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Introduction

Historically, the most remarkable results of the hard sphere model have been achieved

in the field of fluid dynamics. The structure of a simple liquid is in fact largely determined

by geometric factors associated with the packing of the molecular hard cores, being there-

fore mostly affected by the repulsive short-range interaction [1]. The smoothly varying

long-range attraction gives rise to a uniform background potential providing the cohesive

energy of the liquid, but has little effect on its structure. Hence, it is reasonable to model

the short-range forces between particles with the infinitely steep repulsion of the hard

sphere potential. The properties of a given liquid can be then related to those of a hard

sphere reference system, which are calculable, whereas the attractive part of the potential

is treated as a small perturbation.

The representation of a liquid as a system of hard spheres moving in a uniform attrac-

tive potential provides the physical basis to the van der Waals equation of state, yielding

a quantitative description of the phase diagram of a number of classical systems. In adi-

tion, the presence of a strongly repulsive core is a prominent feature of the pair potentials

describing the interaction of a variety of quantum systems.

Using properly adjusted values of the parameters ǫ and σ, the Lennard-Jones potential

vLJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

,

provides an accurate account of the interactions between atoms of both bosonic (4He) and

fermionic (3He) liquid helium separated by a distance r.
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The solid line of Fig. 1 shows the radial distribution function1 of a Lennard-Jones fluid

obtained from computer simulations at density ρ such that ρσ3 = 0.85 and temperature

T such that T/ǫ = 0.88. The open dots represent the results obtained including only the

repulsive component of the Lennard-Jones potential, while the dashed line corresponds to

the radial distribution function of a hard sphere fluid. It clearly appears that the simple

hard core potential provides a remarkably accurate description of the system ground state.

Figure 1: Radial distribution function of a Lennard-Jones fluid at density ρ such that
ρσ3 = 0.85 and temperature T such that T/ǫ = 088. Solid line: results of a computer
simulation carried out using the full Lennard-Jones potential. Open dots; same as the
solid line, but including only the repulsive component of the potential. Dashed line:
results of the hard sphere model.

1The radial distribution function g(r), to be discussed in Chapter 3, is trivially related to the proba-
bility of finding two particles at relative distance r in the system ground state.
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The nucleon-nucleon interaction is also known to be strongly repulsive at short dis-

tances, as clearly indicated by the saturation of the charge-density distributions measured

by elastic electron-nucleus scattering. For this reason the fermion hard sphere fluid, i.e.

a system of point-like spin one-half particles interacting through the potential

v(r) =

{

∞ r < a
0 r > a

,

is a very useful model for investigating concepts and approximations employed to study

the properties of nuclear matter.

In this thesis we report the results of calculations of equilibrium and non equilibrium

properties of the fermion hard sphere fluid, carried out using the formalism based on

correlated basis functions and the cluster expansion technique.

As an introduction, in Chapter 1 we will discuss the approach to the hard sphere

problem based on perturbation theory and the low-density expansion, while Chapter

2 is devoted to the description of Correlated Basis Function (CBF) theory and to the

derivation of the integral equations for the radial distribution functions of both Bose and

Fermi systems.

The results of numerical calculations of the binding energy per particle are presented in

Chapter 3, where we also discuss the extension of the CBF approach to the description of

transport properties. The calculated values of the shear viscosity coefficient are reported

as an example.

Appendices A and B collect some results of scattering theory that are used in the

thesis.

Unless otherwise stated, we use a system of units in which ~ = h/2π = c = KB = 1,

where h, c and KB denote Plank’s constant, the speed of light and Boltzmann’s constant,

respectively.
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Chapter 1

Perturbative approach

The description of a quantum mechanical system of interacting particles unavoidably

requires the use of an approximation scheme, suitable for the determination of the wave-

functions and the energy spectrum [2]. In this Chapter we will describe the approach

based on many-body perturbation theory and its application to the case in which the

interaction potential exhibits a strong repulsive core.

1.1 Mean field approximation

Let us consider a quantum mechanical system consisting of N non-interacting particles

obeying Fermi statistics. Their ground state is described by the wave function |Φ0〉,
solution of the Schrödinger equation

H0|Φ0〉 = E0|Φ0〉 , (1.1.1)

with

H0 =
N

∑

i=1

p2
i

2m
, (1.1.2)

where pi and m denote the momentum of the i-th particle and its mass, respectively.

From Eqs. (1.1.1) and (1.1.2) it follows that Φ0 reduces to the product of wave-

functions describing the independent motion a single particle, properly antisymmetrized

to account for the effect of Pauli principle.
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In the presence of interactions described by a potential v(rij), rij = |ri − rj| being the

interparticle distance, the hamiltonian becomes

H = H0 +

N
∑

j>i=1

v(rij) , (1.1.3)

and the properties of the system are significantly modified. Due to the appearance of

interparticle correlations induced by the potential, the exact solution of the Schrödinger

equation

H|Ψ0〉 = E|Ψ0〉 , (1.1.4)

is no longer possible, and one has to resort to approximations.

It is an experimental fact that even in the presence of interactions the independent

particle model provides a fairly good description of a number of properties of many-

particle systems. The assumption underlying this model is that each particle, say particle

i, moves in the mean field resulting from the average of its interactions with the remaining

N − 1 particles. The simplest implementation of this scheme amounts to replacing

N
∑

j>i=1

v(rij) →
N

∑

i=1

U(ri) , U(ri) =
N

∑

j 6=i=1

〈v(rij)〉 , (1.1.5)

where 〈. . .〉 denotes the average over the degrees of freedom of particle j.

Higher order contributions to the mean field can be taken into account within a self-

consistent scheme. The Hartree-Fock approximation includes infinite orders of perturba-

tion theory through the substitution of the Green’s function of the non-interacting system,

G0 , with the corresponding quantity of the interacting system, G. This procedure is best

illustrated by the Feynman diagrams of Fig. 1.1 [2]. It clearly appears that the self-energy

insertions are included within a self-consistent scheme, in which the Green’s function G

both determines and is determined by the proper self energy Σ⋆ 1. As a first approxi-

1The self-energy insertion is any part of a diagram that is connected to the rest by two particle lines,
whereas the proper self-energy insertion is defined as an irreducible self-energy insertion (see Fig. 1.1).
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Figure 1.1: Diagrammatic representations of the definition of the Green-function G in
terms of G0 (left panel) and the relation between self-energy (Σ) and proper self-energy
(Σ⋆) (right panel).

mation, one keeps only the first order contribution to the proper self-energy Σ⋆
(1), which

amounts to using the definition of the mean field of Eq.(1.1.5). The corresponding Feyn-

man diagrams are shown in Fig.1.2. In this way, however, the interactions between the

Figure 1.2: Lowest order proper self-energy.

background particles contributing to Σ⋆
(1) are disregarded. To include their effects we

have to replace the thin line (representing the non-interacting Green-function G0) with

the thick line (representing the exact Green-function G), as shown in figure Fig. 1.3.
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Figure 1.3: Self-consistent proper self-energy in Hartree-Fock approximation.

The mean field approximation has been successfully employed to explain a number of

properties of interacting many-particle systems, like, for example, the electronic structure

of atoms. However, it is long known to fail when the interaction potential exhibits a

strong repulsive core. The source of this problem can be easily understood considering

that the matrix element 〈φ|v|φ〉, where φ is the wave function describing a pair of non

interacting particles, turns out to be large, in fact divergent in the case of hard spheres.

As a consequence, the perturbative expansion is, at best, slowly convergent. However, its

terms can be rearranged, replacing the potential v with the scattering matrix t, describing

scattering processes involving free particles. This procedure, which amounts to summing

up the so called ladder diagrams to all order, and the resulting low density expansion will

be described in Section 1.3. As an introduction, the next Section is devoted to a brief

review of scattering theory.

1.2 Review of scattering theory

The results collected in this Section and in Appendices A and B are meant to provide

the background material for the discussion of the scattering matrix and the transport

properties of the fermion hard sphere fluid.
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Let us consider the Schrödinger equation for a generic scattering problem [3],

(H0 +H1)|ψ〉 = E|ψ〉 , (1.2.1)

where H0 is the hamiltonian of the unperturbed system, with eigenstate |φ〉, H1 represent

a stationary source and |ψ〉 is the eigenstate of the full hamiltonian. Equation (1.2.1) can

be cast in the form

|ψ〉 = |φ〉 +
1

E −H0
H1|ψ〉 , (1.2.2)

showing that |ψ〉 → |φ〉 as H1 → 0. However, as the operator 1/(E − H0) is singular,

one has to provide a prescription to handle its poles. This task is accomplished rewriting

Eq.(1.2.2) as

|ψ±〉 = |φ〉 +
1

E −H0 ± iǫ
H1|ψ±〉, (1.2.3)

with ǫ = 0+. Equation (1.2.3) is known as Lipmann-Schwinger (LS) equation.

Multiplying Eq.(1.2.1) by 2m, where m is the particle mass, and working in coordinate

representation we obtain

(∇2 + k2)ψ(r) = 2m〈r|H1|ψ〉, (1.2.4)

where k2 = 2mE and ψ(r) = 〈r|ψ〉. We can transform the above equation into an integral

equation using the standard Green’s functions technique, based on the relations

(∇2 + k2)G(r, r′) = δ(r − r′) → G(r, r′) =
e±ik|r−r′|

4π|r− r′| . (1.2.5)

Making the assumption that the scattering hamiltonian H1 depends on position only, i.e.

that

〈r|H1|r′〉 = V (r)δ(r − r′) , (1.2.6)

from Eqs.(1.2.3) and (1.2.4) we obtain the integral equation

ψ±(r) = φ(r) − 2m

∫

d3r′
e±ik|r−r′|

4π|r− r′|V (r′)ψ±(r′), (1.2.7)



10 Perturbative approach

which can be solved using an iteration scheme, leading to a perturbative expansion for

ψ±(r).

