positive physical masses.

UT

(
mL mD

mD mR

)
U = ρTRT

(
mL mD

mD mR

)
Rρ =

(
ρ21m

′
1 0

0 ρ22m
′
2

)
=

(
m1 0
0 m2

)
(1.12)

In eq. 1.6 we have tree different masses which actually are parameters of our theory.

In order to be logically consistent with the standard model this parameters must satisfy

some relations. In the standard model νL is part of an isospin doublet with I3 = +1/2

and so LL is an isospin triplet, therefore , is we want to maintain the validity of standard

model we have to put: mL = 0. The two remaining mass term are permitted because LR

is an isospin singlet and LD is generated by the Higgs mechanism. Imposing the condition

mL = 0 and |mD| << mR
3 we obtain:

m1 ≈
m2

D

mR

<< |mD| , m2 ≈ mR , tan(θ) ≈ mD

mR

� 1 , ρ21 = −1 (1.13)

3right-handed neutrinos are not observable in the standard model
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this is the so called see-saw mechanism for the generation of neutrino masses: to a very

massive ν2 correspond a ν1 with mass to much smaller than the corresponding lepton. In

this conditions we have a mixing angle θ very small and this implies that only the light

neutrino participates to the weak interactions, the heavy one is practically sterile.

1.1 Neutrino’s mass mixing

Until now, we studied the case of a single neutrinos flavour, but the standard model

involves tree different neutrino flavours participating to the weak interactions. Let’s con-

sider tree left-handed fields: νeL , νµL and ντL describing flavour neutrinos and the tree

corresponding right-handed fields νeR , νµR and ντR.
4 The Lagrangian mass term written

in the previous section, in the case of tree neutrino families becomes:

Lmass = LD + LL + LR (1.14)

with:

LD = −
∑
αβ

ν̄αRM
D
αβνβL + h.c. (1.15)

LR = −1

2

∑
αβ

ν̄cαRM
R
αβνβR + h.c. (1.16)

LL = −1

2

∑
αβ

ν̄cαLM
L
αβνβL + h.c. (1.17)

(1.18)

The index α and β runs over the neutrino flavours (e,µ,τ), MD, MR and ML are 3 × 3

symmetric complex matrix. Regrouping the left-handed fields:

NL =

(
νL
ν̄cR

)
(1.19)

4The number of right-handed fields cannot be determined in a experimental way because they do no
interact with matter. In this work we assume that there are only tree of them
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with:

νL =

 νeL
νµL
ντL

 νcR =

 νceR
νcµR
νcτR

 (1.20)

we can rewrite the mass term in this way:

Lmass = N̄LMNL =
(
ν̄L ν̄cR

)( ML (MD)T

MD ML

)(
νL
νcR

)
(1.21)

where M is a 6× 6 matrix which can be diagonalized via a unitary transformation on the

field vector:

NL = V nL (1.22)

V can be determined by imposing the condition:

VTMV =


m1 0 · · · 0
0 m2 · · · 0
...

...
. . . 0

0 0 · · · m6

 (1.23)

And so, the Lagrangian mass term becomes:

Lmass = −1

2

6∑
k=1

mkν̄
c
kLνkL (1.24)

The mixing relations can be written like this:

ναL =
6∑

k=1

VαkνkL νcβR =
6∑

k=1

VβkνkR (1.25)

we can see that, because sterile and active neutrinos are linear combinations of the same

massive fields, this model allows oscillations between them. To parametrize the mixing

matrix we use the see-saw mechanism in the tree flavours case:

mL = 0 |mD| =� mR ⇒ ML = 0 MD �MR (1.26)

then we decompose V into a product of two unitary matrix (for less than correction of

the order MD/MR).

V = W U (1.27)
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We can expand the product WTMW in power of MD/MR to obtain a block diagonal

matrix:

WTMW =

(
Mlight 0
0 Mheavy

)
(1.28)

where:

Mlight ≈ −(MD)†
MD

MR
Mheavy ≈MR (1.29)

So, we have a see-saw mechanism for the tree flavours case, the greater are the eigenvalues

of MR the smaller are the one of Mlight. Because the out of diagonal elements of W are

of the order of MD/MR, Mlight and Mheavy are decoupled at low energies, then we can

focus on the 3× 3 block of U matrix which diagonalize Mlight.

U †MlightU =

 m1 0 0
0 m2 0
0 0 m3

 (1.30)

which takes to an effective mixing given by:

ναL =
3∑

k=1

UαkνkL (1.31)

The unitary matrix U has nine independent parameter, tree angles and six phases. Tree

of this phases can be eliminated by a phase redefinition of the charged lepton fields which

are coupled with neutrino fields in the interaction Lagrangian. Two of the remaining

phases are factorized in diagonal matrix and are called Majorana phases because they

appear only if neutrino is a Majorana particle5, the last phase is then called Dirac phase.

According to PDG the parametrization of the mixing matrix is:

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iφ13

0 1 0
−s13eiφ13 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 1 0 0
0 eiλ21 0
0 0 eiλ31


(1.32)

where cij = cos(θij) , sij = sin(θij) and θij are the mixing angles; φ13 is the Dirac phase

and λij are the Majorana phases.

5in the case of Dirac neutrino they can be deleted with a redefinition of massive neutrino fields
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1.2 Neutrino Oscillations

We are now going to see the theoretical explanation of the neutrino flavour oscillations

phenomena. Let’s consider as example the a decay process such as:

A→ B + ᾱ+ να (1.33)

in which the alpha flavour neutrino is produced together with the associated anti-lepton.

The state if the emitted neutrino is given by:

|να〉 ∝
3∑

k=1

|νk〉〈νkᾱ|Jρ
CC |0〉J

A→B
ρ (1.34)

Jρ
CC is the charged weak current 6 and JA→B

ρ is the current responsible for the transition

A→ B. Neglecting the effects of neutrino masses we obtain:

〈νkᾱ|Jρ
CC |0〉J

A→B
ρ ∝ U∗αk (1.35)

with an opportune normalization we have:

|να〉 =
3∑

k=1

U∗
αk |νk〉 (1.36)

This state describe the neutrino where and when is produced. To have the state after

it’s propagations in vacuum of a distance L in a time T we must apply on it the time

evolution operator:

|να(L, T )〉 =
3∑

k=1

U∗
αke

−iEkT+i~pk~L |νk〉 (1.37)

where Ek and pk are energy and momentum of the k type massive neutrino. By inverting

eq.1.36 we obtain the expansion of the state να(L, T ) in the base of flavour eigenstates:

|να(L, T )〉 =
3∑

k=1

U∗
αk e

−iEkT+i~pk~L Ukβ|νβ〉 (1.38)

