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Introduction

Experimental searches of neutrino oscillations exploit neutrino-nucleus interactions to

detect the beam particles, the properties of which are largely unknown. The use of nuclear

targets as detectors, while allowing for a substantial increase of the event rate, involves

non trivial problems, as the interpretation of the observed signal requires a quantitative

understanding of neutrino-nucleus interactions. Given the present experimental accuracy,

the treatment of nuclear effect is in fact regarded as one of the main sources of systematic

uncertainty (see, e.g., Ref.[1]).

Over the past decade, a growing effort has been made, aimed at making use of the

knowledge acquired from experimental and theoretical studies of electron-nucleus scatter-

ing.

Electron-nucleus scattering cross sections are usually analyzed at fixed beam energy

Ee, and electron scattering angle θe as a function of the energy loss ω. As an example,

Fig.1 shows the typical behavior of the double differential cross sections of the inclusive

process

e+ A→ e′ +X , (1)

in which only the outgoing lepton is detected, at beam energy around 1 GeV. Here, A

and X denote the target nucleus and the undetected final hadronic state, respectively.

It is apparent that the different reaction mechanisms, yielding the dominant con-

tributions to the cross section at different values of ω (corresponding to different val-

ues of the Bjorken scaling variable x = Q2/2Mω, where M is the nucleon mass and
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Figure 1: Schematic representation of inclusive electron-nucleus cross section as a function
of energy loss.

Q2 = 4Ee(Ee − ω) sin2 θe/2) can be easily identified.

The bump centered at ω ∼ Q2/2M , or x ∼ 1, the position and width of which are

determined by the momentum and removal energy distribution of the struck particle,

corresponds to the single nucleon knockout, while the structure visible at larger ω reflects

the onset of coupling to two-nucleon currents, arising from meson exchange processes,

excitation of nucleon resonances and deep inelastic scattering.

The available theoretical models of electron-nucleus scattering provide an overall satis-

factory description of the data over a broad kinematical range. In particular, in the region

in which quasi elastic scattering dominates, the data is reproduced with an accuracy of

few percent (for a recent review on electron-nucleus scattering in the quasi elastic sector,

see Ref. [2]).

In neutrino experiments, the beam energy is not known and the detection of the

particles in the final state does not provide a measurement of the energy transfer, ω. As a
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consequence, the contributions of the different reaction mechanisms, which in Fig. 1 can

be easily identified, mix up, thus hindering the interpretation of the data.

The difficulties associated with the description of the neutrino-nucleus cross section

have recently emerged in the analysis of the data set of charged-current quasi elastic

(CCQE) events released by MiniBooNE collaboration [9]. Theoretical models providing

a quantitative account of the electron-nucleus cross section in the kinematical region in

which quasi elastic scattering dominates fail to explain the large excess of measured CCQE

events [10]. It has been argued that this failure is likely to be ascribed to the contribution

of reactions mechanisms other than single nucleon knock out, leading to two particle-two

hole final states [10, 11, 12].

In this Thesis, we discuss the preliminary results of a study of one of these mechanisms,

namely processes involving two-body currents arising from meson-exchange.

As a first step, our analysis has been restricted to the pion-exchange contribution

to the electron scattering cross section. Moreover, to keep the formalism as simple as

possible, we have considered the case of a deuterium target.

The Thesis is structured as follows.

Chapter 1 is devoted to a summary of neutrino Physics. After introducing both the

Majorana and Dirac definitions of the ν-field, we discuss how two- and three-neutrino

mixing lead to neutrino oscillations, and provide a brief description of the experiments

designed to detect them.

In Chapter 2, we focus on the somewhat controversial results reported by the Mini-

BooNE experiment, and discuss the so called axial mass puzzle, as well as its possible

explanations. The formalism employed to obtain the neutrino-nucleus cross section in the

impulse approximation (IA) regime is described in Chapter 3. We will show that under

the assumptions underlying IA, which are expected to be justified at neutrino energies

>∼ 1 GeV, the nuclear cross section can be written in terms of the target spectral function
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and the elementary neutrino-nucleon cross section.

In Chapter 4, we confront electron and neutrino scattering experiments, and highlight

the difficulties arising from flux average.

The derivation of the nuclear cross section including one- and two-body current is

discussed in Chapter 5 in the case of electromagnetic current and deuterium target. Pre-

liminary results of numerical calculations are also reported.

In Chapter 5 is devoted to the discussion of meson-exchange-currents and their contri-

bution to the nuclear cross sections. After describing a preliminary study on electromag-

netic currents and pion exchange,we will eventually derive the expression of the nuclear

cross section including one- and two- body currents.

Finally, in the concluding Section we summarize our findings and state the conclusions.



Chapter 1

Neutrino masses and oscillations

It has long been known that neutrinos are very light. However, determining whether

they are truly massless or have small but nonzero masses turned out to be a severe

experimental challenge.

Recently, strong evidence that neutrinos do have nonzero masses has at long emerged.

This evidence stems from the observation that a neutrino of one type, or flavor, such as a

muon neutrino, can turn into a neutrino of a different flavor, such as a tau neutrino. This

metamorphose, known as neutrino oscillation, besides necessarily implying non vanishing

neutrino masses, also suggests that neutrinos may be Majorana particles, and that lepton

number may not be conserved.

In this Chapter, after discussing the nature of the neutrino mass, we will briefly review

the physics of neutrino oscillations and their experimental search.

1.1 Neutrino mass

1.1.1 Dirac mass term

The Standard Model of Particle Physics is based on spontaneous symmetry breaking

and the Higgs mechanism, providing the masses of charged leptons. Applying the same
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scheme to neutrinos leads to the appearance of a mass term of the form

LD = −mDν̄ν = −mD(ν̄LνR + ν̄RνL) = − yv√
2

(ν̄LνR + ν̄RνL) (1.1)

in the lagrangian density. In the above equation, mD is the Dirac neutrino mass, y is the

Yukawa coupling and v is the vacuum expectation value of the Higgs field.

Note that, in addition to the left-handed component of the neutrino field, νL, the

Dirac mass term of Eq.(1.1) involves the right-handed component, νR, which has not

been observed. Moreover, the Higgs mechanism generates a neutrino mass of the same

order of the mass of the associated charged lepton, and does not provide an explanation

of the huge difference resulting from experimental measurements.

1.1.2 Majorana mass term

In his celebrated 1937 paper [3], Majorana observed that a neutral massive fermion

can be described by a two-component spinor field ψ such that

ψ = ψC = C(γ0)Tψ∗ , (1.2)

where C is the charge conjugation operator, satisfying the relations C(γµ)TC−1 = −γµ,

C† = C−1 and CT = −C.

The action of the projection operator PL = (1− γ5)/2 on the field ψ leads to:

PLψ = ψL = ψCR , (1.3)

providing a relation between the right- and left- handed components of the Majorana

neutrino:

ψ = ψL + ψCL . (1.4)

From the above equation, it is apparent that the field ψ only depends on the two compo-

nents of ψL.
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The Majorana mass term takes the form:

LM = −1

2
mM(ψ̄LψR + ψ̄RψL) = −1

2
mM(ψ̄CRψR + ψ̄CLψL) (1.5)

where the factor 1/2 has been included in order to get the right equations of motion.

1.1.3 Dirac-Majorana mass term

From the above discussion, it follows that the most general expression we can choose

to write the mass term appearing in the lagrangian density is

Lmass = LD + Lright
M + Lleft

M . (1.6)

It can be conveniently rewritten in matrix form as

Lmass = −1

2
N̄C
LMNL + h.c. = −1

2
(ν̄CL ν̄R)

(
mL mD

mD mR

)(
νL
νCR

)
+ h.c. (1.7)

For mD 6= 0 the above lagrangian does not provide definite values of the masses associated

with the fields νL e νR. In order to identify the mass eigenstate we have to diagonalize

the mass matrix M .

Let us introduce the fields ν1 e ν2, associated with the neutrino mass eigenstates, and

the matrix U diagonalizing M . If M is real, U can be cast in the factorized form

U = R(θ)ρ , (1.8)

with

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, ρ =

(
ρ1 0
0 ρ2

)
(1.9)

and |ρk|2 = 1.