The solution can be simplified making three further assumptions:

• the initial state is a plane-wave of wave vector k, normalized according to 〈k′|k〉 =

δ(k − k′);

• the scattering potential V (r) is non-vanishing only in a localized region of space

centred at the origin, i.e. at r = 0;

• we are interested in the solution ψ±(r) far away from the scattering region, i.e. in

the region where r ≫ r′, implying |r− r′| ≃ r − r̂ · r′ and

e±ik|r−r′| ≃ e±ikre∓ik′·r′ .

Under the above conditions, Eq.(1.2.7) reduces to

ψ±(r) =
eik·r

(2π)3/2
− m

2π

e±ikr

r

∫

d3r′ e∓ik′·r′V (r′)ψ±(r′) . (1.2.8)

The first term in the right-hand side is the incident plane-wave, while the second represents

a spherical wave. The plus and minus signs in ψ± correspond to an outgoing or ingoing

wave, respectively. Obviously, only the former represents the physical solution.

The scattering wave function can be conveniently rewritten as

ψ±(r) =
1

(2π)
3
2

[

eik·r +
eikr

r
f(k,k′)

]

, (1.2.9)

where

f(k,k′) = −(2π)2m

∫

d3r′
e−ik′·r′

(2π)3/2
V (r′)ψ±(r′)

= −(2π)2m〈k′|H1|ψ〉,
(1.2.10)

is the scattering amplitude. It can be easily seen that the differential cross-section of the

process in which a particle carrying momentum k is scattered within a solid angle dΩ
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about the direction of the final momentum k′, with |k| = |k′|, can be expressed in terms

of the scattering amplitude according to

dσ

dΩ
= |f(k,k′)|2 . (1.2.11)

Equation (1.2.9) states that, in general, the total scattering wave function is a super-

position of the incident plane wave and a spherical wave propagating from the center of

the scattering region. However, if the interaction driving the scattering process is weak,

ψ(r) does not differ significantly from the incident wave φ(r), and one can make the

approximation, referred to as Born approximation,

ψ(r) ∼ eik·r

(2π)3/2
, (1.2.12)

leading to the following form of the scattering amplitude

f(k,k′) = −m(2π)2

∫

d3r′ ei(k−k′)·r′ V (r′) . (1.2.13)

The partial wave expansion of the scattering amplitude and the application to a scat-

tering process involving two hard spheres is discussed in Appendices A and B.
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1.3 Low density expansion

We will now apply the results discussed in the previous Section to develop an approx-

imation scheme suitable for the description of the hard sphere fluid.

To properly include the effects of the hard core, the first step is the calculation of

the scattering matrix in free space. The modifications arising from the presence of the

background particles are then included as corrections. It has to be kept in mind that a

truly infinite repulsive core causes divergences at all orders in perturbation theory. Hence,

one has to consider instead a strong but finite potential V0, and take the limit V0 → ∞
at the end of the calculations.

1.3.1 Summation of ladder diagrams

For a finite potential V0 we can expand the right hand side of equation Eq.(1.2.7),

with the result

ψ+(r) =
1

(2π)
3
2

[

eik·r −
∫

d3r′ G(r, r′)v(r′)eik·r′

+

∫

d3r′ d3z′ G(r, r′)v(r′)G(r, z′)v(z′)eik·z′ + . . .

]

,

(1.3.1)

where v(r′) ≡ 2mV (r′). The above expression can be intuitively interpreted as the unper-

turbed solution plus corrections involving an increasing number of interaction vertices.

We can collect these terms in the perturbation series, represented diagrammatically in

Fig. 1.4, to obtain

−4πf(k,k′) =

∫

d3r′e−ik·r′V (r′)ψ+(r′). (1.3.2)

In the case of weak potential the scattering amplitude is well described by the first

few terms of the expansion Eq.(1.3.1), or even at the level of the Born approximation

discussed in the previous Section. However, the description of scattering from a strongly

repulsive potential requires the inclusion of all terms. Similarly, the first-order proper

self-energy of Fig.1.2 is not accurate enough for a strong potential and must be corrected
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Figure 1.4: Perturbation expansion for two-body scattering amplitude in free space.

including selected higher-order terms. The corresponding diagrams, shown in Fig.1.5,

feature repeated interactions, describing the action of the potential on the wave function

at all orders. The relevant quantity in this expansion will then be the product V0ψ or,

more generally, the two-body scattering amplitude f(k,k′), which remains well defined

even after taking the V0 → ∞ limit.

Figure 1.5: Sum of ladder diagrams for the proper self-energy.

1.3.2 Energy per particle

The formalism outlined in the previous Sections can be employed to develop an expan-

sion suitable for describing the properties of a dilute interacting Fermi system. Consider,

for example, the ground-state energy per particle. It can be expanded in series of powers
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of the small adimensional parameter x = kFa, where a is the scattering length associated

with the interaction potential (see Appendix A) and the Fermi momentum kF is related

to the particle density ρ = N/V through

kF =

(

6π2ρ

ν

)1/3

, (1.3.3)

ν being the degeneracy of the momentum eigenstates. Note that for hard sphere systems

a coincides with the radius of the hard core.

Keeping terms up to third order, we obtain the expression

E

N
=
k2

F

2m

[

A +B(kFa) + C(kFa)
2 + . . .

]

, (1.3.4)

which is obviously meaningful either in the small scattering length (a → 0) or in the

low-density (kF → 0) limit.

Equation (1.3.4) is the counterpart of the expansion of the wave function, Eq.(1.3.1).

For a fermion hard-sphere fluid the diagrams represented in Fig. 1.5 allow one to determine

the coefficients A, B and C appearing in the right hand side.

The physical interpretation of the terms appearing in the right hand side of Eq.(1.3.4)

is the following. The first term is the energy of the non-interacting Fermi gas, while the

second, linear in the scattering length, corresponds to forward scattering processes and

takes into account both direct and exchange contributions. Forward scattering dominates

in the low-density limit, as low-density also implies low-energy collisions, with |k| = |k′| →
0. In this regime, the scattering amplitude reduces to (see Appendix A)

f(k,k′) → −a . (1.3.5)

It should be noted that the presence of the medium leads to modifications of the scattering

length, as the background particles reduce the phase space available to the interacting

pair in the intermediate states. For example, the effect of Pauli principle appears when
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a particle is excited above the Fermi sea and then de-excited, leading to a correction of

order (kFa)
2. This is the origin of the second contribution to the ground state energy.

Any other process involves at least three-particles collision, and yields a power of (kFa)
3.

We now want to show how the coefficients of Eq.(1.3.4) can be determined. Con-

sider the simple case of two fermions interacting through a spin-independent non-singular

potential.

The lowest-order ground-state energy is obtained from the matrix elements of the

proper self-energy

Σ⋆(k) = nV (0) − 1

(2π)3

∫

d3k′ V (k − k′) θ(kF − k′) , (1.3.6)

between plane wave states. Including the energy of the non interacting system we obtain

E = ν
V

(2π)3

∫

d3k
[

ǫ0
k

+ 1
2
Σ⋆(k)

]

θ(kF − k), (1.3.7)

and using the two above equations we can write the lowest-order ground-state energy in

the form
E

V
=

3

5

k2
F

2m

N

V
+

∫ kF

0

d3k

(2π)3

∫ kF

0

d3k′

(2π)3

[

2V (0) − V (k − k′)
]

. (1.3.8)

From the definition Eq.(1.3.2), in the low-energy limit of Eq.(1.3.5), we find

V (0) ≡
∫

d3xV (x) = −4π

m
fB(k,k′) → 4π

m
aB, (1.3.9)

where the subscript B refers to the Born approximation discussed in the previous Section,

implying ψ+(x) ∼ eik·x. Obviously, one can improve up the above approximation replacing

aB → a (1.3.10)

where a is the true scattering length for two-particle scattering in free space.

In the low-density limit we can also use the approximation

V (k − k′) ∼ V (0)
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in the integral of Eq.(1.3.8), to obtain

E

N
=
k2

F

2m

[3

5
+

2

3π
(kFa) + . . .

]

. (1.3.11)

Higher-order terms can be analyzed in a similar fashion. The final expression for a hard

sphere systems of degeneracy ν = 2 is [2]

E

N
=
k2

F

2m

[3

5
+

2

3π
(kFa) +

4

35π2
(11 − 2 ln 2)(kFa)

2 + 0.23(kFa)
3 + . . .

]

. (1.3.12)

As pointed out above, the first, second and third term are, respectively, the kinetic energy

of a free Fermi gas, the correction due to the forward scattering from the particles in the

medium and the one due to the Pauli blocking of the intermediate states. The final term,

of order (kFa)
3, is related to three-particle correlations.



Chapter 2

Correlated basis function theory

In the previous Chapter we have discussed the approach to the quantum mechani-

cal many-body problem based on perturbation theory in the basis of eigenstates of the

hamiltonian of the non interacting system. Within this scheme, the problem of comput-

ing the matrix elements of a potential featuring a hard core is circumvented replacing the

bare potential with the well behaved scattering matrix, obtained from the solution of the

Lipmann-Schwinger equation.

Correlated Basis Function (CBF) perturbation theory [4] provides an alternative ap-

proach to handle the hard core problem, in which the basis functions are modified in such

a way as to incorporate the main effects of the strongly repulsive interaction at short

range. As a results, the matrix elements of the bare potential in the correlated basis are

small and perturbative expansions are rapidly convergent.