6Jρ
CC = − g√

2

∑
α ᾱLγ

µUαkνkL
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This equation shows that due to the mixing process, a definite flavour state evolves into

a superposition of different flavor states. The squared module of the coefficient gives us

the probability that a neutrino produced with flavour α it’s measured in a flavour β:

Pνα→νβ(L, T ) =

∣∣∣∣∣
3∑

k=1

U∗
αk e

−iEkT+i~pk~L Ukβ

∣∣∣∣∣
2

(1.39)

We cannot experimentally measure the propagation time T and so we have to express P

as a function of L only. Due to the ultra relativistic nature of the emitted neutrino we

can assume that: T ' L and so:

EkT − ~pk~L = (Ek − pk)L =
E2

k − p2k
Ek + pk

L =
m2

k

Ek + pk
L ' m2

k

2E
L (1.40)

where E is neutrino’s energy in the massless limit. Then we obtain:

Pνα→νβ(L) =

∣∣∣∣∣
3∑

k=1

U∗
αk e

−i
m2

k
2E

L Ukβ

∣∣∣∣∣
2

=

=
3∑

k=1

|U∗
αk|2|U∗

βk|2 + 2Re

{∑
k>j

U∗
αkUβkUαjU∗

βje
−i

∆m2
kj

2E
L

}
(1.41)

with: ∆m2
kj = |m2

k −m2
j |.

in the simple case of only two flavours we have:

Pνα→νβ(L) = sin2(2θ) sin2

(
∆m2L

4E

)
(1.42)

the probability goes like a sin squared that is the reason why we call this phenomena

oscillations.

1.3 Experimental results

As shown in the previous section, neutrino oscillations phenomenology can only give

us information on the neutrino squared mass differences. Solar and reactor experiments
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have measured one mass splitting called solar mass splitting the other one atmospheric

mass splitting it’s been measured by atmospheric and accelerator-based experiment. The

experimental values obtained are:

∆m2
sol = |m2

2 −m2
1| = (7.58+0.22

−0.26)× 10−5eV

∆m2
atm = |m2

3 − (m2
2 +m2

1)/2| = (2.35+0.12
−0.09)× 10−3eV

According to [3] the best-fit values and 1σ ranges in the neutrino mixing parameters

measured via neutrino oscillations are:

|Ue3|2 = 0.025± 0.07 |Uµ3|2/(1− |Ue3|2) = 0.42+0.08
−0.03 |Ue2|2/(1− |Ue3|2) = 0.312+0.017

−0.016

To complete our knowledge of neutrino masses we need to obtain the neutrino mass

ordering and the absolute value of the lightest neutrino mass. The latter can be probed

via neutrinoless beta decay searches as it will shown in the following chapters, currently

only upper bounds to neutrinos mass scale are known and they are of order ∼ 1eV . Our

current knowledge of neutrinos is summarized in figure:1.1

Studying double beta decay will give as a chance to find the scale of neutrinos masses,

because, as will be exposed with more details in the following chapters, the 2β0ν half-life

of a nucleus N is given by: [
T 0ν
1/2

]−1
= GN

0ν

∣∣MN
0ν

∣∣2 |m2β|2

m2
e

where: GN
0ν is the phase space factor, MN

0ν the nuclear matrix element and m2β is the

effective Majorana mass in 2β0ν-decay:

m2β =
3∑

i=1

U2
eimi (1.43)

Ans so, by measuring double beta decay rate, we can estimate m2β and therefore the

masses of light neutrinos. Actually the lower bound for T 0ν
1/2 in reaction: 48Ca →48 Ti is

1.5× 1021 years (at 90% C.L.) [check value and reference]
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Figure 1.1: Knowledge on neutrino masses and mixing from neutrino oscillation exper-
iments. Panels (a) and (b) show the normal and inverted mass orderings, respectively.
Neutrino masses increase from bottom to top. The electron, muon and tau flavour con-
tent of each neutrino mass eigenstate is shown via the red, green and blue fractions,
respectively.
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Chapter 2

Beta decays

In this chapter we are going to familiarize with β decays phenomenology, in particular

we are going to see the Lagrangian responsible for this processes and their Feynman di-

agrams. we also analyze the transition matrix element and compute the leptonic part in

the tree case of our interest: the single beta decay, the two neutrinos double beta decay

and the neutrinoless beta decay. For all of them we write down the expression for the

nuclear transition matrix element and emphasize the differences between the tree cases.

The real computation will be performed in the next chapter.

The interaction Lagrangian density in the Fermi electroweak theory responsible for beta

decays according to [4] is:

Lβ =
G√
2

{
N̄τ+γµ (gv − gaγ5)N

}{
ψ̄eγµ (1− δγ5)ψe

}
(2.1)

where: G = 1.18 × 10−5 GeV −2 is the Fermi weak coupling constant, gv = 1 ga = 1.25

are the vectorial and axial coupling constant, N is the nucleon field, τ+ is the isospin

raising operator and ψe and ψν are the Dirac fields of the electron and neutrino. Such as

interaction term violates Charge conjugation and parity symmetry due to the V-A nature

of the interaction.
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2.1 Single beta decay

Let’s start with the single beta decay process, in this case we cannot distinguish

between Majorana and Dirac neutrinos, so, for simplicity we speak about Dirac neutrinos.

N (A ; Z) → N ′ (A ; Z + 1) + e− + ν̄e (2.2)

N (A ; Z) → N ′ (A ; Z − 1) + e+ + νe (2.3)

in this process as we can see from the Feynman diagram in figure 2.1, a nucleus N with

mass number A and atomic number Z decays into a nucleus with the same mass number

but atomic number decreased(increased) by one unit and emit an electron(positron) and

an antineutrino(neutrino).

N

N’

W

e

−

−_

Figure 2.1: Feynman diagram for beta decay

From the relativistic perturbation theory we find the Dyson formula for the S matrix

element at the first order. In beta decay case (2.2) we have:

Sβ = − i

∫
d4x 〈 e, ν̄,N ′|Lβ(x)|N 〉 (2.4)
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Then summing over the initial nucleus and final particles spin states the squared module

of Sβ we have:

Γβ ∝
∑

SNSN′

∑
SeSν̄

|Sβ|2 =
G2

2
HρσLρσ (2.5)

where Lρσ is the leptonic tensor given by: (using the approximation mν ∼ 0)

Lρσ =
∑
SeSν̄

(ūeγρ (1− δγ5) vν v̄νγσ (1− δγ5)ue) =

= Tr
[(
/P e −m

)
γρ (1− δγ5) /P ν̄γσ (1− δγ5)

]
=

= 4
(
1 + δ2

) (
P e
ρP

ν̄
σ + P ν̄

ρ P
e
σ − (P e · P ν̄) gρσ

)
− 8iδP α

e P
β
ν̄ εαρβσ

and Hρσ is the nuclear tensor:

Hρσ =
∑

SNSN′

〈Ψf |Jρ|Ψi〉〈Ψi|Jσ|Ψf〉 (2.6)

with Ψi and Ψf wave function of the initial and final state nuclei, Jρ is the nuclear current

calculated in non-relativistic approximation:

Jρ =
A∑

n=1

τ+n
(
gvδ

ρ0 + gaδ
ρiσi
)

(2.7)

therefore we have:

Hρσ = g2v M
2
F δ

ρ0δσ0 + g2a M
2
GT δ

ρiδσj (2.8)

where M2
F and M2

GT are respectively the squared module of Fermi and Gamow-Teller

nuclear transition matrix element which will be discussed more with more details in the

next chapter:

M2
F =

∑
SNSN′

||〈Ψf |
A∑

n=1

τ+n |Ψi〉||2 M2
GT =

∑
SNSN′

||〈Ψf |
A∑

n=1

τ+n σ
i|Ψi〉||2 (2.9)

then, contracting the nuclear and the leptonic tensor:

G2

2
HρσLρσ = 2G2

(
1 + δ2

)
EeEν̄

[
g2v

(
1 +

~Pe
~Pν̄

EeEν̄

)
M2

F + g2a

(
1− 1

3

~Pe
~Pν̄

EeEν̄

)
M2

GT

]
(2.10)
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from this expression we see that, we need to compute MF and MGT to evaluate the rate

of beta decay process, and this will be the main goal of this thesis.

In the next sections how changes the operator in the nuclear matrix elements if we move

from single to 2ν double beta decay and finally to 0ν double beta decay.

2.2 2ν double beta decay

In the standard model, double beta decay can occur in many ways, all of them with

neutrinos emission:

N (A ; Z) → N ′ (A ; Z + 2) + e− + e− + ν̄e + ν̄e (2.11)

N (A ; Z) → N ′ (A ; Z − 2) + e+ + e+ + νe + νe (2.12)

(2.13)

in 2β2ν, the nucleus N decays into a nucleus with the same mass number but atomic

number decreased(increased) by two units and emit two electron(positron) and an an-

tineutrino(neutrino), in figure 2.2 we can see the Feynman diagram of the process.

The double beta decay is a second order process in weak interaction, and so in the case

2.11 for the transition matrix element we have:

S2β2ν = −
∫
d4xd4y 〈 e1, e2, ν̄1, ν̄2,N ′|T {Lβ(x)Lβ(y)} |N 〉 (2.14)

As done previously, summing over the initial nucleus and final particles spin states the

squared module of S2β2ν we have:

Γ2β2ν ∝
∑

SNSN′

∑
Se1Sν̄1Se2Sν̄2

|S2β2ν |2 =
G4

4
HµνρσLµν (1)Lρσ (2) (2.15)
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e

e

w

w

N

N’

−

−

−_

−

_

Figure 2.2: Feynman diagram for two neutrinos double beta decay

where the subscripts (1) and (2) indicates the two decaying protons. Lµν is the same of

the one seen in the previous section. The tensor: Hµνρσ contains the new nuclear Fermi

and Gamow-Teller transition matrix element:

M2
F 2ν =

∑
SNSN′

||〈Ψf |
A∑
i>j

τ+i τ
+
j |Ψi〉||2 M2

GT 2ν =
∑

SNSN′

||〈Ψf |
A∑
i>j

τ+i τ
+
j σiσj|Ψi〉||2 (2.16)

where the index i and j runs over the nucleons, so, now we have to deal with a two bodies

operator in the nuclear matrix element.

2.3 0ν double beta decay

As said before neutrinoless double beta decay is possible only if neutrinos are Majorana

particles, the field which describes such as kind of particle is:

ν(x) =

∫
d3p

(2π)32E

∑
n

(
an(p)un(p)e

−ipx + a†n(p)vn(p)e
ipx
)

(2.17)
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neutrinoless beta decay can occur in two ways:

N (A ; Z) → N ′ (A ; Z + 2) + e− + e− (2.18)

N (A ; Z) → N ′ (A ; Z − 2) + e+ + e+ (2.19)

in this case we have no neutrinos in the final state, the Feynman diagram for the process

is in figure 2.3

e

e

w

w

M

−

−

−

−

N

N’

Figure 2.3: Feynman diagram for neutrinoless double beta decay

The transition matrix element for reaction 2.18 is:

S2β0ν = −
∫
d4xd4y 〈 e1, e2,N ′|T {Lβ(x)Lβ(y)} |N 〉 (2.20)

summing over the initial nuclear and final nuclear and leptonic spin states the squared

module of S2β0ν we have:

Γ2β0ν ∝
∑

SNSN′

∑
Se1Se2

|S2β0ν |2 =
G4

4
HµνρσLµνρσ (2.21)
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The nuclear part is equal to the case 2β2ν otherwise the leptonic part using Feynman

rules for Majorana neutrinos (see [6]) becomes:

Lµνρσ =
∑

Se2Se2

(
ūe1γρ (1− δγ5)

∑
i

Uei
/pν +mi

p2 −m2
i

Cγσ (1− δγ5)ue2

)
(h.c.) =

=
∑
i

Ueimi

∑
Se2Se2

(
ūe1

γρ(1− δγ5)γσ
p2

Cue2Cūe2
γµ(1− δγ5)γν

p2
ue1

)
where C is the Charge-conjugation matrix in the spinor space, P is the Majorana neutrino

momentum and we have used the property: (1−γ5)/P (1−γ5) = 0. So we can parametrize

the leptonic part this way:

L2β0ν = H̃(p)m2β G0ν (2.22)

G0ν is a phase space factor and H(p) is the neutrino potential which will be transferred

into the nuclear part and studied numerically in the next chapter.

Finally putting the nuclear and leptonic part together we obtain the expression for[
T 0ν
1/2

]−1
= GN

0ν

∣∣MN
0ν

∣∣2 |m2β|2

m2
e

(2.23)

where GN
0ν is the phase space factor given by:[8]

GN
0ν =

a0ν
m2

e ln 2

∫
dΩ0νF0(Z,E1)F0(Z,E2) (2.24)

with:

a0ν =
(GgA)

4m9
e

64π2
(2.25)

dΩ0ν = m−5
e p1p2 E1E2 δ (E1 + E2 + Ef − Ei) dE1 dE2 d(p1 · p2) (2.26)

Ef and Ei indicates the energy of the final and initial state and the Fermi function F0

which takes into account that the two emitted electrons are influenced by the other atomic

electrons, is given by:

F0(Z,E) =
∓2πZe2/v

1− e±2πZe2/v
for β± decays (2.27)
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where v is the velocity of the electron far of the nucleus, this functions enhances the

probability of β− emission and decreases that of β+ especially at low energies.