The matrix R is determined by imposing the condition

RTMR =

(
m′1 0
0 m′2

)
, (1.10)
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yielding

tan 2θ =
2mD

mR −mL

m′1,2 =
1

2

[
(mL +mR)±

√
(mL −mR)2 + 4m2

D

]
. (1.11)

Collecting together the above results we finally obtain

UTMU = ρTRTMRρ =

(
ρ2

1m
′
1 0

0 ρ2
2m
′
2

)
. (1.12)

1.1.4 The see-saw mechanism

The Standard Model of Particles Physics, providing a wealth of predictions in im-

pressive agreement with experiments, can be used to constrain the parameters entering

the theory of neutrino mass discussed in the previous Section. The requirement that the

neutrino mass term in the lagrangian be invariant under SU(2)L transformations implies

that

• since the left-handed neutrino belongs to a weak isospin doublet with I3 = +1/2,

the product νLν̄
C
L belongs to a weak isospin triplet, with I3 = 1. Hence mL = 0;

• mR 6= 0 is allowed, as ν̄CRνR transforms as a singlet under SU(2)L;

• there are no restriction on mD, since the corresponding term is produced by the

standard Higgs mechanism.

From the above considerations, it follows that, assuming mL = 0, M ∈ < and

mD � mR, we obtain

m1 ≈
m2
D

mR

� mD, m2 ≈ mR, tan θ ≈ mD

mR

� 1, ρ2
1 = −1 . (1.13)

The see-saw mechanism for the production of neutrino masses is defined by the above

equations. It states that a very light ν1, the mass of which is considerably smaller than

the mass of the corresponding charged lepton, is associated with a very heavy ν2 (m2 is

the same order as mR).
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1.1.5 Three-flavor mass matrix

The diagonalization of the mass matrix in the case of three neutrino flavors can be

carried out retracing the steps of the above discussion. Following the same procedure

developed to obtain the CKM matrix, describing quark mixing, we diagonalize the mass

matrix through the introduction of the neutrino mixing matrix. Let us start writing the

left-handed fields in the form

NL =

(
νL
νCR

)
, νL =

νeLνµL
ντL

 , νCR =

νCs1RνCs2R
νCs3R

 , (1.14)

leading to

Lmass = N̄LMNL =
(
ν̄L ν̄CR

)(ML MT
D

MD MR

)(
νL
νCR

)
, (1.15)

M being a 6× 6 matrix. Note that the number of right-handed fields is not restricted, as

right-handed neutrino are sterile, i.e. not subject to weak interactions, and as such non

observable.

Introducing the neutrino mass eigenstates, denoted by νk:

NL = V nL, nL =

ν1L
...
ν6L

 , (1.16)

where

V TMV =


m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . m6

 , (1.17)

we finally get the equations describing neutrino mixing:

ναL =
6∑

k=1

VαkνkL , α = e, µ, τ , νCsR =
6∑

k=1

VskνkL , s = s1, s2, s3 . (1.18)

The above equations show that active and sterile neutrinos fields can be expanded using

the same basis of mass eigenstates νkL. Hence, a sterile neutrino can oscillate to an active

one, and viceversa.
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The see-saw mechanism can be generalized to the case of three families following the

procedure described for the case of one family. We will then consider the case in which

ML = 0 and the eigenvalues of MD are negligible with respect to the ones belonging to

MR. The mixing matrix V can be rewritten in the factorized form

V = WU , (1.19)

where W and U are unitary matrix, up to corrections of order (MR)−1MD.

Expanding in powers of (MR)−1MD we find

W TMW ≈
(
Mlight 0

0 Mheavy

)
, (1.20)

where

Mlight ≈ (MD)†(MR)−1MD, Mheavy ≈MR . (1.21)

The above equations express the see-saw mechanism for the case of three family mixing.

The larger the eigenvalues of MR, the smaller the ones belonging to Mlight.

At low energies, Mlight and Mheavy are decoupled, the off-diagonal elements of W

being highly suppressed. Hence, we can restrict our discussion to the 3 × 3 matrix that

diagonalizes Mlight, i.e. to the matrix U such that

U †MlightU =

m1 0 0
0 m2 0
0 0 m3

 , (1.22)

implying the three-family mixing equation:

ναL =
3∑

k=1

UαkνkL , νkL =
3∑

α=1

U∗αkναL . (1.23)

The matrix U is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, or Lepton

Mixing matrix. Being unitary, it only depends on nine independent parameters: three

angles and six phases.
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Figure 1.1: Neutrino squared mass differences and mixing angles (from Ref. [4]).

It can be parametrized in terms of three mixing angles θ12, θ23 and θ13 (0 ≤ θij ≤ π/2)

and one phase ϕ (0 ≤ ϕ ≤ 2π), as in the case of the quark mixing matrix VCKM . The

resulting expression is

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


=

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
s13e

−iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 , (1.24)

where cij = cos θij and sij = sin θij, θij being the mixing angle. In addition, if neu-

trino are Majorana particles, we have to include the relative phases among the Majorana

masses m1, m2 and m3. Choosing m3 real and positive, these phases are carried by

m1,2 ≡ |m1,2|eiφ1,2 . In conclusion, the description of massive neutrino involves nine new

parameters: three mass eigenvalues, three mixing angles and three CP violating phases.
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1.2 Neutrino oscillations in vacuum

Let us consider the decay process

A −→ B + `+
α + να , (1.25)

where να and `+
α are a neutrino of flavor α and the associated antilepton, respectively.

After traveling a distance L in time T , the neutrino is described by the state

| να(L, T )〉 =
3∑

k=1

U∗αke
−iEkT+i−→p k·

−→
L | νk〉 . (1.26)

Replacing the mass eigenstate with a superposition of flavor eigenstates the above equation

can be rewritten in the form

| να(L, T )〉 =
∑

β=e,µ,τ

(
3∑

k=1

U∗αke
−iEkT+i−→p k·

−→
L )Uβk | νk〉 , (1.27)

showing that the transition amplitude of the process να → νβ, i.e. of neutrino oscillation,

corresponds to the coefficient of | νβ〉. Hence, the corresponding probability reads

Pνα→νβ =| 〈νβ | να(L, T )〉 |2=|
3∑

k=1

U∗αke
−iEkT+i−→p k·

−→
LUβk |2 . (1.28)

In the ultrarelativistic regime, in which T = L, we can rewrite

EkT − pkL ' (Ek − pk)L =
E2
k − p2

k

Ek + pk
L ' m2

k

2E
L , (1.29)

where E denotes the neutrino energy in the limit of vanishing mass. Under this assump-

tion, the probability takes the simple form

Pνα→νβ =
∑
k

| Uαk |2| Uβk |2 +2Re
∑
k>j

U∗αkUβkUαjU
∗
βje
−i

∆m2
kjL

2E , (1.30)

with ∆mkj = m2
k − m2

j . Hence, oscillations arise from the interference between the

contributions associated with different neutrino mass eigenstates.



1.2 Neutrino oscillations in vacuum 13

1.2.1 Two-neutrino mixing

To illustrate the main features of neutrino oscillations, let us first consider the simplest

case of two neutrino mixing, which can be seen as a limiting situation in which two mixing

angles are unimportant. It follows that:

• 4m2 ≡ 4m2
21;

• the parametrization of U depends on a single mixing angle, i.e.

U =

(
cos θ sin θ
− sin θ cosθ

)
. (1.31)

The resulting transition probability turns out to be

Pνα→νβ = sin2 2θ sin2 4m2L

4E
. (1.32)

Owing to the low neutrino interaction cross sections, to obtain a statistically significant

measurement the experimental set up must be chosen is such a way as to make the

transition probability not too small. This requirement amounts to imposing the constraint

4m2L

4E
>∼ 0.1÷ 1 , (1.33)

implying in turn that the ratio L/E determines the range of ∆m2 values that can be

detected.

Experiments can be classified according to the value of the ratio L/E

• Short-baseline experiments (SBL), with L/E <∼ 1 eV−2, are sensitive to ∆m2 >∼

0.1 eV2;

• Long-baseline experiments (LBL), with L/E <∼ 104 eV−2, are sensitive to ∆m2 >∼

10−4 eV2;

• Very long-baseline experiments (VLBL), with L/E <∼ 3× 105 eV−2, are sensitive to

∆m2 >∼ 3× 10−5 eV2 .
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1.2.2 Three-Neutrino Mixing

Up to now, neutrino oscillation experiments have determined two different values of

∆m2, corresponding to solar and atmospheric neutrinos

∆m2
sun ≈ 7× 10−5 eV2 , ∆m2

atm ≈ 2.6× 10−3 eV2 . (1.34)

These quantities are related to the transition probabilities through

P (νe ↔ νµ) = P (νe ↔ ντ ) =
1

2
sin2 2θ12 sin2 ∆m2

sunL

4E
(1.35)

P (νµ ↔ ντ ) = sin2 ∆m2
atmL

4E
− 1

4
sin2 2θ12 sin2 ∆m2

sunL

4E
. (1.36)

As already mentioned, there are many alternative models of neutrino masses. This is

mostly due to the considerable experimental ambiguities that still exist. One first missing

input is the absolute scale of neutrino masses, as neutrino oscillations only determine

mass squared differences. Another missing quantity is the value of the third mixing angle

s13, on which only the bound s13 < 0.22 is known1.