The main problem associated with the CBF approach lies in the calculation of ma-

trix elements using correlated states, which involves 3N dimensional integrations. This

difficulty is overcome exploiting the cluster expansion formalism, originally developed to

obtain the partition function of classical liquids [1, 5]. In this Chapter we will discuss the

application of the cluster expansion technique to the calculation of the radial distribution

function of quantum liquids obeying both Bose and Fermi statistics.
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2.1 Correlated basis functions

The set of correlated wave functions is obtained from the wave functions of the non

interacting system through the transformation

Ψn(1, . . . , N) = F (1, . . . , N)Φn(1, . . . , N) , (2.1.1)

where F describes the correlation structure, while Φn is an independent particle wave

function accounting for the symmetry properties of the system. For example, in the case

of the ground state of a system of fermions, Φ0 is a determinant of single particle wave

functions associated with the states belonging to the Fermi sea.

The correlation factor F (1, . . . , N) is symmetric with respect to permutations of its

arguments and translationally invariant. Hence it only depends on relative distances

between particles. In this work, we will use the simple ansatz originally proposed by

Jastrow [6]

F =
N
∏

1≤i<j

fij , (2.1.2)

fij = f(rij) being the two-particle correlation functions. The shape of fij is determined

through minimization of the expectation value of the hamiltonian in the correlated ground

state

〈H〉 =
〈Φ0|FHF |Φ0〉
〈Φ0|FF |Φ0〉

, (2.1.3)

to be discussed in the next Chapter, and reflects the behavior of the interaction potential.

Ritz’s variational principle states that 〈H〉 provides an upper bound to the ground state

energy. As an example, Fig. 2.1 shows the correlation function for a fluid of fermion hard

spheres of radius a = 1 fm and degeneracy ν = 2, at density ρ = 0.0042 fm−3. It clearly

appears that fij is short ranged and vanishes in the hard core region.

The evaluation of matrix elements of any many-body operator using correlated states

involves 3N -dimensional integration. This problem, which becomes intractable for large
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Figure 2.1: Two-particle correlation function for fluid of fermion hard sphere of radius
a = 1 fm and degeneracy ν = 2 at density ρ = 0.0042 fm−3.

N, is circumvented expanding the matrix element in a series, the terms of which represent

the contributions of subsystems (clusters) involving an increasing number of particles.

Therefore, the evaluation of the cluster contributions requires integrations over the coor-

dinates of a the subset consisting of n particles, with n = 1, . . . , N .

As correlations are short-ranged, at not too high density the cluster expansion is

expected to be rapidly convergent. In addition, selected classes of cluster contributions

can be summed up at all orders solving the Hyper-Netted-Chain (HNC) [1, 5] of Fermi-

Hyper-Netted-Chain (FHNC) [7, 8] integral equations, to be discussed in Sections 2.4 and

2.5, respectively.

Note that the correlation operator defined by Eq.(2.1.2) exhibits the cluster decom-

position property, i.e. reduces to the product of two factors according to

F (1, . . . , N) → Fp(i1, ..., ip)FN−p(ip+1, ..., iN) , (2.1.4)

when particles i1, . . . , ip, are moved far away from the remaining N − p., The above

equation expresses the basic tenet underlying the cluster expansion scheme.

Besides dynamical correlations, in fermion systems the antisymmetrization of the states
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required by Pauli exclusion principle leads to the appearance of additional correlations,

of statistical origin.

To see this, consider the ground state wave function of a many-body system at uniform

density ρ. It can be written in the form

Φ0 = det |ϕαi
(i)| , ϕαi

(i) =
1√
V

eiki·riηi , (2.1.5)

where |ki| ≤ kF , kF being the Fermi momentum, and ν is the degeneracy of the momentum

eigenstates (ν = 2 for spin degeneracy, ν = 4 for spin-isospin degeneracy). The plane

waves are normalized in a cubic box of volume V = L3 and satisfy periodic boundary

conditions1. Finally, ηi describes the discrete (spin or spin-isospin) degrees of freedom.

In the case of Bose statistics, Eq.(2.1.5) reduces to

Φ0 =

√

N !

V N
. (2.1.6)

For future use, we give here the expression of the density-matrix associated with the

many-body wave function Φ0

ℓ(kF rij) =
∑

α

ϕ†
α(i)ϕα(j) =

ν

V

∑

|k|<kF

eik·rij , (2.1.7)

yielding

ℓ(x) =
3

x3

(

sin x− x cosx
)

, (2.1.8)

The function ℓ(x), whose shape is illustrated in Fig. 2.2, is generally referred to as Slater

function. It clearly appears that its value at x → 0 is driven by the degeneracy ν, while

its range is determined by the Fermi momentum, i.e. by the density.

1The thermodynamic limit corresponds to N, V → ∞, with ρ = N/V finite
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Figure 2.2: Behavior of the Slater function defined in Eq.(2.1.8).

2.2 n-particle distribution functions

The probability of finding n particles at positions r1, . . . , rn in the ground state of a

quantum fluid is given by [4]

p(n)(r1, . . . , rn) =
N !

(N − n)!

∫

dxn+1 . . . dxN |Ψ0(1, . . . , N)|2
∫

dx1 . . . dxN |Ψ0(1, . . . , N)|2 , (2.2.1)

where dxi denotes both integration over ri and summation over the discrete degrees of

freedom (spin, or spin-isospin) specifying the state of the i-th particle. Note that the

above equation implies the normalization

∫

dx1 . . . dxn p
(n)(r1, . . . , rn) =

N !

(N − n)!
. (2.2.2)

In uniform systems the n-particle distribution function defined by Eq.(2.2.1) takes the

simple form

p(n)(r1, . . . , rn) = ρngn(r1, . . . , rn) , (2.2.3)
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showing that the function gn accounts for the modifications of the distribution function

with respect to the one predicted by the independent particle model. Obviously, p(1)(r1) =

ρ, while for n = 2 we find

p(2)(r1, r2) = ρ2g2(r1, r2) = ρ2g(r12) , (2.2.4)

where the so called radial distribution function g(r), exhibiting the asymptotic behavior

lim
r→∞

g(r) = 1 + O
(

1

N

)

, (2.2.5)

is related to the measurable liquid structure function, S(k), through

S(k) = 1 + ρ

∫

d3r
[

g(r) − 1
]

eik·r d3r . (2.2.6)

The expectation value of the hamiltonian in the correlated ground state can be cast

in the form

〈H〉 = 〈T 〉 + 〈V 〉 , (2.2.7)

where 〈T 〉 is the kinetic energy contribution, while 〈V 〉 is the interaction energy, that can

be written in terms of the radial distribution function g according to

〈V 〉 =
ρ

2

∫

d3r v(r)g(r) . (2.2.8)

The simplicity of the above equation is deceptive, as all the difficulties associated with the

many-body integrations are hidden in the definition of the radial distribution function. In

the following Section we will discuss the approximation scheme employed to obtain g(r).
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2.3 Diagrammatic cluster expansion

As shown in Fig. 2.1, the functions describing dynamical correlations in the hard

sphere fluid satisfy the conditions

f(r < a) = 0 , lim
r→∞

f(r) = 1 , (2.3.1)

a being the hard core radius. More generally, in the case of a soft repulsive core, the short

range behavior of the correlation functions is such that

lim
r→0

f(r) = 0 . (2.3.2)

If the interaction is short ranged, so is the correlation function f , and the function

h(r) = f 2(r) − 1 (2.3.3)

is different from zero only in a small region of space. Hence, its volume integral can

be used as an expansion parameter. The starting point is the expansion of the squared

N -particle correlation factor of Eq.(2.1.2) in powers of h, according to

F 2 =
∏

j<i

f 2(rij) =
∏

j<i

[1 + h(rij)] = 1 +
∑

j<i

h(rij) +
∑

j<i<...

h(rij)h(rkℓ) + . . . . (2.3.4)

We can group together the terms involving p particles to obtain symmetric p-body oper-

ators hp

F 2 = 1 +
∑

i<j

h2(ri, rj) +
∑

i<j<k

h3(ri, rj, rk) + . . .

= 1 +

A
∑

p=2

[

∑

i1<...<ip

hp(ri1 . . . rip)

]

,

(2.3.5)

where, for example,

h2(ri, rj) = h(rij) (2.3.6)

and

h3(ri, rj, rk) = h(rij)h(rik) + h(rik)h(rjk) + h(rij)h(rjk) + h(rij)h(rjk)h(rik). (2.3.7)
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The contributions to the operators hp can be represented by diagrams in which each

factor h(rij) corresponds to a dashed line connecting points i and j. Figure 2.3 shows the

diagrams representing the two- and three-body operators. The full set of diagrammatic

rules will be given below.

Figure 2.3: Diagrams representing the two- (a) and three-particle (b) operators h2 and
h3, defined by Eqs.(2.3.6) and (2.3.7), respectively.

In order to use the expansion in p-particle operators for the calculation of the radial

distribution function g(r12) it is convenient to rearrange the cluster terms in such a way

that each of them involve particles 1 and 2 plus an increasing number, p − 2, of the

remaining particles. Applying this procedure we obtain

F 2 = X2(1, 2) +

N
∑

i3=3

X3(1, 2, i3) +

N
∑

i4>i3=3

X4(1, 2, i3, i4) + . . . . (2.3.8)

We can now substitute the above result in the definition of g(r12). The symmetry

of |Φ0(1, . . . , N)|2 with respect to interchange of the particle labels allows us to collect

together all the Xp that differ only in the labels of their arguments. As a result, we obtain

g(r12) =
N(N − 1)

ρ2N

∫

dx3 . . . dxN∆(1, . . . , N)

×
N

∑

p=2

(N − 2)!

(N − p)!(p− 2)!
Xp(1, 2, . . . , p) (2.3.9)
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where

∆(1, . . . , N) = |Φ0(1, . . . , N |2 , (2.3.10)

and

N =

∫

dx1 . . . dxN∆(1, . . . , N)F 2(1, . . . , N) . (2.3.11)

The function ∆ can be readily integrated over the degrees of freedom of particles p+ 1, . . . , N .

From the definition

∆p(1, . . . , p) =
1

(N − p)!