MN
0ν is the nuclear transition matrix element and it is composed of a Fermi and a Gamow-

Teller transition part:

MN
0ν =MGT

0ν −
(
gv
ga

)2

MF
0ν (2.28)

where:

MF
0ν = 〈Ψf |

A∑
i>j

τ+i τ
+
j H(r)|Ψi〉 MGT

0ν = 〈Ψf |
A∑
i>j

τ+i τ
+
j σiσjH(r)|Ψi〉 (2.29)

the numerical computation of this two objects will be the main topic of the thesis, and

will be analyzed in the following chapters.



Chapter 3

Elements of nuclear dynamics

What we want to do now is to construct the nuclear wave functions that we have to

use in our numerical computation. We’ll do that basing on the nuclear shell model and

so we must start with an overview of it following [7]

Everybody knows that nuclei are composed by protons and neutron kept together by the

strong interaction, the length scale of the strong nuclear interaction e so the radius of the

nucleus are of the order of few Fermis (1fm = 10−15m). The nuclear shell model attempt

to solve the quantum mechanic problem of the motion of one nucleon in a nucleus com-

paring it with the motion of an electron in the hydrogen atom (the difference is in the

length scale ∼ 10−10m)

Single-particle potential eigenstates are characterized by their energies and quantum num-

bers, so, the properties of a nucleus with Z protons and A-Z neutrons are determined by

filling the lowest single-particle energy levels allowed by the Pauli exclusion principle which

allows only one proton or neutron to occupy a state with a given set of quantum numbers.

The shell model in its simplest form is able to successfully predict the properties of

nuclei which are one nucleon removed or added to the one of the magic number. In the

shell model, magic numbers nucleus are nuclei whose nucleons completely fill the external
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shell, the seven most used magic numbers are 2, 8, 20, 28, 50, 82, 126 . The shell model

can also be extended to include the more complex configurations that arise for the nuclei

with nucleon numbers that are in between the magic numbers, current theoretical inves-

tigations using the shell model focus on these complex configurations.

In this chapter after a brief overview on nuclear forces we are going to study the many

bodies nuclear problem and try to solve it using a “mean field” approach (the so called

nuclear shell model) and finally we’ll see how to correct it to have a more realistic model

for nuclear dynamics.

3.1 Nuclear Forces

The properties of strong interaction between nucleon due to experimental results can

be summarized as follow:

• Short range repulsive core: the fact that density in the interior atomic nuclei is

nearly constant and independent of the mass number A, tells us that nucleons

cannot be packed together too tightly. And so, at short distances the nucleon-

nucleon interaction must be repulsive. Being Rc the radius of the repulsive core we

have:

V (r) > 0 if |r| < Rc (3.1)

V is a non relativistic potential depending on the distances between the two nucleons.

• Finite range interaction: the nuclear binding energy per nucleon is practically the

same for all nuclei with A ≥ 20 suggest that the interaction as a finite range R0 i.e.

V (r) = 0 if |r| > Rc (3.2)
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• Isotopic invariance: the spectra of the so called mirror nuclei1 exhibit similarities:

the energy of the levels with the same parity and angular momentum are the same

(up to small electromagnetic corrections) this means that nuclear forces are charge

symmetric.

This ispospin invariance implies that the interaction between two nucleons separated by

distance r and having total spin S depend on their total isospin T but not on its projection

MT .

3.2 Many bodies nuclear problem

Now that we known the main characteristic of the nuclear forces, we can try to build

up the nuclear Hamiltonian as a sum of interaction terms between a given number of

nucleons:

HN =
∑
i

Ti +
∑
ij

vij +
∑
ijk

vijk + · · · (3.3)

where the index i,j,k... runs over the nucleons coordinates. We can simplify the prob-

lem making the assumption that only the nucleon-nucleon terms are relevant and so the

Hamiltonian reduces to:

HN =
∑
i

Ti +
∑
ij

vij (3.4)

the resolution of the Schroedinger equation for such as a nuclear Hamiltonian is still

problematic, we need to make another approximation: we have to make separable that

our Hamiltonian in such a way to have an Independent Schroedinger equation for every

nucleon. In order to do that, we substitute the coupling interaction with a mean field

term:

Ui =
∑
j

vij (3.5)

1pairs of nuclei having the same A and Z differing by one unit, this implies that the number of protons
in a nucleus is the same as the number of neutron in its mirror companion (for example 157N

158O)
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This is a strong approximation and (as will be discussed in the following sections) takes

to a great disagreement with the experimental results, to avoid this will use the correlated

wave function formalism.Finally our nuclear Hamiltonian becomes:

HN =
A∑
i

Hi =
∑
i

(Ti + vij) (3.6)

We can now solve the Schroedinger equation for every Hi and obtain the single particle

wave function for every nucleon:

Hiφi = (Ti + vi(r))φi = Eiφi (3.7)

and finally construct the nuclear wave function as a Slater determinant of the ‘φi:

ΨN = det {φi} (3.8)

3.3 Mean field approach

As said in the previous section we want to build up a model for nuclear dynamics

based on a main field approach,in this section we are going to build up the single-particle

Hamiltonian that will provide us the shell model states to be used into our computation.

The Schroedinger equation for a particle of mass m in a spin-independent central po-

tential V0(r) is:

H0|α〉 = (T + V0(r)) |α〉 = Eα|α〉 (3.9)

T is the kinetic energy operator:

T = − 1

2m
∇2 = − 1

2m

{
1

r

d2

dr2
−
~l2

r2

}
(3.10)

for the central potential there are many possibility, the most used of them are: the

Saxon-Woods and the 3d isotropic harmonic oscillator which is the one we are going to
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use because the Saxon-Wood potential give us wave function that cannot be separated

into relative and center of mass part, and we need to do this operation because of the

two-body nature of the processes that we want to study. so we have:

V0(r) =
1

2
mωr2 (3.11)

Solving the Schroedinger equation we obtain:

φk,l = Rkl(r)Yl,m(θ, φ) = Nk,l r
le−νr2 L

l+ 1
2

k (2νr2) Yl,m(θ, φ) (3.12)

where ν = mω/2, Yl,m(θ, φ) are the spherical harmonic function and Nk,l is the normal-

ization factor:

Nk,l =

√√
2ν3

π

2k+2l+3 k! νl

(2k + 2l + 1)!!
(3.13)

L
l+ 1

2
k (x) is the generalized Laguerre polynomial:

L
l+ 1

2
k (x) =

k∑
i=0

−xi

i!