Referring to Table 1.1, ∆m2
IL/4E (I=sun, atm) are parametrized in terms of the

neutrino mass eigenvalues according to

∆m2
sun ≡ |∆m2

12|, ∆m2
atm ≡ |∆m2

23| , (1.37)

where ∆m2
12 = |m2|2 − |m1|2 > 0 and ∆m2

23 = m2
2 − |m2|2. Atmospheric neutrino oscil-

lations mainly depend on ∆m2
atm, θ23 and θ13, while solar oscillations are controlled by

∆m2
sol, θ12 and θ13. Therefore, in the limit of vanishing s13, the solar and atmospheric

oscillations decouple, and depend on two separate sets of two-flavor parameters. For at-

mospheric neutrinos we have c23 ∼ s23 ∼ 1/
√

2, corresponding to nearly maximal mixing.

Oscillations of muon neutrinos into tau neutrinos are favored over oscillations into sterile

neutrinos.
1Recent measurements have shown that θ13 is in fact non vanishing and quite large, the reported value

being such that sin2 2θ13 = 0.0929± 0.016± 0.005, corresponding to θ13 ≈ 9◦ [5].
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After the KamLAND [6] and SNO-salt [7] results, the only surviving solution to the

solar neutrino problem is the Large Angle (LA) solution, with ∆m2
sol ≈ 7 × 10−5 eV2

and sin2 θ12 ≈ 0.3. Data from solar neutrino experiments and KamLAND, involving,

respectively, electron neutrinos and electron antineutrinos, are compatible with a CPT

invariant spectrum. If we take maximal s13 and keep only linear terms in u = s13e
iϕ,

from experiment we find the following structure of the Ufi(f = e, µ, τ, i = 1, 2, 3) mixing

matrix, up to sign convention redefinitions

Ufi =

 c12 s12 u

−(s12 + c12u
∗)/
√

2 (c12 − s12u
∗)/
√

2 1/
√

2

(s12 − c12u
∗)/
√

2 −(c12 − s12u
∗)/
√

2 1/
√

2

 , (1.38)

where θ12 is close to π/6 . Given the observed frequencies there are three possible patterns

of mass eigenvalues:

Degenerate : |m1| ∼ |m2| ∼ |m3| � |mi −mj| , (1.39)

Inverted hierarchy : |m1| ∼ |m2| � |m3| , (1.40)

Normal hierarchy : |m3| � |m2,1| . (1.41)

Models based on all these patterns have been proposed and studied and, at present, are

in fact all viable.

1.3 Experimental searches of neutrino oscillations

1.3.1 Atmospheric Neutrinos

Atmospheric neutrinos are produced by interactions of cosmic-ray protons with air

nuclei in the earth’s atmosphere via the reaction chain:

p+N −→ π± +X , (1.42)

π± −→ µ± + ν(ν̄µ) , (1.43)

µ± −→ e± + νe(ν̄e) + ν̄µ(νµ) . (1.44)
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A simple counting leads to the ratio of flavors

Rµ/e =
N(νµ + (ν̄µ))

N(νe + (ν̄e))
∼ 2 , (1.45)

independent of the absolute fluxes, that are not well known. Generally, an oscillation

would show up as a variation of the above ratio from the expected value of approximately

2.

Conventionally, experiments report the ratio between measured value of Rµ/e and the

prediction of Monte Carlo simulations

RData/MC =
[N(νµ + (ν̄µ))/N(νe + (ν̄e))]Data
[N(νµ + (ν̄µ))/N(νe + (ν̄e))]MC

. (1.46)

This ratio of ratios would be unity in the absence of neutrino oscillations, and if detector

effects and backgrounds were correctly modeled. If flavor oscillations occur, Rµ/e becomes

less than 2, and RData/MC less than 1.

While being originally designed to search for proton decay, the Super-Kamiokande

detector has been extensively and successfully employed to study atmospheric neutrinos.

It is a large underground tank filled with 50,000 tons of water, used as a target for neutrino

interactions.

The emission of Cherenkov light is exploited to determine a particle’s velocity and

direction. The measurements of atmospheric neutrino in water Cherenkov detectors is

made possible by two key ingredients . First, even at a depth of 1000 meters (equivalent

to 3000 meters of water), the cosmic muon flux is 108 µ/year, to be compared to the

observed change in the flux which is around 150 events for year running. Second, the very

large number of Cherenkov photons allows a discrimination between muons and electrons.

Owing to their low mass, electrons undergo a larger number of multiple scattering events,

leading to a fuzzier Cherenkov ring image. Analyzing the sharpness of this image allows

one to identify electrons and muons with uncertainty less than 1%. Fully contained events
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are classified according to their visible energy (“sub-GeV” for Evis > 1.33 GeV , “multi-

GeV” for Evis < 1.33 GeV ) and the number of reconstructed Cherenkov rings (“single-

ring” for one reconstructed ring, “multi-ring” for two or more). Events in which the final

state lepton (usually a muon) exits the fiducial region are considered partially-contained

(PC) and treated separately from fully contained (FC) events.

The most recent results combining FC and PC muons are [8]

RData/MC = 0.67± 0.02± 0.05, sub−GeV , (1.47)

= 0.66± 0.04± 0.08, multi−GeV . (1.48)

At this point, it is useful to consider the numbers of events involved. Assuming the flux

of electron neutrinos remains unchanged during transit through the earth, the number of

observed e-like single ring events divided by the number expected gives a flux normal-

ization of 1.17. Hence the observed flux is 17% larger than the predicted. Normalizing

the number of expected single-ring µ-like events by this factor gives an observed deficit

of 550 µ-like events. Normalizing the number of multi-ring events in the same way gives

a deficit of about 100 events which is consistent with the number of νµ induced charged

current events lost in RData/MC = 0.6.

Thus, the conclusion that neutrinos oscillate rests on the deficit of a few hundred events in

the flux ratio measurement. A second and more sensitive method of detecting oscillations

is related to the zenith angle distribution of neutrino events.

1.3.2 Solar Neutrinos

The sun produces electron neutrinos via nine principal reactions in the pp chain,

starting with the fusion of two protons to make a deuteron and ending with the production

of 4He. The neutrino energies range from 0 to 15 MeV and three of the fusion reactions

result in mono-energetic νe’s at 380, 860 and 1400 keV (see Fig. 1.2).
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Figure 1.2: Energy spectrum at earth of solar neutrinos. The flux for lines is given as
neutrino cm−2/s. The continuous spectra are in units of neutrino cm−2/MeV/s (from
Ref. [8]).

Three different types of experiments have measured the solar neutrino flux. Owing to

the different experimental techniques, each one was sensitive to a different portion of the

neutrino energy spectrum. Water Cerenkov counters detect neutrinos via da νe + e− −→

νe + e− and, due to their relatively high energy threshold of 5-7 MeV, detect only the

upper part of the 8B νe spectrum.

The original solar neutrino experiment exploited the reaction νe + 37Cl −→37Ar + e−

in perchloroethylene, which has a threshold of 814 keV, giving sensitivity to 7Be, 8B and

pep neutrinos, as well as to the upper part of the CNO spectrum. Finally, the SAGE and

Gallex experiments use the capture reaction νe +71 Ga −→71 Ge+ e− in metallic gallium

(SAGE) or gallium chloride (Gallex), with a threshold of 232 keV. This provides a window

for detection of the pp νe.

The comparison between the fluxes observed by the various experiments and their

predicted values shows a deficit of the solar νe. The ”classic” experiments, Homestake,

Gallex, (Super)Kamiokande etc, pointed to a deficit with respect to the predictions based
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on the standard solar model. More recent experiments, such as SNO and KamLAND,

proved instead that the effect has to do with neutrino physics, and not with sun physics.