∫

dxp+1 . . . dxN∆(1, . . . , N) (2.3.12)

it follows that the functions ∆p satisfy the relations
∫

dxp+1∆p+1 = (N − p)∆p , (2.3.13a)

∆p ≡ 0 for p > N . (2.3.13b)

Note that Eq.(2.3.12) implies that the radial distribution function of the non interact-

ing Fermi gas can be written in the form

gFG(r12) =
N(N − 1)

ρ2

∫

dx3 . . . dxN∆(1, . . . , N)
∫

dx1 . . . dxN∆(1, . . . , N)
=

1

ρ2
∆2(r12) . (2.3.14)

The explicit calculation using Eq.(2.1.5) yields the result

gFG(r12) =
1

ρ2

∑

i,j

ϕ†
i(r1)ϕ

†
j(r2)

[

ϕi(r1)ϕj(r2) − ϕj(r1)ϕi(r2)
]

= 1 − 1

ν
ℓ2(kF r12), (2.3.15)

showing that statistical correlations, responsible for the deviation of gFG from unity, are

described by the Slater function. The radial dependence of gFG(r) at kF = 0.5 fm−1 and

degeneracy ν = 2 and 4 is shown in Fig. 2.4.

The cluster contributions appearing in the right hand side of Eq.(2.3.9) can be repre-

sented by diagrams, that can be classified according to their topological structures.

A diagram associated with a n-particle cluster consists of n points connected by lines

representing dynamical and statistical correlations.

Classification of points:
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Figure 2.4: Fermi-gas radial distribution function gFG(r12), defined by Eq.(2.3.15), at
Fermi momentum kF = 0.5 fm−1 and degeneracy ν = 2 (solid line) and 4 (dashed line).

• External points (open circles): represent particles whose degrees of freedom are not

integrated over (x1 and x2 in the case of the radial distribution function);

• Internal points (solid dots): represent particles whose degrees of freedom an inte-

gration variables. Each internal point contributes a multiplicative factor ρ .

Classification of lines:

• Dynamical correlation line (dashed line): a line connecting any two points i and j,

representing a factor h(rij) in the integrand of the cluster contribution;

• Statistical correlation line, or exchange line (oriented solid lines): a line connecting

any two points i and j, representing a factor −ℓ(kF rij)/ν in the integrand of the

cluster contribution. Obviously, statistical lines are absent in the diagrammatic

representation of the radial distribution functions of Bose systems.

Diagrammatic rules:
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(i) Every internal point is the extremity of at least one dynamical correlation line:

(ii) No dynamical correlation lines connect pairs of external points;

(iii) Statistical lines form closed non-overlapping loops. A factor −ν is associated to

every loop of statistical lines.

The correlation lines and the corresponding factors are depicted in Fig.(2.5).

Figure 2.5: Diagrammatic representation of dynamical and statistical statistical correla-
tions lines and the loop of statistical correlation lines involving two particles.

In order to classify the diagrams contributing to the radial distribution function, we

first exploit Eq.(2.3.13b) to extend to infinity the upper limit of the summation appearing

in Eq.(2.3.9), with the result

g(r12) =
N !

N ρ2

∞
∑

p=2

1

(p− 2)!

∫

dx3 . . . dxp∆p(1, . . . , p)Xp(1, . . . , p) . (2.3.16)

The product ∆pXp can be factorized in two parts. The diagrams associated with

the first one, Cn(1, 2, i3, . . . , in), contain the external points, 1 and 2, plus a set of in-

ternal points, connected to the external points by at least one continuous path of dy-

namical or statistical correlation lines. The diagrams associated with the second factor,

Dp−n(in+1, . . . , ip), contain p−n internal points, disconnected from 1, 2 (and therefore from

the points of Cn).

Carrying out independently the integration of these two terms and relabeling the
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points we find

g(r12) =
1

N ρ2

[

∞
∑

n=2

∫

dx3 . . . dxn
Cn(1, 2 . . . n)

(n− 2)!

][

∞
∑

m=0

∫

dx1 . . . dxm
Dm(1, 2 . . .m)

m!

]

.

(2.3.17)

It can be easily shown that the second summation involved in the above equation coincides

with the cluster expansion of the normalization integral N . Hence, all the disconnected

diagrams appearing in the cluster expansion of the radial distribution function cancel

exactly.

The cancellation of the disconnected parts is a very general property of many dia-

grammatic expansions, which allows us to write

g(r12) =

∞
∑

p=2

Γp(1, 2), (2.3.18)

where Γp(1, 2) is the sum of all topologically distinct connected diagrams with 1, 2 as

external points and p−2 points connected to one another in all possible ways.

There is another cancellation leading to a further simplification of the diagrammatic

scheme. The connected diagrams can be classified in two classes: the first one contains

reducible diagrams, i.e. diagrams that can be divided in two or more disconnected parts

by cutting the diagram at a point of reducibility P . The parts which do not contain

the external points are called subdiagrams and denoted by γi, while the remaining part

are denoted by Γ. The diagrams belonging to the second class are called irreducible.

Thanks to translation invariance, implying that the correlation functions only depend on

relative distances between particles, the reducible diagrams can be written as a product

of independent factors.

The authors of Ref.[8] have shown that cluster terms associated with reducible dia-

grams cancel. In the case of Fermi systems this result holds true for any N , while in

Bose systems the cancellation only occurs in the thermodynamic limit. It follows that the
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cluster expansion of the radial distribution function is irreducible and Eq.(2.3.18) becomes

g(r12) =

∞
∑

p=2

Γirr
p (1, 2). (2.3.19)

Few examples of connected, disconnected and reducible diagrams are shown in Fig. 2.6.

Figure 2.6: Examples of connected, disconnected and reducible diagrams

As a final remark, we note that the cluster contributions appearing in the right hand

side of the above equation can be written in such a way that a term f 2(r12) appear as a

multiplicative factor. In the case of Bose statistic the resulting expansion can be cast in

the form

g(r12) = f 2(r12)

[

1 +

∞
∑

p=1

ρpgp(r12)

]

, (2.3.20)

where gp includes the contributions of diagrams involving p internal points. For example,

the forst order term reads

g1(r12) =

∫

d3r3h(r13)h(r32) . (2.3.21)
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The diagrams representing the first and second order terms in the right hand side of

Eq.(2.3.20) are shown in Fig. 2.7. The corresponding expression for the case of Fermi

systems will be given in Section 2.5.

Figure 2.7: Diagrammatic representation of the first (a) and second (b) order contributions
to the radial distribution of a Bose fluid, g1 and g2 of Eq.(2.3.20).

2.4 Hyper-Netted-Chain (HNC) equation for Bose

systems

In the previous Section we have classified the diagrams associated with the terms of

the cluster expansion in such a way as to identify those providing vanishing contributions.

In this Section we will discuss a further classification, allowing one to sum up selected

classes of diagrams to all cluster orders.

To explain the new classification scheme, let us consider first the case of Bose systems
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and rewrite Eq.(2.3.20) in the form

g(r) = f 2(r12)
[

1 + C(r12)
]

, (2.4.1)

where the function C(r12) consist of the sum of all connected irreducible graphs with 1, 2

as external points. From these graphs we have to exclude the diagrams with a “short-

cut” connection, i.e. a single h(r12) bond, between 1 and 2, as such graphs are generated

multiplying by f 2(r12) = 1 + h(r12).

A i-j subdiagram is, by definition, any part of a diagram which is only connected to

the rest at points i and j.

A diagram is called composite (or parallel) if composed by two or more subdiagrams

forming parallel independent connections between i and j. A diagram that is not com-

posite is called simple.

Since any composite diagram contributing to C(r12) consists of a number of simple di-

agrams connected in parallel, we can express C(r12) in terms of simple diagrams only.

Denoting S(r12) the sum of all irreducible, simple 1-2 diagrams without short-cut bonds

h(r12), we can write

C(r12) = eS(r12) − 1 , (2.4.2)

since expanding the exponential one obtains S(r12) plus the sum of all composite di-

agrams2. A 1-2 diagram is called nodal if there is at least one point (node) all path

connecting 1 to 2 must pass through. By definition, a composite diagram is non-nodal.

On he other hand, a nodal 1-2 diagram is necessary simple. A simple graph contributing to

C(r12) may be either nodal or non-nodal; if non-nodal, such a graph is called elementary.

Hence, we can use the decomposition

S(r12) = N(r12) + E(r12) , (2.4.3)

2The factor 1/n! associated with the n-th term of the expansion is cancelled exactly by the so called
“symmetry number” of the corresponding composite diagrams.
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where N(r12) and E(r12) denote the sum of nodal and elementary diagrams, respectively.

Few examples of diagrams belonging to the classes defined above are depicted in

Fig. 2.8 .

Figure 2.8: Example of generic composite (a) and simple diagrams of nodal (b) and
elementary (c) types

From Eq.(2.4.3) it follows that the radial distribution function can be written in the

form

g(r12) = f 2(r12)e
[N(r12)+E(r12)] = f 2(r12)

{

1 +N(r12) + E(r12) + 1
2
[N(r12) + E(r12)]

2 + · · ·
}

= f 2(r12)
[

1 +N(r12) + E(r12)
]

+X(r12),

(2.4.4)

which defines the function X(r12) as the sum of all composite diagrams multiplied by

f 2(r12).