(
k + l + 1

2

k − i

)
(3.14)

the energy spectrum is given by:

Ek,l = ω (2k + l +
3

2
) (3.15)

To obtain magic numbers, a spin-orbit potential must be added:

VSO = 2λ ~l · ~s (3.16)

with this additional term the orbital and intrinsic angular momentum must be coupled to a

definite total angular momentum~j = ~l+~s. Spin-orbit potential eigenstates are determined

by the total angular momentum quantum number j = l ± 1/2 and the quantum number

mj associated with the z components of j. The energy levels obtained are:

Ek,l = ω (2k + l +
3

2
) + λ l for j = l +

1

2
(3.17)

Ek,l = ω (2k + l +
3

2
) + λ (l + 1) for j = l − 1

2
(3.18)
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And the wave functions are:

φk,l = Nk,l r
le−νr2 L

l+ 1
2

k (2νr2) [Yl,ml
(θ, φ)⊗ χs,ms ]j,mj

(3.19)

where χs,ms is the spin wave function and the symbol ⊗ denotes the Clebsh-Gordan

product:

[Yl,ml
(θ, φ)⊗ χs,ms ]j,mj

=
∑
ml,ms

〈l,ml, s,ms|j,mj〉Yl,ml
(θ, φ)⊗ χs,ms (3.20)

In table 3.1 we summarize some relevant information about the orbitals we use in the rest

of the thesis. We are now able to compute nuclear densities using the wave function that

we have just found:

ρ(r) =
A∑
i=1

|φi|2 (3.21)

and compare it with the one obtained from experiment. What we find is that the states

density obtained with pure shell model states is very different from the experimental

one especially for the short range region, this difference is probably caused by the short

distance nature of nucleon-nucleon strong interaction. In the next section we are going to

try to solve this problem using correlations formalism which will provide us the definitive

form of the wave functions that we use in the numerical computation.

3.4 Correlated wave function formalism

The shell model shows evidence of the intrinsic limitations of its applicability: as said

in [19] Electron scattering experimens aimed at assessing the limits of applicability of the

nuclear shell model (reviews of this kind of experiment can be found in [20] [21] and [22])

They are, mainly based on measurement of the cross section of the proton knock out

process:

e+NA → e′ +NA−1 (3.22)
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The most striking feature emerging from the analysis of this process is that, while the

spectroscopic lines corresponding to knock out from shell model states are clearly seen,

the corresponding strenghts are consistenltly and sizably lower than expected, regardless

of the nuclear mass number as shown infigure 3.1 which is a recent compilation of the

strengths of the valence shell model orbits of a number of nuclei, ranging from carbon to

lead, measured by both electron- and hadron-induced proton knock out [23]. It clearly

appears that all the observed strengths are largely below the shell model prediction. This

shows according to “Urbana” and “Argonne” models that a significant fraction of the

target nucleons do not behave as indipendent particles thus providing one of the cleanest

signatures of correlation effects which are manifestation of the strongly repulsive core of

nucleon nucleon interaction, this reduces the possibility that two nucleons can approach

each other, and this modifies the shell model picture, in which, by definition the motion

of each nucleon does not depend on the presence of the others.Strong nucleon-nucleon

interactions give rise to virtual scattering processes leading to the exitation of the partic-

ipating nucleons to states of energy larger than the Fermi energy, thus depleting the shell

model states whithin the Fermi sea. To take into account of this phenomenon we have to

N = 2k + l k l Orbital name Energy Nj

∑
j Nj

0 0 0 1s 1
2

3/2 ω 2 2

1 0 1 1p 3
2

5/2 ω − λ 4

1 0 1 1p 1
2

5/2 ω + 2λ 2 8

2 0 2 1d 5
2

7/2 ω − 2λ 6

2 1 0 2s 1
2

7/2 ω 2

2 0 2 1d 3
2

7/2 ω + 3λ 4 20

3 0 3 1f 7
2

9/2 ω − 3λ 8 28

Table 3.1: Harmonic oscillator plus spin-orbit orbitals, Nj is the number of nucleons that
can be located into the orbital
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Figure 3.1: Integrated strengths of the valence shell model states, meassured in electron-
(open circles)and hadron-induced (crosses) proton knock out experiments, as a function
of the target mass number(taken from [23]). The solid horizontal line rep-resents the shell
model prediction.
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use the so called correlated wave function formalism. Let’s see how this formalism work[9].

We solve the many-body Schroedinger equation by using the variational principle

δE[Ψ] = δ
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

= 0 (3.23)

The search for the minimum of the energy functional is done within a subspace of the full

Hilbert space spanned by the A-body wave functions, which can be expressed as:

Ψ̃(A) = F(1, ..., A)Ψ(1, ..., A) (3.24)

where F(1, ..., A) is a many-body correlation operator, and Ψ(1, ..., A) is a Slater deter-

minant composed of single particles wave functions Φα(ri). In our computation we used

a subset of two-body interaction of Argonne and Urbana type:

F = S

(
A∏

i<j=1

Fij

)
(3.25)

S is a symmetrizing operator and Fij is expressed in terms of two-body correlation func-

tions fp as:

Fij =
6∑

p=1

fp(rij)Op
ij (3.26)

the six operators Op
ij are defined as:

Op
ij = [1, σi · σj, Sij]⊗ [1, τi · τj] (3.27)

with σi and τi spin and isospin Pauli operators and Sij is the tensor operator:

Sij = (3r̂ij · σir̂ij · σj − σi · σj) (3.28)

In our numerical computation we are going to ignore the tensor operator, so we have only

four operator, the details of the calculation are described in the following chapter.
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Chapter 4

Computation of nuclear matrix
element

We have seen in the previous chapter that nuclear halflife for neutrinoless double beta

decay is given by eq.2.23, now we are going to calculate the analytical expression for the

nuclear matrix elements for Fermi and Gamow-Teller transitions. They can be write in

this general form:

Mα
0ν = 〈ΨF ,J π|

∑
j>i

τ+i τ
+
j O

α(rij)|ΨI ,J π〉 (4.1)

where J and π are the total angular momentum and parity of the initial and final nuclei,

and Oα(rij) is an operator which takes into account of the neutrino potential and the

nature of transition (Fermi or Gamow-Teller):

OF (rij) = I ·H(rij) OGT (rij) = (~σi · ~σj) ·H(rij) (4.2)

rij = |ri−rj| is the module of the distance between two nucleons andH(rij) is the neutrino

potential given by:

H(r) =
2RN

π

∫ +∞

0

sin(qr)

r(q + 〈E〉)
(4.3)

where RN = 1.2×A
1
3 is the nuclear range and 〈E〉 is is the average energy of the virtual

intermediate states used in the closure approximation. In the next section we perform

the computation of Mα
0ν in a pure shell model picture, after that we are going to insert
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the correlations effects.

Mancano: approssimazione di chiusura e come propagatore a diventare in quel

modo?