The data collected by SNO include charged current (CC), neutral current (NC) and

electron scattering (ES) events:

νe + d −→ p+ n+ e− (CC) , (1.49)

νx + d −→ p+ n+ νx (NC) , (1.50)

νx + e− −→ νx + e− (ES) , (1.51)

where νx refers to νe, νµ or ντ . The first reaction measures the flux of solar νe, while the

second and the third reactions measure the total flux of νe, νµ and ντ . Actually, SNO

proved that the total ν flux from the sun is in agreement with expectations but only

∼ 1/3 is νe and ∼ 2/3 is from active (i.e. not sterile) ν’s (i.e. νµ and ντ ). This is a direct

evidence of νe −→ νµ,τ oscillations as solution of the solar νe deficit.

Moreover, the KamLAND experiment has established that ν̄e from a reactor show

oscillations over an average distance of about 180 Km which are perfectly compatible

with the frequency and mixing angle corresponding to one of the solutions of the solar

neutrino problem (the LA solution).
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Chapter 2

The MiniBooNE experiment and the
axial mass puzzle

The MiniBooNe experiment at Fermilab was originally designed to confirm the ev-

idence of neutrino oscillations reported by the LSND Collaboration. The LSND ex-

periment, carried out at Los Alamos, had a baseline ∼ 30 m and a neutrino energy

∼ 30 − 60 MeV, corresponding to L/E ∼ 1 eV−2. Hence, under the two massive

neutrino oscillation hypothesis, LSND signals correspond to neutrino oscillations with

∆m2 ∼ 1 eV2. Confirming the LSND signal would amount to suggest the existence of a

new, sterile, neutrino around the 1 eV mass scale, and should therefore be regarded as an

important discovery of new physics beyond the Standard Model.

In this Chapter, after briefly describing the MiniBooNE experimental set up, we will

focus on the measurements of the neutrino cross section, with particular emphasis on

charged current quasi elastic (CCQE) processes. The results of the analysis of the Mini-

BooNE CCQE event sample, showing an excess with respect to the predictions of Monte

Carlo simulations, raised the still controversial issue of the possible medium modification

of the nucleon axial mass, the study of which is the main motivation of our work.
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Figure 2.1: Schematic overview of the MiniBooNE experiment, including the Booster
Neutrino Beamline and MiniBooNE detector.

2.1 Overview of the MiniBooNE experiment

The MiniBooNE experiment was designed to search for ν̄µ → ν̄e and νµ → νe oscil-

lations, with approximately the same value of L/E ' 1 eV−2 as LSND (recall: L is the

distance, in units of m, travelled by neutrinos from the source to the detector, while E is

the neutrino energy in MeV). The LSND neutrino beam travelled a distance of 30 m with

a typical energy of 30 MeV, while the MiniBooNE neutrino beam travelled a distance of

500 m with a typical energy of 500 MeV. With neutrino energies one order of magnitude

higher, the MiniBooNE backgrounds and systematic errors are completely different from

those of LSND. Therefore, MiniBooNE can provide an independent check of the LSND

signal of neutrino oscillations at the ∼ 1eV2 mass scale.

Let us briefly describe the experiment layout. Protons with 8 GeV kinetic energy

are extracted from the Fermilab Booster and transported to the MiniBooNE target hall,

which contains a beryllium target within a magnetic focusing horn. The target and horn

are followed by a pion-kaon decay volume, at the end of which is a 3.8 m thick steel and

concrete beam dump. The distance from the center of the target to the front face of the
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dump is 50 m. Thus, the neutrino beam, produced in the decay volume via:

K+ −→ µ+ + νµ , π+ −→ µ+ + νµ (2.1)

K− −→ µ− + ν̄µ , π− −→ µ− + ν̄µ (2.2)

passes though the dump plus 474 m of earth before reaching the MiniBooNE detector

vault. This ensures that neutrinos are the only beam products that can reach the liquid

Cherenkov detectors, filled with mineral oil (CH2). As the photomultiplier tube (PMT)

coverage for a liquid Cherenkov detector is proportional to the detector surface area, a

spherical tank was chosen to maximize the ratio of volume to surface area. Furthermore,

a spherical geometry has no inside edges, which is beneficial for the event reconstruction.

The detector, see Fig. 2.1, is a spherical tank of diameter 12.2 m, which is filled with 818

tons of mineral oil. An opaque barrier divides the volume into an inside main detector

region and an outside veto region and supports the PMT’s viewing the main detector

region. The detector tank sits below ground level inside a 13.7 m diameter cylindrical

vault, with a room above that houses electronics and utilities. The vault not only provides

access to the tank’s exterior plumbing, but also acts as secondary containment for the

mineral oil. The entire structure is covered by at least 3 m of dirt, which provides shielding

against cosmic ray backgrounds and makes it easier to keep the detector at a constant

temperature.

Figure 2.2 shows the predicted MiniBooNE neutrino flux as a function of neutrino

energy, the mean value of which is 〈Eν〉 = 788 MeV. The beam also reveals the presence

of 6% of ν̄µ and approximately 0.5 % of νe and ν̄e.

In the kinematical range corresponding to the flux of Fig. 2.2 the dominant reaction

mechanisms are quasi elastic scattering

νµ + n→ p+ µ− , ν̄µ + p→ n+ µ+ , (2.3)

and excitation of nucleon resonances, leading to pion emission.
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Figure 2.2: Predicted νµ flux at the MiniBooNE detector. The integrated flux is 5.16 ×
10−10νµ/POT/cm2 (0 < Eν < 3GeV) with a mean energy of 788 MeV.

2.2 The axial mass puzzle

Figure 2.3 illustrates the topology of a charged-current quasi elastic (CCQE) event

according to the MiniBooNE classification, based on the assumption that the incoming

neutrino interacts with a single neutron in the carbon target. Besides the recoiling nucleus,

the final state consists of a proton and a muon, and CCQE interactions are identified

detecting the Cherenkov light from the charged leptons.

Within the single nucleon knockout picture, the neutrino energy, reconstructed from

the observed muon energy, exhibits a distribution reflecting the energy and momentum

distribution of the struck neutron in the initial state. As a consequence, its determination

depends on the nuclear model employed to describe the target.

From the requirement that the elementary scattering process νµ + n → µ + X be

elastic, i.e. that

(kν + pn − kµ)2 = M2
p (2.4)

where Mp is the proton mass and the four-momenta of the participating particles are
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Figure 2.3: Schematic illustration of a CCQE interaction in the MiniBooNE detector. The
primary Cherenkov light from the muon (Cherenkov 1, first subevent) and the subsequent
Cherenkov light from the decay-electron (Cherenkov 2, second subevent) are used to tag
the CCQE event. No requirements are made on the outgoing proton

denoted by kν = (Eν ,kν), kµ = (Eµ,kµ) and pn = (En,pn) , it follows that

Eν =
M2

p −m2
µ − E2

n + 2EµEn − 2kµ · pn + |p2
n|

2(En − Eµ + |kµ| cos θµ − |pn| cos θn)
, (2.5)

where θµ is the muon angle relative to the neutrino beam and and cos θn = (kν ·pn)/(|kν ||pn|).

Data analysis requires the knowledge of the energy-momentum distribution of neutrons

in the 12C ground state, as well as of the vector and axial form factors, entering the

description of the quasi elastic neutrino-nucleon interaction vertex, to be discussed in

Chapter 3. The MiniBooNE Monte Carlo simulations employ the energy-momentum

distribution provided by the Relativistic Fermi Gas Model (RFGM), the main features of

which will be outlined in Chapter 4.

The vector proton and neutron form factors are related to the corresponding elec-

tromagnetic form factors through the conserved vector current (CVC) hypothesis. As

a consequence, they can be extracted from the measured electron-proton and electron-

deuteron cross sections in the quasi elastic sector. The MiniBooNE analysis is carried out

using a state-of-the-art parametrization of the available data [13].

It has to be pointed out that the possibility of using the form factors obtained from
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proton and deuteron data to compute the carbon cross section rests on the assumption

that the form factors are not modified in the nuclear medium. Comparison between the

results of theoretical calculations and the large data base of electron-nucleus scattering

cross sections provides overwhelming evidence of the validity of this hypothesis.

The axial form factor is generally parametrized in the dipole form (see Appendix A)

FA(Q2) =
gA

[1 + (Q2/M2
A)]

2 , (2.6)

with the axial coupling constant gA obtained from the measurements of neutron β-decay.