Figure 2.9 represents the sum of nodal diagrams, N , obtained connecting in series the
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+= +

+ +=

Figure 2.9: Nodal expansion of non-nodal diagrams

X diagrams. It corresponds to the integral equation

N(r12) = ρ

∫

d3r3
[

X(r13) +N(r13)
]

X(r32). (2.4.5)

The Hypernetted-chain (HNC) approximation, that can be justified on physics ground

at “not too high” densities, amounts to neglecting the elementary diagrams from the

expansion of g(r12). As a result, one obtains

g(r12) = f 2(r12)e
N(r12) , (2.4.6)

and

X(r12) = f 2(r12)e
N(r12) −N(r12) − 1 = g(r12) −N(r12) − 1. (2.4.7)

Substitution of

g(r12)

f 2(r12)
= eN(r12) ⇒ N(r12) = − ln f 2(r12) + ln g(r12) , (2.4.8)

in Eq.(2.4.7) yields

X(r12) = g(r12) − 1 + ln f 2(r12) − ln g(r12). (2.4.9)

and the integral equation (2.4.5) can be rewritten in the simple form

− ln f 2(r12)+ ln g(r12) = ρ

∫

d3r3
[

g(r13)−1+ln f 2(r13)− ln g(r12)]
[

g(r13)−1
]

. (2.4.10)
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The HNC equations for the radial distribution function of a Bose system can be sum-

marized as follows [1, 5]

X(r12) = f 2(r12)e
N(r12) −N(r12) − 1 , (2.4.11a)

N(r12) = ρ

∫

d3r3
[

X(r13) +N(r13)
]

X(r32) , (2.4.11b)

g(r12) = X(r12) +N(r12) + 1. (2.4.11c)

For any choice of the correlation function f(r), the functions X(r) and N(r) and the

radial distribution function g(r) can by obtained from the following procedure

(1) Compute the first approximation to X(r) setting N(r) = 0:

X(0)(r) = f 2(r) ; (2.4.12)

(2) Obtain a first approximation to N(r) solving the integral equation (2.4.5), either

through matrix inversion or in Fourier space, using

N (0)(k) =
ρX(0)(k)

1 − ρX(0)(k)
; (2.4.13)

(3) Obtain the first order X(r) from

X(1)(r) = f 2(r)eN(0)(r) −N (0)(r) − 1 ; (2.4.14)

(4) Go back to step (2) and continue until convergence is reached.

2.5 Fermi Hyper-Netted-Chain (FHNC) equations

The generalization of the HNC scheme to the case of Fermi system can be easily

understood considering that a Bose system can be seen as the limit of its Fermi counterpart

for ν → ∞, with the density ρ kept fixed (note that kF → 0 as ν → ∞, so that

ℓ(kF r) → 1).
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Implementation of Fermi statistic leads to the appearance of statistical (or exchange)

correlation lines, that may be superimposed to dynamical correlation lines. The exchange

lines fulfill the topological constraint of forming non-overlapping, closed and oriented

loops, each loop contributing a factor −ν. As discussed in the previous Sections, only

connected and irreducible diagrams contribute.

From the generalization of Eqs.(2.3.19) and (2.3.20), we can obtain the corresponding

expansion of the radial distribution function of a Fermi fluid. For example, the term of

order ρ becomes
∫

d3r3 h(r13)h(r32) ⇒
∫

d3r3 h(r13)h(r32)∆3, (2.5.1)

where

∆3 =

∫

d3r4 . . . d
3rN |Φ0(1, . . . , N)|2 = 1 − 1

ν
ℓ2(kF r12) −

1

ν
ℓ2(kF r13) −

1

ν
ℓ2(kF r32)

+
1

ν2
ℓ(kF r12)ℓ(kF r23)ℓ(kF r32) +

1

ν2
ℓ(kF r13)ℓ(kF r32)ℓ(kF r21) .

(2.5.2)

The diagrams representing the terms involving p = 0 and 1 internal points are shown in

Fig. 2.10.

The presence of statistical correlation lines leads to another classification of the i− j

diagrams, based on the types of correlation lines reaching points i and j. Denoting Γ(i, j)

the generic diagram (of N,X or E type), we label can it as

Γdd(i, j) if both i and j are reached by dynamical correlation lines only;

Γde(i, j) if i is reached by a dynamical correlation line only, while j is reached by two

statistical correlation lines.

Γee(i, j) if both i, j are reached by two statistical lines,

Γcc(i, j) if both i, j are reached by one statistical line.
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Figure 2.10: Diagrammatic representation of the contributions to the radial distribution
function of a Fermi fluid involving p = 0 (a) and 1 (b) internal points.

Figure 2.11: Topological structures of Γdd (a), Γde (b), Γee (c), Γcc (d) diagrams.

The above classification scheme is illustrated in Fig. 2.11.

The derivation of the integral equations for the nodal functions Nxy(rij), analog of
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Eq.(2.4.5), is straightforward. The resulting equations read

Ndd(rij) = ρ

∫

d3rk

{[

Xdd(rik) +Xde(rik)
]

Wdd(rkj) +Xdd(rik)Wde(rkj)
}

, (2.5.3a)

Nde(rij) = ρ

∫

d3rk

{[

Xdd(rik) +Xde(rik)
]

Wde(rkj) +Xdd(rik)Wee(rkj)
}

, (2.5.3b)

Nee(rij) = ρ

∫

d3rk

{[

Xde(rik) +Xee(rik)
]

Wde(rkj) +Xde(rik)Wee(rkj)
}

, (2.5.3c)

Ncc(rij) = ρ

∫

d3rk Xcc(rik)
[

Wcc(rkj) −
1

ν
ℓ(kF rkj)

]

, (2.5.3d)

where Wxy ≡ Nxy +Xxy.

Defining

F (r) = f 2(r) eNdd(r), (2.5.4)

we can write the sum of non-nodal diagrams, Xxy(rij), given by a set of four equations

which are the Fermi analog of Eq.(2.4.5):

Xdd(r) = F (r) − 1 −Ndd(r), (2.5.5a)

Xde(r) = F (r)Nde(r) −Nde(r), (2.5.5b)

Xee(r) = F (r)
{

Nee(r) +N2
de(r) − ν[Ncc(r) −

1

ν
ℓ(kF r)]

2
}

−Nee(r), (2.5.5c)

Xcc(r) = F (r)
[

Ncc(r) −
1

ν
ℓ(kF r)

]

+
1

ν
ℓ(kF r) −Ncc(r) . (2.5.5d)

The radial distribution function can be readily expressed in terms of nodal (Nxy) and

non nodal (Xxy) functions, according to

g(r) = 1 +Wdd(r) + 2Wde(r) +Wee(r). (2.5.6)

Equations (2.5.3)-(2.5.6), originally obtained by Fantoni e Rosati [7, 8], are referred to

as FHNC equations. Their solutions can be obtained generalizing the iterative procedure

described in the previous Section for the case of Bose systems.
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Chapter 3

Properties of the hard sphere fluid

The formalism described in the previous Chapter has been employed to obtain a

variational estimate of the ground state energy of a system of fermion hard spheres. The

expectation value of the hamiltonian, computed solving the FHNC equations, has been

minimized with respect to the form of the correlation function. The cluster expansion of

the kinetic energy operator, involving some additional difficulties, is discussed in Section

3.1, while the numerical results are presented in Section 3.2.

In Section 3.3 we will discuss the derivation of an effective interaction within the

CBF formalism. The effective interaction allows one to develop a consistent treatment

of equilibrium and non equilibrium properties of the system. As an example, in Section

3.4 we will show the results of the calculation of the shear viscosity coefficient, obtained

using the approach of Landau, Abrikosov and Khalatnikov [10].

3.1 Cluster expansion of the energy expectation value

Following [11], we start defining the generalized normalization integral

I(β) = 〈Ψ0| exp
[

β(H − TF)
]

|Ψ0〉, (3.1.1)
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where H is the many-body hamiltonian and TF is the ground-state energy of the Fermi

gas; it is then possible to rewrite the expectation value of H in the form

E = TF +
∂

∂β
ln I(β)

∣

∣

∣

β=0
. (3.1.2)

We can also define a set of N !/(N−n)!n! wave-functions describing n-particle subsystems:

Ψi1...in = FnΦi1...in , (3.1.3)

whit FN =F, Φi1...iN =Φ0. These wave-functions allow one to introduce an equivalent set

of subnormalization integrals for each subsystem:

Ii(β) = 〈i| exp
[

β(t(1) − ǫFi )
]

|i〉,

Iij(β) = 〈ij|F †
2 (12) exp

[

β(t(1)+ t(2)+ v(12)− ǫFi + ǫFj )
]

F2(12)|ij〉a ,
...

I1...N(β) = I(β),

(3.1.4)

where t(i) = −∇2
i /2m, ǫFi is the kinetic energy of a particle carrying momentum ki

and the subscript a on the matrix element indicates that the two-particles states are

antisymmetrized, i.e.

|ij〉a =
1√
2
(|ij〉 − |ji〉). (3.1.5)

We now want to express ln I(β) of Eq.(3.1.2) through the ln Ii1...ip(β). Noting that Iij

reduces to IiIj if we neglect v(12) and both dynamical and statistical correlations, we

include these effect through a multiplicative factor:

Iij = IiIjYij . (3.1.6)

The definition of the tensor Yij can be generalized to any number of indices. From

Ii = Yi,

Iij = YiYjYij ,

...

I1...N(β) = I =
∏

i

Yi

∏

j<i

Yij . . . Y1...N ,

(3.1.7)
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it follows that

ln I(β) =
∑

i

lnYi +
∑

j<i

lnYij + . . .+ lnY1...N . (3.1.8)

It can be shown that each term of this sum goes like N in the thermodynamic limit and

the n-th term of the series collects all individual contributions to the cluster development

of ln I(β) involving, in a connected manner, exactly n Fermi-sea states [11]. It is then

correct to interpret the n-th term of Eq.(3.1.8) as the n-body part of ln I(β), or the n-

body cluster. From the diagrammatic point of view, the n-body cluster is represented by

a connected n-point diagram, one point for each particle involved.