4.1 Pure shell model

In this section we are going to compute the nuclear matrix element in a pure shell

model approach. We assume that two of the neutrons of the initial state nucleus decays

and all the other nucleons are spectator, so we can write the matrix element as a sum

over the total angular momentum of the neutron and protons couples of antisymmetrized

matrix elements with weight given by shell model calculations:

Mα
0ν =

∑
j′1j

′
2j1j2J π

Ksm(j1, j2, j
′
1, j

′
2, J,J π)

〈k′1l′1j′1, k′2l′2j′2,J π, Tf |τ+1 τ+2 Oα(r12)|k1l1j1, k2l2j2,J π, Ti〉A (4.4)

where the index 1 and 2 denotes the quantum numbers of the two decaying neutrons

and 1’ and 2’ are for the two final protons, Ti and Tf are the total isospin of the two

particles initial and final state which is 1 in both cases and Ksm(j1, j2, j
′
1, j

′
2, J,J π) is the

shell model coefficient which takes into account that the spectator nucleons reorganize

themselves in function of the angular momentum of the nucleons participating into to the

decay to have total nuclear angular momentum J .

In order to carry out the calculation, the two-body matrix element in (4.4) must be

decomposed into products of reduced matrix element of operator acting in spin and co-

ordinate space. In addiction the coordinate space matrix element must be decomposed

into the contributes arising from the center of mass and relative motion terms. And the
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states appearing in (4.4) can be rewritten in the following form:

|k1l1j1, k2l2j2,J π〉 =
∑
S,Λ

〈l1,
1

2
, j1; l2,

1

2
, j2|

1

2
,
1

2
, S, l1, l2,Λ〉 |l1, l2,Λ,

1

2
,
1

2
, S; J ;J π〉

×
∑
klKL

〈k, l,K, L|k1, l1, k2, l2〉Λ |k, l〉 |K,L〉 (4.5)

where:

〈l1,
1

2
, j1; l2,

1

2
, j2|

1

2
,
1

2
, S, l1, l2, L〉 = [(2j1 + 1) (2j2 + 1) (2Λ + 1) (2S + 1)]

1
2×

 l1
1
2

j1
l2

1
2

j2
Λ S J


(4.6)

Λ , S and J are respectively orbital angular momentum, spin and total angular momentum

of the nucleon couple. The last factor is called 9-j symbol and 〈k, l,K, L|k1, l1, k2, l2〉L is the

coefficient of the transformation from the (r1, r2) representation to the (r = |~r1− ~r2|, R =

|~r1 + ~r2|/2) representation and it is called Talmi–Moshinsky brakets :

〈r1|k1, l1〉 〈r2|k2, l2〉 =
∑
klKL

〈k, l,K, L|k1, l1, k2, l2〉Lambda 〈r|k, l〉 〈R|K,L〉 (4.7)

And finally the matrix elements are given by

〈k′1l′1j′1, k′2l′2j′2,J π|τ+1 τ+2 Oα(r12)|k1l1j1, k2l2j2,J π〉A =

=
∑
S,Λ

〈l1,
1

2
, j1; l2,

1

2
, j2|

1

2
,
1

2
, S, l1, l2,Λ〉J 〈l′1,

1

2
, j′1; l

′
2,
1

2
, j′2|

1

2
,
1

2
, S, l′1, l

′
2,Λ〉J

× 1√
2S + 1

〈1
2
,
1

2
, S|Ôα

12|
1

2
,
1

2
, S〉

×
∑

k,k′,l,l′

∑
K,L,K′,L′

〈k, l,K, L|k1, l1, k2, l2〉 〈k′, l′, K ′, L′|k′1, l′1, k′2, l′2〉 × 〈k′, l′|H(r)|k, l〉 (4.8)

where the reduced matrix element of the relevant operator are:

〈1
2
,
1

2
, S| I |1

2
,
1

2
, S〉 =

√
2S + 1 (4.9)

〈1
2
,
1

2
, S| (~σ1 · ~σ2) |

1

2
,
1

2
, S〉 =

√
2S + 1 [2S(S + 1)− 3] (4.10)
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and the radial relative motion matrix element is given by:

〈k′, l′|H(r)|k, l〉 =
∫ ∞

0

r2dr Rkl(r) H(r) Rk′l′(r) (4.11)

as said before this is what we to compute if we don’t take into account the correlations.

Other details will be given in the next chapter when we will make the choice of the nucleus

and the subset of Hilbert space states to use in the computation.

4.2 Including correlation

Now we are able to include the correlations studied in the third chapter in the matrix

element calculated in the previous section. We are going to use only four of the six

operators in eq. 3.27 and so, in our case eq. 3.26 reduces to:

F12 = fc(r) I + fσ(r) (~σ1 · ~σ2) + fτ (r) (~τ1 · ~τ2) + fστ (r) (~σ1 · ~σ2) (~τ1 · ~τ2) (4.12)

in our case (remembering that T = 1 for initial and final state) we have:

(~τ1 · ~τ2) =
1

2
[4T (T + 1)− 6] = 1 (4.13)

Eq.4.12 becomes:

F12 = (fc(r) + fτ (r)) I + (fσ(r) + fστ (r)) (~σ1 · ~σ2) (4.14)

In correlated wave function formalism we substitute the shell model wave function with

a correlated one:

φα(ri) → Fφα(ri) (4.15)

This is, for our purpose equivalent to substitute the transition operators Oα(r12) with

their correlate version:

Oα(r) → Õα(r) = F12 Ô
α(r)F12H(r) (4.16)
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So, we need to compute F 2
12, using the property: (~σ1 · ~σ2)2 = 3− 2 (~σ1 · ~σ2) we obtain:

F 2
12 =

[
(fc + fτ )

2 + 3 (fσ + fστ )
2] I + 2 (fσ + fστ ) [(fc + fτ )− (fσ + fστ )] (~σ1 · ~σ2)

(4.17)

In our analysis we will study two cases in the first case we have only (fc+fτ ) 6= 0 therefore

for a Fermi transitions we have:

ÕF (r) = F12 ÔF F12 ;H(r) = F 2
12 I H(r) = (fc + fτ )

2 + I H(r) (4.18)

and for a Gamow-Teller one:

ÕGT (r) = F12 Ô
GT F12H(r) = F 2

12 (~σ1 · ~σ2) H(r) = (fc + fτ )
2 (~σ1 · ~σ2)H(r) (4.19)

In the second case we also have (fσ + fστ ) 6= 0 and so

ÕF (r) = F12 Ô
F F12H(r) = F 2

12 IH(r) =

=
[
(fc + fτ )

2 + 3 (fσ + fστ )
2] I H(r)+

2 (fσ + fστ ) [(fc + fτ )− (fσ + fστ )] (~σ1 · ~σ2)H(r) (4.20)

and

ÕGT (r) = F12 Ô
GT F12H(r) = F 2

12 (~σ1 · ~σ2) H(r) =

= 6 (fσ + fστ ) [(fc + fτ )− (fσ + fστ )] I H(r)+[
(fc + fτ )

2 + 7 (fσ + fστ )
2 − 4 (fc + fτ ) (fσ + fστ )

]
(~σ1 · ~σ2)H(r) (4.21)

what we can see is that in the second case the Fermi transitions acquire a “Gamow-Teller

part” and vice versa.