Within the scheme employed to obtain the vector form factors, the so called axial

mass, determining the Q2-dependence of FA(Q2), is extracted from neutrino-deuteron

scattering data. The world average of the resulting values of the axial mass turns out to be

MA = 1.03 ± 0.02 GeV. On the other hand, the analyses of CCQE data samples recently

performed by both the MiniBooNE [9] and K2K [14] collaborations, the latter using an

oxygen target, yield the much larger values MA ∼ 1.35 and 1.2 GeV, respectively. It would

be tempting to interpret these large values of MA as an effective axial mass, modified by

nuclear effects not included in the RFGM employed in data analysis. However, theoretical

calculations of the quasi elastic single nucleon knockout cross section fail to support this

explanation, suggested by the authors of Ref. [9].

As an example, Fig. 2.4, shows a comparison between the Q2-distribution of CCQE

events at beam energy Eν = 700 MeV, computed using the RFGM and MA = 1.23 GeV

(dashed lines) and a more refined dynamical model providing a quantitative description

of electron scattering data, to be discussed in Chapter 4, and MA = 1.03 GeV (solid

lines). It appears that, as far as the Q2 distribution of single nucleon knockout processes

at fixed neutrino energy is concerned, a larger value of the axial mass cannot be explained

by replacing the RFGM with a more advanced model of nuclear dynamics.

To make the interpretation of the large values of MA obtained by MiniBooNE and

K2K even more puzzling, the NOMAD collaboration has recently reported the results of
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Figure 2.4: Q2-dependence of the cross section of the process νµ +12 C → µ+ p+X, for
neutrino energy Eν = 0.7 GeV. The dashed line corresponds to the results of the RFGM
with MA = 1.23 GeV, whereas the solid line has been obtained using the more advanced
dynamical model discussed in Chapter 4 and setting MA = 1.03 GeV. The shaded area
corresponds to the 1σ uncertainty on the axial mass quoted in [9]. The left and right
panels corresponds to non-normalized and normalized distributions respectively (taken
from Ref. [16]).

Figure 2.5: CCQE total cross section reported by the MiniBooNE [9] and NOMAD [15]
collaborations, shown as a function of neutrino energy. The dashed line shows the results
of a theoretical calculation carried out using a dipole parametrization of the nucleon axial
form factor and setting MA = 1.03 GeV.
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the analysis of its CCQE event sample, detected using a carbon target, yielding a value

of the axial mass compatible with that extracted from deuteron data [15].

As an illustration of the present status of the axial mass puzzle, in Fig. 2.5 the

total CCQE cross-section reported by the MiniBooNE and NOMAD collaborations are

shown as a function of the incoming neutrino energy. The disagreement between the

two measurements clearly appears to be striking For reference, Fig. 2.5 also shows the

results of a theoretical calculation of the total CCQE cross section, carried out using the

formalism to described in Chapters 3 and 4, with a dipole parametrization of the nucleon

axial form factor and setting MA = 1.03 GeV. Comparison between theory and data

shows that the value of the axial mass extracted from deuterium measurements, while

providing a good account of the NOMAD data, fails to describe the MiniBooNE cross

section.



Chapter 3

Theoretical Description of
neutrino-nucleus interactions

The aim of this Chapter is analyzing the quasi-elastic neutrino-nucleus cross section

within the Born approximation. We will focus on the kinematical regime in which the

Impulse Approximation (IA) is applicable, and the nuclear cross section can be written in

terms of the target spectral function and the elementary neutrino-nucleon cross section.

In Sections 3.1 and 3.2, after recalling the elements of the Glashow-Weinberg-Salam

theory of weak interactions relevant to our discussion, we will derive the expression of the

charged-current neutrino-nucleon cross section, while Section 3.3 will be devoted to the

discussion of the nuclear cross section within the IA.

We will consider inclusive processes, in which only the outgoing charged lepton is

detected, in the kinematical region corresponding to beam energies Eν ∼ 1 GeV, in which

the formalism based on the IA is expected to be applicable.

3.1 Interaction Hamiltonian

Weak interactions are described by the theory of Glashow, Weinberg and Salam

(GWS). Here, we use GWS theory to derive an effective Hamiltonian in the current-

current interaction form.
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The starting point is the interaction Hamiltonian density

Hw = g(W µJµ
† +W µ†Jµ) , (3.1)

where Wµ and Wµ
† are the fields associated with the charged vector bosons, and Jµ is the

charged weak current, defined by

Jµ =
1√
2

(
ν̄`γµ

1− γ5

2
`+ ūγµ

1− γ5

2
d
)
. (3.2)

Here, ν` denotes the neutrino field, ` the associated charged lepton field, of flavor ` =

e, µ, or τ , u is an up-type quark of flavor u, c, or t and d a down-type quark of flavor

d, s, or b.

When the momentum transfer is much smaller than the W boson mass, Mw ≈ 80

GeV, the two-point Green’s function of the weak boson can be approximated as

〈Wµ(x)Wν
†(y)〉 =

igµν
M2

w

δ4(x− y), (3.3)

and the effective Hamiltonian can be written in the form

H eff
w =

G√
2
jµjµ

† (3.4)

with

jµ = jlep
µ + jhad

µ , (3.5)

and G/
√

2 = g2/8M2
w. The leptonic and hadronic currents are given by

jlep
µ = ν̄`γµ(1− γ5)` , jhad

µ = ūγµ(1− γ5)d . (3.6)

The above currents can be used to carry out quantitative calculations of charged

current processes involving leptons and quarks. However, experiments are not performed

with quarks, the dynamics of which is dictated by the fundamental theory of strong

interactions, Quantum-Chromo-Dynamics, or QCD, but with hadrons.
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The hadronic currents of the type, 〈p|jhad
µ |n〉, where n and p denote neutron and

proton, respectively, can not be expressed in terms of the quark currents. However, the

V − A structure is preserved, so that we can write

〈p|jhad
µ |n〉 = jVµ − jAµ . (3.7)

We will consider the vector contribution, the structure of which can be cast in the form

jVµ = ū(p′)
[
. . .

]
u(p) (3.8)

where ū and u are Dirac spinors describing the initial and final state nucleons, carrying

four-momenta p and p′, respectively.

Since the proton is a composite particle of finite size, the quantity enclosed in square

brakets is not simply a γ matrix. However, we know that jVµ transform as a four vector

under Lorentz transformations. Hence, we can write it as the most general four-vector that

can be constructed from p, p′ and q, where q = p− p′ is the four-momentum transfer, and

the Dirac γ-matrices sandwiched between Dirac’s spinors. It turns out that there are only

two independent terms, γµ and iσµνqν , with σµν = i[γµ, γν ]/2. Moreover, their coefficients

must be functions of the only non trivial invariant q2. Therefore, quite generally, we can

write the square bracket of Eq.(3.8) in the form

[
. . .

]
=

[
FV (q2)γµ +

κ

2M
FM(q2)iσµνqν

]
, (3.9)

where κ is the anomalous magnetic moment, while FV and FM are two independent form

factors, parametrizing our ignorance of the internal structure of the proton.

The axial contribution to the current can also be discussed using the above procedure.

The detailed expression of the hadronic current employed in numerical calculation, as well

as a further comment on its structure, can be found in Appendix A.
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3.2 Charged-current neutrino-nucleon cross section

In this Section, we will derive the cross section of the the charged-current reaction

ν`(k) + n(p) −→ `−(k′) + p(p′) , (3.10)

where the four-momenta of the participating particles are defined as

k = (Eν ,k), k′ = (E`,k
′)

p = (Ep,p), p′ = (Ep′ ,p′)
(3.11)

and q = (ω,q) = k − k′ is the four-momentum transfer.

Using the currents defined in Appendix A, we can write the lowest order invariant

amplitude of the process in the form

M =
GFVud√

2(1 + Q2

M2
W

)
ū`(k

′)γµ(1− γ5)uν`(k)×

ūp(p
′)
[
FV (q2)γµ + iFM(q2)σµν

qν
2M

+ FA(q2)γµγ5 + FP (q2)
2M

m2
π

qµγ5

]
un(p) ,

(3.12)

whereM aremπ are the nucleon and pion mass, respectively, Mw is the mass of the charged

vector boson, u and ū are Dirac spinors describing the initial and final state nucleon and

GF and Vud denote the Fermi constant and the CKM matrix element coupling u and d

quarks.