The cluster expansion of the energy can be obtained from Eq.(3.1.8):

〈H〉 = TF + (∆E)1 + (∆E)2 + . . .+ (∆E)N , (3.1.9)

(∆E)n =
∑

i1<...<in

∂

∂β
lnYi1...in(β)

∣

∣

∣

β=0
. (3.1.10)

Inversion of Eqns.(3.1.7) to express Yij... in terms of Iij..., yields the following expression

for the two-body cluster contribution to the energy

(∆E)2 =
∑

i<j

[

1

Iij

∂Iij
∂β

−
(∂Ii
∂β

+
∂Ij
∂β

)

]

β=0

=
∑

i>j

wij, (3.1.11)

where

wij = 〈ij|1
2
F †

2 (12)
[

t(1) + t(2), F2(12)
]

+ c.c. + F †
2 (12)v(12)F2(12)|ij〉a. (3.1.12)

Note that we are assuming F †
2 (12) = F2(12) = f12 (see Eq.(2.1.2)). The n-body cluster

energy correction of Eq.(3.1.10) can be factorized into irreducible contributions given by

integrals of simple two-body functions and the Slater factor of Eq.(2.1.7). All reducible or

factorizable terms of (∆E)n mutually cancel, as in the expansion of the radial distribution

function, discussed in the previous Chapter. More specifically, the two-body cluster term

of Eq.(3.1.11) is given by

(∆E)2 =
ρ2

2

∫

w2(r12)
[

1 − 1

ν
l2(kF r12)

]

d3r1d
3r2, (3.1.13)
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where

w2(12) =
1

m
(∇f(r12))

2 + f 2(r12)v(r12). (3.1.14)

3.1.1 Alternative forms for the kinetic energy

The expectation value of kinetic energy in the correlated ground state cannot be

computed exactly. The approximations needed to carry out its calculation introduce a

degree of ambiguity, arising from the different transformations of the expectation value

〈T 〉 =
1

N
N

∑

i=1

〈−∇2
i

2m
〉,

〈−∇2
i 〉 =

∫

Φ∗ F ∇2
i F Φ d3r1. . .d

3rN ,

(3.1.15)

where Φ = Φ0. The straightforward applications of ∇2
i to the right gives the so called

Pandharipande-Bethe (PB) form [12]

〈−∇2
i 〉PB =

∫

Φ∗F
[

∇2
i Φ + (∇2

iF )Φ + 2(∇iF ) · (∇iΦ)
]

d3r1. . .d
3rN , (3.1.16)

where the contribution of the first term, in which ∇2
i operates on the Fermi gas ground

state wave function, is

TF =
3

5

k2
F

2m
. (3.1.17)

As Φ satisfies periodic boundary conditions, surface contributions arising from integration

by parts of the third term in the r.h.s. of Eq.(3.1.16) vanish. We can then obtain the

Clark-Westhaus (CW) form [13]

〈−∇2
i 〉CW =

∫

Φ∗
[

F 2∇2
i Φ − (∇iF )2Φ

]

d3r1. . .d
3rN . (3.1.18)

Finally, writing the third term in the r.h.s. of Eq.(3.1.16) as (∇iF
2)·(∇Φ) and integrating

by parts we obtain the alternative expression

〈−∇2
i 〉 =

∫

[

−(∇iΦ
∗)F 2∇iΦ + Φ∗F∇2

iF Φ
]

,
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which, using (∇Φ∗)·(∇Φ) =
[

∇(Φ∗Φ) − Φ∗∇2Φ − (∇2Φ∗)Φ
]

/2, becomes

〈−∇2
i 〉JF =

∫

[

Φ∗F 2∇2
i Φ − 1

4
F 2∇2

i (Φ
∗Φ) + 1

2
Φ∗

{

F∇2
iF − (∇iF )2

}

Φ
]

d3r1. . .d
3rN ,

(3.1.19)

known as the Jackson-Feenberg (JF) form for the kinetic energy [14]

If the many-body integrations were carried out exactly, the PB, CW and JF forms

of the kinetic energy would yield the same result. Hence, the discrepancies between the

results obtained using different prescriptions provides a measure of the accuracy of the

calculation of the expectation value.

3.2 Ground state energy

The energy per particle of a fluid of hard spheres of radius a = 1 fm and degeneracy

ν = 2 has been obtained by minimizing the expectation value of the hamiltonian in the

correlated ground state, computed in the FHNC approximation. The final expressions

corresponding to the CW and JF forms of the kinetic energy are

ECW = TF +
ρ

2m

∫

d3r
(∇f(r)

f(r)

)2

g(r) , (3.2.1a)

EJF = TF − ρ

4m

∫

d3r

[

(

∇2 lnf(r)
)

g(r)

+
1

2
(f 2(r) eNdd − 1)

(1

ν
∇2ℓ2(kF r) − 2Ncc∇2ℓ(kF r)

)

]

.

(3.2.1b)

The correlation function has been chosen of the form

f(r) = θ(d− r)

{

θ(r − a)
d

r

sin[k0(r − a)]

sin[k0(d− a)]

}

+ θ(r − d) , (3.2.2)

where d > a, θ(x) is the Heaviside theta-function and k0 is determined in such a way as

to have
(

df

dr

)

r=d

= 0 . (3.2.3)
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For any value of the density the expectation value E = 〈H〉/N has been minimized with

respect to the correlation range d (see Eq.(3.2.2)). The shape of f corresponding to the

minimum at kF = 0.5 fm−1 is illustrated in Fig. 2.1 of Chapter 2.

The behavior of E as a function of d is displayed in Fig. 3.1, while Fig. 3.2 shows the

kF (i.e. density) dependence. For comparison we also report the results of a perturbative

calculation up to order (a kF )3 (see Eq.(1.3.12)). It appears that the requirement that the

FHNC energy be an upper bound to the ground state energy is always fulfilled.

In order to illustrate the dependence of the results on the hard core radius, in Fig. 3.3

we also show the results of the FHNC calculations of Ref. [15], carried out for a system

of hard spheres of radius a = 0.2 fm and degeneracy ν = 4. Comparison between Figs.

3.2 and 3.3 clearly demonstrates that the convergence of the perturbative expansion is

driven by the product x = a kF .

Finally in Table 3.4 we compare the values of the energy expectation values computed

at two-body cluster level and within the FHNC approximation to the results of the pertur-

bative low density expansions. To gauge the dependence of our results on the treatment

of the kinetic energy, we also provide the ratio

∆ =
|EJF − ECW|

EJF
. (3.2.4)

It clearly appears that choosing the CW or JF form does not lead to significant differences.

3.3 CBF effective interaction

Within the CBF formalism, the effective interaction is defined through

〈H〉 =
〈Φ0|FHF |Φ0〉
〈Φ0|FF |Φ0〉

= TF + 〈Φ0|Veff |Φ0〉 , (3.3.1)

TF being the Fermi gas kinetic energy. The above equation shows that to obtain Veff one

has to carry out the calculation of the expectation value of the hamiltonian, e.g. within
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Figure 3.1: Minimization of the ground state energy of a system of fermion hard spheres
of radius a = 1 fm and degeneracy ν = 2, as a function of the correlation range d at Fermi
momentum kF = 0.3 fm−1 (upper panel) and 0.5 fm−1 (lower panel).

the FHNC approximation. An alternative strategy, originally proposed in Refs. [16, 17]

is based on the use of low order approximations to 〈H〉. Within this approach, and
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Figure 3.2: Fermi momentum dependence of the energy per particle of a system of fermion
hard spheres of radius a = 1 fm and degeneracy ν = 2. The lines correspond to the results
obtained using FHNC and the perturbative low density expansion up to order (a kF ) and
(a kF )3.

keeping only the two-body cluster contribution, the effective potential takes the simple

form (compare to Eq.(3.1.14))

Veff =
∑

i<j

veff(ij) =
∑

i<j

[

1

m
(∇fij)

2 + v(ij)f 2
ij

]

. (3.3.2)

Note that in the case of hard spheres, as the correlation functions vanish at rij < a, the

interaction energy arises from the kinetic term only.

All approaches based on effective interactions are designed to provide accurate esti-

mates of the relevant physical quantities at low order in a given approximation scheme.

Following this philosophy, we have determined the correlation functions appearing in

Eq.(3.3.2) in such a way as to reproduce the FHNC energy at two-body level in the clus-

ter expansion. This obviously implies that the range of the fij’s, i.e. the range of the
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Figure 3.3: Same as in Fig. 3.2, but for a system of fermion hard spheres of radius a = 0.2
fm, mass m = 939 MeV and degeneracy ν = 4.

effective potential, is not the same as the range of the correlation functions resulting from

minimization of the FHNC energy. The results displayed in Fig. 3.5 show that in fact

the range of the effective interaction turns out to be somewhat shorter at all densities.

The radial shape of the effective interaction at two different values of the Fermi mo-

mentum is shown in Fig. 3.6.

3.4 Transport properties

The quantitative description of transport properties of nuclear matter is relevant to

the understanding of a variety of neutron star properties. Thermal conductivity is one of

the driving factors of the cooling process, while electrical conductivity is relevant to the

ohmic dissipation of magnetic fields in the star interior. In rotating stars, a crucial role

is also played by viscosity, that determines the possible onset of the gravitational-wave
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kF TF E2b EJF E[(a kF )] E[(a kF )3] ∆

0.1 0.0030 3.12 × 10−3 3.13 × 10−3 3.11 × 10−3 3.11 × 10−3 1.15 × 10−4

0.2 0.0120 1.30 × 10−2 1.31 × 10−2 1.28 × 10−2 1.30 × 10−2 3.82 × 10−4

0.3 0.0270 3.08 × 10−2 3.13 × 10−2 2.99 × 10−2 3.06 × 10−2 8.43 × 10−4

0.5 0.0750 9.60 × 10−2 10.03 × 10−2 8.83 × 10−2 9.53 × 10−2 2.29 × 10−3

0.6 0.1080 1.46 × 10−1 1.57 × 10−1 1.31 × 10−1 1.47 × 10−1 3.01 × 10−3

0.7 0.1470 2.13 × 10−1 2.34 × 10−1 1.83 × 10−1 2.16 × 10−1 4.09 × 10−3

0.8 0.1920 2.98 × 10−1 3.37 × 10−1 2.46 × 10−1 3.07 × 10−1 5.07 × 10−3

0.9 0.2430 4.04 × 10−1 4.74 × 10−1 3.20 × 10−1 4.25 × 10−1 6.18 × 10−3

1.0 0.3000 0.531 0.656 0.406 0.577 6.74 × 10−3

1.1 0.3630 0.693 0.896 0.504 0.771 8.01 × 10−3

1.2 0.4320 0.886 1.215 0.615 1.02 8.65 × 10−3

1.3 0.5070 1.12 1.64 0.740 1.33 9.95 × 10−3

1.4 0.5880 1.42 2.19 0.879 1.71 1.19 × 10−2

1.5 0.6750 1.77 2.95 1.03 2.19 1.28 × 10−2

Figure 3.4: Energy per particle of a fluid of hard spheres of radius a = 1 fm and degeneracy
ν = 2, as a function of Fermi momentum. TF is the kinetic energy of the non interacting
Fermi gas, whereas E2b and EJF denote the two-body cluster approximation and the
FHNC energy of Eq.(3.2.1b), respectively. The results of perturbation theory to order
(a kF ) and (a kF )3 are given by E[(a kF )] and E[(a kF )3]. The last column shows the
function ∆ defined in Eq.(3.2.4). Units are fm−1.

driven instabilities first predicted by Chandrasekhar in the 1970s [18, 19].