Using the correlated operator instead of the standard operator in the calculation of the

previous chapter we obtain the analytical form of the nuclear matrix elements that we are

going to compute numerically in the following chapter.



40 Computation of nuclear matrix element



Chapter 5

Numerical Results

We are now able to perform our calculation, we still need to choose some final details

such as the subset of Hilbert space states involved into the process or the parameters for

the harmonic oscillators wave functions and for the neutrino propagator, constraints on

the sum over the quantum numbers and obviously the decaying nucleus.

First of all, we need to choose a nucleus in which neutrinoless double beta decay can

occur, also, it’s properties must be well reproduced by the shell model, because want

to study effects which are not taken into account by the shell model and so, we need a

nucleus with the simplest shell model structure to minimize complications connected to

the approximations used in it, as said in the third chaper, nuclear shell model is able to

well reproduce the properties of magic nuclei the best results is obtained using a double

magic nucleus : a nucleus with a magic number of protons and neutrons.

Among the known nucleus with this properties we choose 48Ca (J π = 0+) the shell

model structure of 48Ca is quite simple: have 48 nucleons 20 of them are protons and the

other 28 are neutrons Both of them are magic numbers and so, as shown in table 3.1 they

complete their shells: the 28 neutrons fill all the levels of the orbitals: 1s 1
2
, 1p 3

2
, 1p 1

2
,

1d 5
2
, 2s 1

2
, 1d 3

2
and 1f 7

2
; otherwise the 20 protons fill up the levels: 1s 1

2
, 1p 3

2
, 1p 1

2
, 1d 5

2
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, 2s 1
2
and 1d 3

2
. Using the value for the harmonic oscillator wave function parameter for

48Ca nuclei given in [16]: ν = 0.126fm−2 we can numerically compute the state density

(eq.3.21) for 48Ca plotted in Figure: 5.1. We can see that, as said before harmonic os-

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

ρ

r[fm]

Figure 5.1: Nucleon densities for 48Ca: protons in red and neutrons in green

cillator wave functions do not reproduce experimental densities in low r range, otherwise

for the external levels we have a good match.

Manca: plot o referenza per confronto con dati sperimentali

5.1 Hilbert space

So our model reproduce nuclear properties of 48Ca only for the external levels, to

avoid this problem and to simplify our calculation we chose to limit the Hilbert space of

two the decaying neutrons to the external shell. So our nuclear transition is given by two
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neutrons from the 1f 7
2
which become two protons in their 1f 7

2
shell. this implies referring

to eq. 4.8 that:

k1 = k′1 = k2 = k′2 = 0 (5.1)

l1 = l′1 = l2 = l′2 = 3 (5.2)

j1 = j′1 = j2 = j′2 =
7

2
(5.3)

Because the transition operator act only on the relative wave functions we have that the

quantum numbers relative to the center of mass motion are conserved and so:

K = K ′ (5.4)

L = L′ (5.5)

(5.6)

It depends only on relative distance between the couple of nucleon then:

l = l′ (5.7)

(5.8)

So the matrix element in eq.4.8 becomes:

〈k′1l′1j′1, k′2l′2j′2, 0+|τ+1 τ+2 Oα(r12)|k1l1j1, k2l2j2, 0+〉A =

=
∑
S,L

|〈l1,
1

2
, j1; l2,

1

2
, j2|

1

2
,
1

2
, S, l1, l2,Λ〉J |2 × 1√

2S + 1
〈1
2
,
1

2
, S|Ôα

12|
1

2
,
1

2
, S〉

×
∑
k,k′,l

∑
K,L

〈k, l,K, L|k1, l1, k2, l2〉 〈k′, l, K, L|k1, l1, k2, l2〉 × 〈k′, l|H(r)|k, l〉 (5.9)

The conservation of energy is guaranteed by the following relation:

2k1 + l1 + 2k2 + l2 = 2k′1 + l′1 + 2k′2 + l′2 = 6 (5.10)

and so:

2k + l + 2K + L = 2k′ + l′ + 2K ′ + L′ = 6 (5.11)
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which implies, using eq.5.4 , 5.5 and 5.7 that

k = k′ (5.12)

This, simplify again the analytic form of the nuclear matrix element:

〈k′1l′1j′1, k′2l′2j′2, 0+|τ+1 τ+2 Oα(r12)|k1l1j1, k2l2j2, 0+〉A =

=
∑
S,L

|〈l1,
1

2
, j1; l2,

1

2
, j2|

1

2
,
1

2
, S, l1, l2,Λ〉J |2 × 1√

2S + 1
〈1
2
,
1

2
, S|Ôα

12|
1

2
,
1

2
, S〉

×
∑
k,l

∑
K,L

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|H(r)|k, l〉 (5.13)

What is left to do now is to fix the bounds on the sums over the quantum numbers

k,l,K,L,Λ,S and J. From the conservation of energy relation (eq.5.11) we can obtain some

of those bounds:

∑
k,l

∑
K,L

⇒
6∑

L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

(5.14)

after summing over L,l and K, the value of k in fixed by the conservation of energy. S is

the total spin of a couple of two fermions with s = 1
2
so, the sum over S runs from 0 to 1.

Λ is the composition of orbital angular momenta of the two decaying nucleons whose have

l1 = l2 = 3 so the sum over it can run from 0 to 6, but, to conserve parity we can take

only even values of Λ, so Λ = 0, 2, 4, 6. J is the composition of total angular momenta of

the nucleons couple whose have j1 = j2 = 7
2
so the sum over it can run from 0 to 7, but

we have to take only the even value because we are evaluating an antisymmetric matrix

element, so J = 0, 2, 4, 6 Using the definition of 9-j symbols in eq.4.6 we find out the final
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expression for the nuclear matrix element:

Mα
0ν =

∑
J=0,2,4,6

Ksm(J, 0
+)

∑
Λ=0,2,4,6

1∑
S=0

64 (2Λ + 1) (2S + 1)

 3 1
2

7
2

3 1
2

7
2

Λ S J

2

× 1√
2S + 1

〈1
2
,
1

2
, S|Ôα

12|
1

2
,
1

2
, S〉

6∑
L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|H(r)|k, l〉 (5.15)

The Ksm(J, 0
+) coefficient can be found in [16] and they are show in table 5.1 Now we

0 2 4 6

Ksm(J, 0
+) 1.214 −0.572 0.021 0.000

Table 5.1: Ksm(J, 0
+) shell model coefficients

are able to perform our calculation in a pure shell model picture.