We want to calculate the unpolarized cross section, carrying no information about the

particle spins of the particles. It can be obtained by replacing

|M |2 → |M |2 =
∑
i

∑
f

|M |2 =
G2
FV

2
ud

2(1 + Q2

M2
W

)2

1

mmν

LµνWµν , (3.13)

which amounts to averaging over the spins of the incoming particles and summing over

the spins of the particles in the final state. In the above equation, m and mν denote

the charged lepton mass and the neutrino mass, respectively, while Lµν and W µν are the

leptonic and hadronic tensors.
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Neglecting all contributions containing the lepton masses, the leptonic tensor, can be

written in the form

Lµν =
1

8
Tr
[
/k
′
γµ(1− γ5)/kγν(1− γ5)

]
=k′µkν + k′νkµ − gµνk · k′ + iεµν%σk%k

′
σ ,

(3.14)

showing that Lµν is completely determined by lepton kinematics. On the other hand,

the hadronic tensor depends on the internal structure of the hadrons through the form

factors.

The terms proportional to σµν , appearing in the hadronic current, can be rewritten

exploiting Gordon’s identity

2Mū(p′)γµu(p) = ū(p′)((p′ + p)µ + iσµνqν)u(p) . (3.15)

Moreover, the terms associated with the pseudo-scalar form factor FP (q2) contributes at

most ∼ 1% to the νµ cross section, and can therefore be neglected1.

Thus, we get:

W µν = Tr
{/p′ + /p

2M
[γµ(1− rγ5)− R

2M
p̃µ]

/p+M

2M
[γν(1− rγ5)− R

2M
p̃ν ]
}

(FV +FM)2, (3.16)

where:

p̃µ = pµ + p′µ , r = − FA
FV + FM

, R =
FM

FV + FM
. (3.17)

Carrying out the trace in Eq. (3.16) and imposing four momentum conservation we finally

obtain the hadronic tensor in the form

W µν =

{
− 2gµν

[
r2
(
1− q2

4M

)
− q2

4M

]
+ 2

pµpν

M2

[
1 + r2 +R2

(
1− q2

4M2

)
− 2R

]
− iεµν%σ p%pσ

2M2
(4r) +

qµqν

M2

[
R2

2

(
1− q2

4M2

)
−R

]
+
pµqν + pνqµ

M2

[
1 + r2 +R2

(
1− q2

4M2
− 2R

)]}
(FV + FM)2 ,

(3.18)

1Note , however, that it must be taken into account in the case of the ντ interactions.
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showing that W µν can be written in terms of five structure functions, depending on q2

only

W µν =
5∑
i=1

Γµνi Wi(q
2) = −gµνW1(q2) +

pµpν

M2
W2(q2)

− iεµν%σ p%qσ
2M2

W3(q2) +
qµqν

m2
W4(q2) +

pµqν + pνqµ

M2
W5(q2) .

(3.19)

Comparing Eqs.(3.18) and (3.19) we obtain the explicit expressions of the structure func-

tions in terms of the form factors

W1 = 2[F 2
A(1 + τ) + τ(FV + FM)2] (3.20)

W2 = 2[F 2
A + F 2

V + τF 2
M ] (3.21)

W3 = 4FA(FV + FM) (3.22)

W4 =
1

2
[F 2
M(1 + τ)− 2FM(FV + FM)] (3.23)

W5 =
W2

2
. (3.24)

The next step consists of contracting the leptonic and hadronic tensors, with the result

LµνWµν = W1(2k · k′) +W2

(
2

(p · k′)(p · k)

M2
− k · k′

)
−W3

( 2

M2

)
((k′ · q)(k · p)− (k′ · p)(k · q)

)
+W4

(
2

(k′ · q)(k · p)
M2

− (k′ · k)q2

M2

)
+W5 · 2

((p · k′)(k · q)
M2

− (k′ · k)(p · q)
M2

+
(k · p)(k′ · q)

M2

)
.

(3.25)

We now choose to carry out the calculation in the lab frame, in which the neutron is at

rest, and keep on neglecting the lepton masses, implying En = M , E = |k| and E ′ = |k′|.

Substituting

pµ = (En, 0) , p′
µ

= (Ep,p
′) , kµ = (E,k) , k′µ = (E ′,k′) (3.26)

in Eq.(3.25) yields

LµνWµν = 2EE ′
{
W1(1− cos θ) +W2

1 + cos θ

2
+W3

[ m2

2ME ′
− E + E ′

M

1 + cos θ

2

]
+W4

m2

M2

1− cos θ

2
−W5

m2

ME ′

}
.

(3.27)
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We are now in the position of performing the calculation of the differential cross

section, related to the invariant amplitude through:

dσ = (2π)4δ(4)(p+ k − k′ − p′)|M |2 m
E ′
mν

E

M

En

M

Ep

d3p′

(2π)3

d3k′

(2π)3
. (3.28)

The integration over the momentum of the outgoing nucleon is performed using the tridi-

mensional δ-function. Neglecting the mass of the charged lepton we finally obtain

dσ =
1

(2π)2
δ
(
M + E − E ′ −

√
M2 + |k− k′|2

)
|M |2Mmmν

EEp
k′dE ′dΩ. (3.29)

Note that, the above cross section is in the double differential form reported by the

MiniBooNE collaboration.

The remaining δ-function univocally relates the energy of the charged lepton to the

scattering angle, since:

δ
(
M + E − E ′ −

√
M2 + |k− k′|2

)
= δ
(
M + E − E ′ −

√
M2 + E2 + E ′2 − 2EE ′ cos θ

)
,

(3.30)

and requiring the argument to vanish yields

M + E − E ′ =
√
M2 + E2 + E ′2 − 2EE ′ cos θ =⇒ E ′(θ) =

E

1 + 2E
M

sin2 θ
2

. (3.31)

Using the δ-function property

δ
(
f(x)

)
=
∑
x0

(∣∣∣∂f
∂x

∣∣∣
x0

)−1

δ(x− x0) , f(x0) = 0, (3.32)

implying that

δ
(
M + E − E ′ −

√
M2 + |k− k′|2

)
= δ
(
E ′ − E

1 + 2E
M
sin2 θ

2

)E ′(θ)Ep
EM

, (3.33)

we finally arrive at the expression of the differential cross section

dσ

dΩ
=

G2
FV

2
ud

(2π)2
[
1 + Q2

MW

]E ′3
E

[
2W1 sin2 θ

2
+W2 cos2 θ

2

−W3
E + E ′

M
sin2 θ

2
+W4

m2

M2
sin2 θ

2
−W5

m2

ME ′

]
.

(3.34)
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The cross section for the processes involving antineutrinos

ν̄` + p −→ `+ + n , (3.35)

can be readily obtained starting from Eq. (3.30). We observe that: (i) substituting ν → ν̄

corresponds to interchanging k ↔ k′ in the leptonic tensor, which in turn changes sign

in front of εµν%σ. As εµν%σ is antisymmetric in the indices µ, ν, its only non vanishing

contribution to the contraction LµνW
µν is ∝ W3. Thus, in order to study antineutrino

scattering one has to change the sign of W3.

3.3 Neutrino-nucleus interaction in the Impulse Ap-

proximation regime

The differential cross section of the process (schematically represented in Fig. 3.1)

ν` + A −→ `− +X (3.36)

in which a neutrino carrying initial four-momentum k = (Eν , k) scatters off a nuclear

target producing a charged lepton of four-momentum k′ = (E`, k
′), while the target final

in undetected, can be written, in Born approximation, as (compare to Eq. (3.13))

d2σ

dΩdE`
=
G2
FV

2
ud

16π2

|k′|
|k|

LµνW
µν
A . (3.37)

The leptonic tensor, the form of which is given in Eq.(3.14) is completely determined

by lepton kinematics, whereas the nuclear tensor W µν
A , containing all the information on

strong interaction dynamics, describes the response of the target nucleus. Its definition

involves the initial and final hadronic states |0〉 and |X〉, carrying four momenta p0 and

pX , respectively, as well as the nuclear electroweak current operator JµA:

W µν
A =

∑
X

〈0|JµA
†|X〉〈X|JνA|0〉δ(4)(p0 + q − pX) , (3.38)
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Figure 3.1: Diagrammatic representation of the process ν` + A→ `− +X.

where the sum includes all hadronic final states. The calculation of W µν
A at moderate

momentum transfer (q <∼ 0.5 GeV) can be carried out using non-relativistic wave functions

to describe the initial and final states and expanding the current operator in powers of

q/M , M being the nucleon mass. However, at higher values of |q|, corresponding to

Eν & 1GeV , the final states |X〉 can no longer be described in terms of non-relativistic

nucleons only. Calculations of W µν
A in this regime require a set of simplifying assumptions,

allowing one to take into account the relativistic motion of final state particles carrying

momentum ∼ q, as well as the occurence of inelastic processes, leading to the appearance

of hadrons other than protons and neutrons.