The CBF effective interaction approach has been recently employed to evaluate the

shear viscosity of both pure neutron matter [17] and nuclear matter in beta equilibrium

[20]. To assess the validity of this scheme, we have carried out a similar calculation for

the hard sphere fluid and compared the results to those obtained from the low density

perturbative expansion.

The theoretical description of transport properties of normal Fermi liquids is based

on Landau theory [21]. Working within this framework and including the leading term in

the low-temperature expansion, Abrikosov and Khalatnikov [10] obtained the approximate
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Figure 3.5: Comparison between the range of the correlation functions appearing in the
definition of the effective potential, Eq.(3.3.2), (solid line) and that resulting from mini-
mization of the FHNC energy (dashed line).

expression of the shear viscosity coefficient

ηAK =
1

5
ρm⋆v2

F τ
2

π2(1 − λη)
, (3.4.1)

where vF = (∂ǫ/∂k)|k|=kF
, ǫ being the quasiparticle energy, is the Fermi velocity and m⋆

is the effective mass, defined through

1

m⋆
=

1

k

dǫ

dk
. (3.4.2)

The quasi-particle lifetime τ can be written in terms of the angle-averaged scattering
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Figure 3.6: CBF effective interaction veff, defined in Eq.(3.3.2), plotted as a function of r
for Fermi momentum kF = 0.2 and 0.3 fm−1.

probability 〈W 〉 according to

τT 2 =
8π4

m∗3

1

〈W 〉 , (3.4.3)

where T is the temperature and

〈W 〉 =

∫

dΩ

2π

W (θ, φ)

cos (θ/2)
. (3.4.4)

Note that the scattering process involves quasiparticles on the Fermi surface. As a con-

sequence, for any given density ρ, W depends only on the angular variables θ and φ, the

magnitude of all quasiparticle momenta being equal to the Fermi momentum. Finally,
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the quantity λη appearing in Eq.(3.4.1) is defined as

λη =
〈W [1 − 3 sin4 (θ/2) sin2 φ]〉

〈W 〉 . (3.4.5)

The exact solution of the equation derived in Ref. [10], obtained by Brooker and Sykes

[22], reads

η = ηAK
1 − λη

4

×
∞

∑

k=0

4k + 3

(k + 1)(2k + 1)[(k + 1)(2k + 1) − λη]
, (3.4.6)

the size of the correction with respect to the result of Eq.(3.4.1) being

0.750 < (η/ηAK) < 0.925 . (3.4.7)

Equations (3.4.1)-(3.4.6) show that the key element in the determination of the viscos-

ity is the in-medium scattering cross section. The relation between scattering in vacuum

and in matter has been often analyzed under the assumption that the medium mainly

affects the flux of incoming particles and the phase space available to the final state parti-

cles, while leaving the transition probability unchanged. Within this picture W (θ, φ) can

be extracted from the scattering cross section in free space, (dσ/dΩ)vac, according to

W (θ, φ) =
16π2

m⋆2

(

dσ

dΩ

)

vac

(3.4.8)

where m⋆ is the nucleon effective mass and θ and φ are related to the kinematical variables

in the center of mass frame through [23]

Ecm =
k2

F

2m
(1 − cos θ) , θcm = φ . (3.4.9)

The CBF effective interaction defined in Eq.(3.3.2) can be employed to obtain the scat-

tering probability of Eq.(3.4.8) from Fermi’s golden rule

W (θ, φ) = |v̂eff(q)|2 , (3.4.10)
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v̂eff(q) being the Fourier transform of the effective potential at momentum transfer q,

whose magnitude is given by

|q| =
√

2mEcm(1 − cosφ) . (3.4.11)

Figure 3.7 shows the φ-dependence of W (θ, φ) for θ = 0, π/2 and π, at Fermi mo-

mentum kF = 0.2 and 0.5 fm−1. We have verified that, in the low density limit, the total

cross section obtained from the scattering probability illustrated in Fig. 3.7 approaches

its value in vacuum, discussed in Appendix A.

The temperature independent quantity ηT 2, computed using the CBF effective inter-

actions and the effective masses evaluated following the procedure discussed in Ref. [17],

is displayed in Fig. 3.8 as a function of density. The results of the approach discussed in

this thesis are compared to those obtained from the low density perturbative expansion,

including terms up to order (a kF )2 [24].

η = 4.35 × 10−3

(

kF

a2

)(

TF

T

)2
[

1 + 0.208(a kF ) +O(a kF )2
]

. (3.4.12)

Comparison of the results shown in Fig. 3.8 and those of Refs. [17, 20] suggests

that the low order perturbative results does not include the full effect of screening arising

from correlations. However, a systematic analysis of the differences between the elements

underlying the perturbative and CBF approaches is called for.
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Figure 3.7: Scattering probability W (θ, φ), plotted as a function of φ = θcm for three fixed
values of θ = 0, π/2 and π. The upper and lower panel correspond to Fermi momentum
kF = 0.3 and 0.5 fm−1, respectively.
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Figure 3.8: Density dependence of the quantity ηT 2 obtained using the CBF effective
interaction (solid line) and the perturbative expansion in x = a kF [24].



Conclusions

In this thesis we have discussed a calculation of equilibrium and non equilibrium prop-

erties of a fluid of fermion hard spheres, carried out within a fully consistent framework.

The approach we employed to handle the strong repulsive core of the interaction po-

tential, the treatment of which in standard perturbation theory involves severe difficulties,

is based on CBF theory and the formalism of cluster expansion.

The calculation of the energy per particle as a function of density, which amounts

to the determination of the equation of state at zero temperature, has been carried out

solving the set of FHNC integral equations, allowing one to sum the relevant contributions

at all orders of the cluster expansion.

The results of these calculations show that the FHNC energies are in good agreement

with those obtained from perturbative calculations in the region in which the low density

expansion is expected to be applicable. In addition, they always satisfy the requirement

of providing an upper bound to the true ground state energy.

As recently shown [17, 20], the CBF formalism can be also exploited to obtain an

effective interaction, suitable for calculating the collision integral appearing in the Landau-

Boltzmann equation. The availability of this effective interaction allows one to carry out

a consistent analysis of equilibrium and non equilibrium properties of interacting many-

body systems based on the same dynamical model.

We have derived the CBF effective interaction for the fermion hard sphere systems

and computed the shear viscosity coefficient, which has been also analyzed using the
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perturbative low density expansion [24].

Comparison between CBF and perturbative results suggest that, while a careful anal-

ysis of the differences between the elements underlying the two approaches is in order, the

perturbative result does not fully include the effects of screening of the bare interaction

arising from correlations, which leads to a significant enhancement of the shear viscosity.

The investigation of the sources of discrepancies between perturbative and CBF pre-

diction of the transport coefficient represents the natural extension of this thesis work. It

will involve the calculation of thermal conductivity, which is known to be only sensitive

to the total in-medium scattering cross section [25], as well as a careful comparison of the

density dependence of the effective masses.



Appendix A

Partial wave expansion of the
scattering amplitude

Choosing the z-axis along the wake-vector k the direction of k′ is specified by the

polar and azimuthal angles θ and ϕ, respectively.

Obviously, if we deal with a spherically symmetric potential, the scattering amplitude is

a function of θ only, i.e.

f(θ, ϕ) = f(θ) ,

and neither the incident nor the total wave-function depend on the azimuthal angle ϕ:

φ(r) =
eikr cos θ

(2π)3/2
, ψ(r) = φ(r) +

f(θ)

(2π)3/2

eikr

r
. (A.0.1)

Outside the range of V (r) both ψ(r) and φ(r) satisfy

(∇2 + k2)ψ = 0. (A.0.2)

The most general solution of the above equation can be obtained carrying out the partial-

wave decomposition, which amounts to expanding in Legendre Polynomials according to
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1

ψ(r, θ) =
∑

l

Rℓ(r)Pℓ(cos θ) . (A.0.3)

Substitution of the above expansion in Eq.(A.0.2) yields a set of second order differential

equations for the functions Rℓ(r), whose independent solutions are the spherical Bessel

functions jℓ(kr) and the Neumann functions ηℓ(kr):

jℓ(y) = yℓ
(

− 1

y

d

dy

)ℓ sin y

y
, (A.0.4a)

ηℓ(y) = yℓ
(

− 1

y

d

dy

)ℓ cos y

y
. (A.0.4b)

It should be noted that while the Bessel functions jℓ(y) are well-behaved everywhere, the

Neumann functions are singular in the limit y → 0; the asymptotic behaviour in the limit

y → ∞ is

jℓ(y) →
sin(y − ℓπ/2)

y
, ηℓ(y) → −cos(y − ℓπ/2)

y
. (A.0.5)

The most general expression of the total wave-function outside the scattering region is

ψ(r) =
1

(2π)
3
2

∑

ℓ

[

Aℓ jℓ(kr) +Bℓ ηℓ(kr)
]

Pℓ(cos θ), (A.0.6)

which in the large-r limit, using Eq.(A.0.5), reduces to

ψ(r) ≃ 1

(2π)
3
2

∑

ℓ

Cℓ
sin(kr − ℓπ/2 + δℓ)

kr
Pℓ(cos θ), (A.0.7)

where we have combined the sine and cosine functions to obtain a sine function shifted

by a phase δℓ. In this way we have decomposed the wave into a series of spherical-waves

called partial waves.