Mancano: parametri potenziale neutrino con referenze

5.2 Correlation functions

To extend our computation to the correlated wave function formalism we need to find

the analytical form of the correlating function given in eq. 3.26, from eq.4.17 we see that

for our numerical analysis we need the analytic form of the function fc+fτ and fσ+fστ we

have used their numerical form given in ??? and fitted them using Gnu-plot and obtained:

f1(r) = fc + fτ = a− be−cr2 (5.16)

f2(r) = fσ + fστ = de−cr2(1 + ar + br2) (5.17)

The parameters are given in table 5.2 and their graphics are in figure 5.2 and 5.3.

Manca: referenza per funzioni fittate



46 Numerical Results

f1(r) Value Error f2(r) Value Error

a 1.00288 ±0.00014 a 2.92003 ±0.03582
b 0.75298 ±0.00056 b −5.96629 ±0.05061
c 2.74232 ±0.00489 c 1.39292 ±0.00312

d 0.04159 ±0.00016

χ2/dof 4.04908× 10−5 χ2/dof 1.14111× 10−6

Table 5.2: Fit parameter for the correlation functions
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Figure 5.2: Fit for f1: numerical data in red, fit function in green
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Figure 5.3: Fit for f2: numerical data in red, fit function in green

5.3 Numerical computation

Now we have all the instruments to make our numerical computation using the defini-

tions in eqs.5.16 , 5.17 and taking eq. 4.18 and 4.19 inside eq.5.15 we can write down the

expressions for Fermi and Gamow-Teller nuclear transitions matrix elements in the case

of f1 6= 0:

MF
0ν =

∑
J=0,2,4,6

Ksm(J, 0
+)

∑
Λ=0,2,4,6

1∑
S=0

64 (2Λ + 1) (2S + 1)

 3 1
2

7
2

3 1
2

7
2

Λ S J

2

6∑
L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|f1(r)2 H(r)|k, l〉

(5.18)
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MGT
0ν =

∑
J=0,2,4,6

Ksm(J, 0
+)

∑
Λ=0,2,4,6

1∑
S=0

64 (2Λ + 1) (2S + 1)

 3 1
2

7
2

3 1
2

7
2

Λ S J

2

[2S(S + 1)− 3]
6∑

L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|f1(r)2 H(r)|k, l〉 (5.19)

we also used eq. 4.9 and 4.10. Otherwise, in the case in which f1 6= 0 and f2 6= 0 using

eq. 4.20 and 4.21 we have

MF
0ν =

∑
J=0,2,4,6

Ksm(J, 0
+)

∑
Λ=0,2,4,6

1∑
S=0

64 (2Λ + 1) (2S + 1)

 3 1
2

7
2

3 1
2

7
2

Λ S J

2


6∑

L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|
(
f1(r)

2 + 3f2(r)
2
)
H(r)|k, l〉+

[2S(S + 1)− 3]
6∑

L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|2f1(r) (f1(r)− f2(r))H(r)|k, l〉


(5.20)

MGT
0ν =

∑
J=0,2,4,6

Ksm(J, 0
+)

∑
Λ=0,2,4,6

1∑
S=0

64 (2Λ + 1) (2S + 1)

 3 1
2

7
2

3 1
2

7
2

Λ S J

2


6∑

L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|6f2(r) (f1(r)− f2(r))H(r)|k, l〉+ [2S(S + 1)− 3]

6∑
L=0

6−l∑
l=0

1
2
(6−L−l)∑
K=0

|〈k, l,K, L|k1, l1, k2, l2〉|2 〈k, l|
(
f1(r)

2 + 7f2(r)
2 − 4f1(r)f2(r)

)
H(r)|k, l〉


(5.21)

To run our numerical calculation we used FORTRAN 77 based programs, let’s how we

compute each of the components of this matrix elements:

Transition amplitudes: Objects like:

〈k, l|g(r)|k, l〉 =
∫ ∞

0

R2
kl(r)g(r)r

2dr (5.22)
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to integrate it numerically we have to cut-off the integration

〈k, l|g(r)|k, l〉 =
∫ Rmax

0

R2
kl(r)g(r)r

2dr (5.23)

with Rmax = 20fm and then discretize the sum:

〈k, l|g(r)|k, l〉 =
N∑
i=1

R2
kl(iDR) g(iDR) (iDR)

2 DR (5.24)

where N = 1000 is the number of steps of the integration, and DR = Rmax/N is

the width of the steps.

Talmi-Moshinsky brackets: They are the coefficient of the transformation between

the (r1, r2) representation to the (r = |~r1 − ~r2|, R = |~r1 + ~r2|/2) representation:

〈k, l,K, L|k1, l1, k2, l2〉 (5.25)

In our program we used the FORTRAN 77 function TMB given in [18].

9-j symbols: The are needed for coupling of four angular momenta 1 they are symboli-

cally written as:  j1 j2 j3
j4 j5 j6
j7 j8 j9

 (5.26)

to compute them, in our work we used the the program W9J also written in FOR-

TRAN 77. Details on the program are given in [17]

5.4 Results

1l1 , l2 , j1 , j2
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Conclusions

In this thesis...
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Appendix A

Correlated two particles states

The correlation operator of eq. 3.25 is defined in such a way that, if any subset of

the particles, say i1, · · · ip , is removed far from the remaining ip+1, · · · iN , it factorizes

according to

F(1, · · · , N) → Fp(i1, · · · ip)FN−p(ip+1, · · · iN) (A.1)

The above property is the basis of the cluster expansion formalism, that allows one to

write the matrix element of a many-body operator between correlated states as a sum,

whose terms correspond to contributions arising from isolated subsystems (clusters) in-

volving an increasing number of particles.

Let us consider for example the expectation value of the Hamiltonian in the correlated

ground state, the starting point is the definition of the generalized normalization integral:

I(β) = 〈0| exp[β(H − T0)]|0〉 (A.2)

T0 is the shell model ground state energy. Using the previous equation we can rewrite the

expectation value of the Hamiltonian in the form:

〈H〉 = 〈0|H|0〉
〈0|0〉

= T0 +
∂

∂β
ln I(β) |β=0 (A.3)
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Exploiting the cluster property of F one can rewrite the expectation value of the Hamil-

tonian in the form:

〈H〉 = T0 + (∆E)2 + (∆E)3 + · · · (∆E)N (A.4)

because we are interest in coupling correlations between nucleons we need only (∆E)2, it

can be express as a function of Fij (eq. 3.26)

(∆E)2 =
∑
i<j

〈ij|1
2

[
F12;

[
1

m
52

r;F12

]]
+ F12v12F12|ij − ji〉 (A.5)

where v12 is the potential between the two nucleons |ij〈 is the two particle states and

|ij − ji〉 is it’s antisymmetrized version. By minimization of (∆E)2
1 one can find Euler-

Lagrange equations for the correlation functions which can be numerically integrated.

Spiegazione del perchè funziona nella materia continua ma va bene anche per

il nucleo

1more details on this procedure are given in [15]
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