The Impulse Approximation (IA) scheme, which will be followed in this work, is based

on the assumptions that, at large enough q, the target nucleus is seen by the probe as a

collection of individual nucleons and the interactions between the particles produced at

the interaction vertex and the spectator nucleons can be neglected. A schematic repre-

sentation of the IA cross section is given in Fig. 3.2.

Within the IA picture, the nuclear current can be written as a sum of one-body

currents, i.e.

JµA −→
∑
i

jµi , (3.39)

while the final state reduces to the direct product of the hadronic state produced at
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Figure 3.2: Schematic representation of the cross section of the process ν` +A→ `− +X
in the IA scheme.

the interaction vertex, with momentum p′, and the state describing the (A− 1)-nucleon

residual system, carrying momentum pR, i.e.

|X〉 −→ |i, p′〉 ⊗ |R, pR〉 , (3.40)

implying that we can replace:∑
X

|X〉〈X| →
∑
x

∫
d3px|x,px〉〈px, x|

∑
R

d3pR|R,pR〉〈pR, R| . (3.41)

Moreover, the insertion of a complete set of free nucleon states, satisfying∫
d3k|N,k〉〈k, N | = 1, (3.42)

leads to the factorization of the nuclear current matrix element according to

〈0|JµA|X〉 =
( M√
|pR|2 +M2

)1/2

〈0|R,pR;N,−pR〉
∑
i

〈−pR, N |jµi |x,px〉 , (3.43)

where the factor EpR = (M/
√
|pR|2 +M2)1/2 takes into account the implicit covariant

normalization of 〈−pR, N | in the matrix element of jµi .

Using the above relations, the hadronic tensor can be rewritten in the form

W µν =
∑
x,R

∫
d3pRd

3px|〈0|R,pR;N,−pR〉|2
M

EpR

∑
i

〈−pR, N |jµ†i |x,px〉〈px, x|jνi |N,−pR〉

× δ3(q− pR − px)δ(ω + E0 − ER − EX) ,

(3.44)
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where E0 is the target ground state energy, ER =
√
|pR|2 +M2

R, MR being the mass of

the recoiling system and EX the energy of the final state X.

Using the identity

δ(ω + E0 − ER − EX) =

∫
dEδ(E −M + E0 − ER) δ(ω − E +M − EX) , (3.45)

we finally get

W µν
A =

∑
X

∑
R

∫
d3pXd

3pRdE|〈0|R,pR;N,−pR〉|2δ(E −M + E0 − ER)δ3(q− px − pR)

× M

EpR

∑
i

〈−pR, N |jµi |X,pX〉〈X,pX |jνi | − pR, N〉δ(−E +M + ω − EX) .

(3.46)

At this stage, we introduce the target spectral function P (E,p), defined as

P (p, E) =
∑
R

|〈0|R,−p〉|2δ(E −M + E0 − ER) (3.47)

expressing the probability distribution of finding a nucleon with momentum p and removal

energy E in the target nucleus.2.

Using Eq.(3.47), and the definition of the tensor describing the interactions of the i -th

nucleon in free space (the subscript α = p n denotes protons and neutrons)

W µν
α =

∑
X

〈−pR, N |jµ†α|X,pX〉〈X,pX |jνα| − pR, N〉δ(4)(pN + q̃ − pX) . (3.48)

the hadronic tensor can be written in the more concise form

W µν
A =

∫
d3pXd

3pdEP (p, E)
M

Ep

[
ZW µν

p + (A− Z)W µν
n

]
, (3.49)

Z being the nuclear charge. Note that in Eq.(3.48) we have introduced the quantity q̃,

defined as

q̃ = (ω̃, q) (3.50)

2We will make the simplifying assumption, fully justified in the case of isospin symmetric targets, that
the proton and neutron spectral functions be the same.
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with

ω̃ = EX −
√

p2 +M2 = ω +M −E −
√

p2 +M2 = ω +E0 −ER −
√

p2 +M2 . (3.51)

The replacement of ω with ω̃ is meant to take into account the fact that a fraction δω

of the energy transfer goes into excitation energy of the spectator system. Therefore, the

elementary scattering process can be described as if it took place in free space with energy

transfer ω̃ = ω − δω.

Using the tri-dimensional delta function to perform the integration on d3pX we finally

get:

W µν
A =

∫
d3pdEP (E,p)δ(ω̃ +

√
p2 +M2 − EX)

× M

Ep

∑
X

〈p, N |jµi |X,p + q〉〈X,p + q|jνi |p, N〉 .
(3.52)

In conclusion, within the IA scheme it is possible to trace back the hadronic tensor

corresponding to the nuclear target to the one describing the elementary interaction with

an isolated nucleon, provided q is replaced with q̃ and an integration on the nucleon

momentum and removal energy is carried out, with a weight given by the spectral function.

Substituting the hadronic tensor into the definition of the cross section yields

d2σIA
dΩdEl

=

∫
d3pdEP (p, E)

d2σelem
dΩdEl

, (3.53)

with
d2σelem
dΩdEl

=
G2
FV

2
ud

16π2

|p′|
|p|

1

4EpEp+q

LµνW
µν . (3.54)

Equations (3.53) and (3.54) show that, within the IA, the theoretical calculation of the

QE neutrino-nucleus cross section requires the knowledge of the nuclear spectral function

and the nuclear form factors, determining the nuclear current. The boundaries of the

integration region determining the ν-nucleus cross section are discussed in Appendix B.



Chapter 4

Confronting electron and neutrino
scattering

As mentioned in Chapter 2, the analysis of the MiniBooNE data is carried out within

the Relativistic Fermi Gas Model (RFGM). According to this model, the target nucleus

is described as a collection of non interacting nucleons, bound with constant energy ε.

The wealth of information obtained from precise measurements of the electron-nucleus

cross section in a broad kinematical domain have clearly exposed the limits of the descrip-

tion of nuclei based on the mean field approximation, of which the RFGM can be regarded

as the crudest implementation. The combined analyses of inclusive and semi-inclusive data

have shown that correlation effects suppress the occupation probability of the shell model

states by about 20%, thus leading to the appearance of non vanishing cross sections well

beyond the kinematical limits predicted by the mean field approach.

In this Chapter, after pointing out the limits of applicability of the RFGM, emerging

from the analysis of electron scattering data, we will describe a dynamical model allowing

one to construct the nuclear spectral functions taking into account the effects of nucleon-

nucleon correlations. In Section 4.2, we will show the results of theoretical calculations

of the electron- and neutrino- carbon cross section, and point out the difficulties arising

from the flux average, hindering the identification of the dominant reaction mechanism.
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4.1 Realistic models of the nuclear spectral function

According to the RFGM, the nuclear spectral function, defined in Eq. (3.47), can be

written in the simple form:

PRFGM(p, E) =
6π2A

p3
F

θ(pF − p) δ(Ep − ε+ E) (4.1)

where pF is the Fermi momentum and ε is the average binging energy, introduced to

account for nuclear binding. The term in parenthesis is a constant needed to normalize the

spectral function to the number of target nucleons, A. The values of the two parameters,

ε and pF , are determined by fitting position and width of the quasi elastic peak of the

measured electron-nucleus scattering cross sections.

Electron scattering data have provided overwhelming evidence that the energy-momentum

distribution of nucleons in the nucleus is quite different from the one predicted by the

RFGM. This is to be ascribed to the presence of nucleon-nucleon (NN) correlations, mainly

arising from the strongly repulsive nature of the NN interaction at short distances.

The most prominent evidence of the presence of a strongly repulsive core is provided

by the saturation of the observed nuclear charge densities with increasing A. Figure4.1

clearly shows that the charge density in the nucleus interior is in fact independent of A

for A ≥ 16.

Dynamical correlations give rise to virtual scattering processes leading to the excita-

tion of the partecipating nucleons to states of energy larger than the Fermi energy, thus

depleting the single particle levels within the Fermi sea. Owing to the contribution of

nucleons belonging to a correlated pair, the nuclear spectral function P (p, E) extends to

the region |p| � pF and E � ε.