Developing the sine function of Eq.(A.0.7) into exponentials we see that ψ(r) contains

1The Legendre polynomials are related to the spherical harmonics via

Pl(cos θ) =

√

4π

2l + 1
Y 0

l (θ, ϕ)
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both incoming and outgoing spherical waves whereas we expect only the outgoing ones.

Therefore, the incoming waves must originate from the large-r asymptotic expansion of

the incident wave-function φ(r) and they cancel when we carry out the subtraction

(2π)3/2
[

ψ(r) − φ(r)
]

=
eikr

r
f(θ). (A.0.8)

This condition implies that the coefficients of the expansions of ψ(r) and φ(r) must be

equal (see appendix B for details), it follows that

Cℓ = (2ℓ+ 1)ei(δℓ+ℓπ/2) . (A.0.9)

Finally, from Eq.(A.0.7)-(A.0.9) we obtain

f(θ) =

∞
∑

ℓ=0

(2ℓ+ 1)
eiδℓ

k
sin δℓ Pℓ(cos θ), (A.0.10)

which is the decomposition of the scattering amplitude f(θ) in partial waves with phase-

shifts δℓ.

A.1 Optical theorem

Let us now consider the total cross-section

σ =

∫

dσ

dΩ
dΩ =

∫

|f(θ)|2dΩ . (A.1.1)

We can perform the integration using Eq.(A.0.10) and the orthonormality relations ful-

filled by Legendre polynomials, with the result

σ =
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ. (A.1.2)

Comparison between Eq.(A.0.10) and Eq.(A.1.2) yields the result 2

σ =
4π

k
ℑ{f(0)}, (A.1.3)

2Note that Pℓ(1) = 1
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known as optical theorem. It states the fact that scattering in the forward direction

(θ = 0) is always non-zero. Thus, there will always be a bright spot in the shadow in the

forward direction, produced by the destructive interference between the incident plane-

wave eikr cos θ and the scattered wave f(θ)eikr/r.

Writing

σ =
∞

∑

ℓ=0

σℓ,

we can introduce the ℓ-th partial cross-section

σℓ =
4π

k2
(2ℓ+ 1) sin2 δℓ, (A.1.4)

i.e. the contribution to σ from the ℓ-th partial wave.

From the above results it follows that the value of the phase-shift completely determines

the scattering process. The cross-section vanishes for δℓ = 0, π and reaches its maximum

value for δℓ = π/2.

To see how the phase-shifts can be evaluated let us consider the specific case of a spheri-

cally symmetric potential V (r) that vanishes for r > a, where a is the potential range.

The most general form of the wave-function ψ(r) in the region r > a, i.e. the solution of

the free-space Schrödinger equation Eq.(A.0.2), is

ψ(r) =
1

(2π)
3
2

∑

ℓ

iℓ(2ℓ+ 1)Aℓ(r)Pℓ(cos θ), (A.1.5)

where

Aℓ(r) = eiδℓ [cos δℓ jℓ(kr) − sin δℓ ηℓ(kr)]. (A.1.6)

The logarithmic derivative of Aℓ(r) for r = a is

γℓ ≡
A′

ℓ(r)

Aℓ(r)

∣

∣

∣

r=a
= ka

cos δℓ j
′
ℓ(ka) − sin δℓ η

′
ℓ(ka)

cos δℓ jℓ(ka) − sin δℓ ηℓ(ka)
, (A.1.7)

where g′(x) = dg(x)/dx. We can invert this relation to obtain

tan δℓ =
[ ka j′ℓ(ka) − γℓ jℓ(ka)

ka η′ℓ(ka) − γℓ ηℓ(ka)

]

. (A.1.8)
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A.2 Hard sphere scattering

Finally, let us consider scattering by a hard sphere.

In this case, the potential is infinite for r ≤ a and 0 everywhere else.

The wave-function ψ(r) is zero for r ≤ a, which implies Aℓ(r) = 0 ∀ ℓ, yielding

γℓ = ∞ ∀ ℓ .

Hence, from Eq.(A.1.8) it follows that

tan δℓ =
jℓ(ka)

ηℓ(ka)
. (A.2.1)

Consider the ℓ = 0 partial wave (s-wave). From Eqs.(A.0.4a)-(A.0.4b) we obtain

tan δ0 =
sin(ka)/ka

− cos(ka)/ka
= − tan(ka), (A.2.2)

i.e.

δ0 = −ka. (A.2.3)

The s-wave radial wave-function, given by Eq.(A.1.6), is

A0(r) = e−ika sin k(r − a)

kr
, (A.2.4)

while the corresponding radial wave-function for the incident wave is

Ã0(r) =
sin kr

kr
. (A.2.5)

The radial s-wave wave functions for the scattered and the incident waves are similar, but

shifted by a phase ka.

We can now discuss the low energy limit (ka≪ 1) of Eq.(A.2.1)3

tan δℓ ≃ − (ka)2ℓ+1

(2ℓ+ 1)[(2ℓ− 1)!!]2
, (A.2.6)

3Recall that

jℓ(y) −−−→
y→0

yℓ

(2ℓ + 1)!!
, ηℓ(y) −−−→

y→0
− (2ℓ − 1)!!

yℓ+1
, (2ℓ + 1)!! = 1 · 3 · · · (2ℓ + 1)
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showing that δℓ falls off rapidly as ℓ increases, and vanishes as k → 0.

However, the s-wave remains finite, because of the 1/k2 factor of Eq.(A.1.2). Hence, at

low energy only s-wave scattering (which is spherically symmetric) contributes to the

cross section.

For ka≪ 1 we can write
dσ

dΩ
=

sin2 ka

k2
≃ a2, (A.2.7)

and the corresponding total cross-section

σ = 4πa2, (A.2.8)

turns out to be four times the geometric cross-section πa2 (i.e. the classical cross-section

for the hard sphere problem). This is not surprising, because the low-energy limit corre-

sponds to to long wave-lengths (ka = 2π/λ), and we do not expect to find the classical

result.

If we consider instead the high energy limit (ka ≫ 1), using the asymptotic forms of jℓ

and ηℓ given by Eq.(A.0.5), it easy to see that all partial wave up to ℓmax = ka contribute

significantly to the cross-section:

σ =
4π

k2

ℓmax
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ . (A.2.9)

In this case, we can replace sin2 δℓ with its average value, 1/2, with the result

σ ≃ 2π

k2

ka
∑

ℓ=0

(2ℓ+ 1) = 2πa2, (A.2.10)

which is twice the classical result.

This time the outcome is somewhat surprising, since we might expect the classical result.

High energies correspond indeed to short wave-lengths, so that wave-packets are small

compared with the size of the scattering region. These wave-packets will follow approxi-

mately classical trajectories.
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The reason of this apparent anomaly is that the scattering is counted twice in the clas-

sical limit. Once in the true scattering (which is spherically symmetric) and once in the

shadow of the scattering sphere in the forward direction produced by destructive inter-

ference between incident plane wave and scattered one. The optical theorem assures that

the interference is not completely destructive so that the shadow has a bright spot, to

which is associated an effective cross-section πa2. Thus we totally get 2πa2.
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Appendix B

Calculation of the partial wave
coefficients Cℓ

Let us start expanding the incident wave-function around the scattering zone in the

Legendre-functions’ basis:

eikr cos θ =
∑

ℓ

aℓ jℓ(kr)Pℓ(cos θ) . (B.0.1)

Note that Neumann functions are absent because they are not well-behaved for r → 0.

Using the orthonormality of the Legendre functions

∫ 1

−1

Pn(µ)Pm(µ)dµ =
δnm

n+ 1/2
,

we can invert Eq.(B.0.1) to obtain

aℓ jℓ(kr) = (l + ℓ/2)

∫ 1

−1

eikrµ Pℓ(µ)dµ. (B.0.2)

A useful property of Bessel functions is [26]:

jℓ(y) =
(−1)ℓ

2

∫ 1

−1

eiyµ Pℓ(µ)dµ,

which implies

aℓ = iℓ(2ℓ+ 1) .



66 Calculation of the partial wave coefficients Cℓ

Hence

eikr cos θ =
∑

ℓ

iℓ(2ℓ+ 1) jℓ(kr)Pℓ(cos θ). (B.0.3)

In the large-r limit this expression can be developed using the asymptotic form of jℓ(kr):

φ(r) =
1

(2π)
3
2

∑

ℓ

il(2ℓ+ 1)
ei(kr−ℓπ/2) − e−i(kr−ℓπ/2)

2i kr
Pℓ(cos θ). (B.0.4)

If we now compare this expression with the asymptotic form of the total wave-function

ψ(r) =
1

(2π)
3
2

∑

ℓ

Cℓ
ei(kr−ℓπ/2+δℓ) − e−i(kr−ℓπ/2+δℓ)

2i kr
Pℓ(cos θ), (B.0.5)

and use

(2π)3/2
[

ψ(r) − φ(r)
]

=
eikr

r
f(θ),

we find the definition of Cℓ:

Cℓ = (2ℓ+ 1)ei(δℓ+ℓπ/2),

QED.
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