The target spectral function, needed to compute the nuclear cross section within the

IA, is given by Eq. (3.47). Its definition involves the A-nucleon ground state, as well as

the full spectrum of the (A - 1)-nucleon system. Within the framework of Nuclear Many
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Figure 4.1: Radial dependence of nuclear charge-distributions measured by elastic electron
scattering.

Body Theory (NMBT), these states are obtained solving the Schrödinger equation with

the Hamiltonian:

H =
A∑
i=1

p2
i

2m
+

A∑
j>i=1

vij + . . . , (4.2)

where pi is the momentum of the i -th nucleon, vij describes two-nucleon interactions and

the ellipses refer to the presence of additional terms describing interactions involving three

or more nucleons. The nucleon-nucleon (NN) potential, which reduces to the Yukawa one-

pion exchange potential at large internucleon distance, is obtained from an accurate fit

to the available data on the two-nucleon system, i.e. deuteron properties and ∼ 4000 NN

precisely measured scattering phase shift, at energies up to pion production threshold.

The calculation of the spectral function, P (p, E), within NMBT involves a degree of

complexity that rapidly increases with A. For this reason, so far it has been only carried out

for A ≤ 4. However, thanks to the simplifications associated with translation invariance,

highly accurate results are also available for uniform nuclear matter, i.e. in the limit

A→∞ with Z= A/2 (Z denotes the number of protons). The proton spectral functions



44 Confronting electron and neutrino scattering

of nuclei with A > 4 have been modeled using the local density approximation (LDA),

in which the experimental information obtained from nucleon knock-out measurements is

combined with theoretical calculations of nuclear matter at different densities.

Within the LDA scheme, the spectral function is written in the form [17]

PLDA(p, E) = PMF (p, E) + Pcorr(p, E) , (4.3)

where the two terms describe the contributions arising from the nuclear mean field and NN

correlations, respectively. The former can be extracted from the available semi inclusive,

(e, e′p) data, and is usually written in the factorized form:

PMF (p, E) =
∑
n∈{F}

Zn|φn(p)|2Fn(E − En) , (4.4)

where the spectroscopic factor Zn < 1 and the function Fn(E−En), describing the energy

width of the n-th state, accounts for the effects of residual interactions not included in

the mean-field picture. In the absence of these residual interactions, Zn → 1 and

F (E − En) → δ(E − En).

In a nucleus of mass number A is, the correlation contribution is given by

Pcorr(p, E) =

∫
d3r%A(r)PNM

corr (p, E; % = %A(r)) , (4.5)

where %A(r) is the nuclear density distribution and PNM
corr (p, E; %) is the correlation part

of the spectral function of uniform nuclear matter at density %.

Note that the spectroscopic factors Zn are constrained by the normalization require-

ment ∫
d3pdEPLDA(p, E) = 1. (4.6)

The LDA scheme is based on the assumption that short-range nuclear dynamics are

unaffected by surface and shell effects. The validity of this assumption is supported by

the results of theoretical calculations of the nucleon momentum distribution

n(p) =

∫
dEP (p, E) (4.7)
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Figure 4.2: Calculated momentum distribution per nucleon in 2H,4He,16O, and uniform
nuclear matter (NM).

showing that for A ≥ 4 the quantity n(p)/A becomes nearly independent of A at large

|p|(>∼ 350 MeV). This feature, illustrated in Fig. 4.2 suggests that the correlation part of

the spectral function also scales with the target mass number.

The oxygen spectral function obtained in Ref. [18] within the LDA approach is shown

in Fig. 4.3. For comparison, in Fig. 4.4 we also show the momentum distribution obtained

from the spectral function of Fig. 4.3, the RFGM, and a Monte Carlo simulation carried

out using an highly realistic wave function [19].

4.2 Comparison to electron and neutrino-carbon scat-

tering data

Using the LDA carbon spectral function and the vector and axial currents discussed

in Chapter 3, one can compute the inclusive electron- and neutrino-nucleus cross sections,

that can both be expressed as in Eq.(3.53) with the appropriate elementary cross sections.
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Figure 4.3: Oxygen spectral function obtained within the LDA approximation [18].

Figure 4.4: Comparison between the momentum distribution obtained from the spectral
function of Ref. [18] (see Fig. 4.3), the RFGM, and a Monte Carlo simulation carried out
using a realistic wave function [19].
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Figure 4.5: Quasi elastic electron-carbon cross section, obtained using the spectral func-
tion of Ref.[17] and the vector form factors of Ref.[13], plotted as a function of the energy
loss ω. The data points are taken from Ref. [20].

Figure 4.5 shows the results of a theoretical calculation of the quasi elastic electron

scattering cross section off carbon, at beam energy Ee = 730MeV and electron-scattering

angle θe = 37◦, plotted as a function of the energy loss ω.

It is apparent that height, position and width of the quasi elastic peak, mostly driven

by the energy and momentum dependence of the hole spectral function, are well repro-

duced.

Applying the same formalism to neutrino scattering leads to the results displayed in

Fig. 4.6. The data points represent the double-differential CCQE cross section averaged

over the MiniBooNE neutrino flux, whose mean energy is 〈Eν〉 = 788 MeV, plotted as a

function of the kinetic energy of the outgoing muon at different values of the muon scatter-

ing angle. The solid lines show the results (integrated over the cos θµ bins) obtained using

the same spectral functions and vector form factors employed in the calculation of the

electron-scattering cross-section of Fig. 4.5, and a dipole parametrization of the axial form
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Figure 4.6: Flux averaged double differential CCQE cross section measured by the Mini-
BooNE collaboration, shown as a function of the kinetic energy of the outgoing muon.
The upper and lower panels correspond to different values of the muon scattering angle.
The theoretical calculations have been carried out using the spectral function of Ref. [17],
the vector form factors of Ref. [13] and a dipole parametrization of the axial form factor
with MA = 1.03 GeV.

factor with MA = 1.03 GeV. Comparison of Figs. 4.5 and 4.6 indicates that the electron

and neutrino cross sections corresponding to the same target and comparable kinematical

conditions ( the position of the QE peak in Fig. 4.5 corresponds to kinetic energy of

the scattered electron ∼ 610 MeV) cannot be explained by using the same theoretical

approach and the value of the axial mass resulting from deuterium measurements.

As already mentioned, the first explanation put forward to explain the MiniBooNE

CCQE cross sections was based on the suggestion that the value of MA may be modified

in the nuclear medium. On the other hand, electron scattering data have provide strong

evidence that the vector form factors are not modified.
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Figure 4.7: Inclusive electron-carbon cross sections at θe = 37o and beam energies ranging
between 0.730 and 1.501 GeV. The dashed lines represents the single nucleon knock out
contribution. The shaded area shows the energy bin corresponding to the peak of the
cross section of Fig. 4.5. The data are taken from Refs. [20, 22].

In Refs. [10, 21] it is argued that the excess strength may instead be explained by

the fact that, owing to the flux average, the experimental cross sections shown in Fig.4.6

include contributions of events other than CCQE.

The implications of flux average can be easily understood considering the neutrino

cross section at muon energy corresponding to the maximum of the spectrum shown in

the upper panel of Fig. 4.7, i.e. Tµ = 0.55 GeV, and cos θ = 0.75. In this kinematics,

Bjorken x = 1, corresponding to the quasi elastic peak, and x = 0.5, corresponding to

the dip region between the quasi elastic peak and the ∆-production peak (see Fig. 1) are

associated with neutrino energy Eν = 0.778 and 0.975 GeV, respectively. As the values

of the MiniBooNE flux corresponding to these energies are within less than 20% of one

another, flux integration leads to collect contributions from different regimes, in which
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different reaction mechanisms are expected to dominate, with about the same probability.

This feature can be best illustrated using the measured electron-carbon scattering cross

sections. Figure 4.7 shows the data from Refs. [20, 22], taken at electron scattering angle

θe = 37◦ and beam energies ranging between 0.730 and 1.501 GeV, plotted as a function of

the energy of the outgoing electron. It clearly appears that the energy bin corresponding

to the top of the quasi elastic peak at Ee = 0.730 GeV, shown by the shaded area, receives

significant contributions from cross sections corresponding to different beam energies and

different values of x. As a consequence, the description of the flux-integrated CCQE

neutrino nucleus cross section is likely to require the inclusion of reaction mechanisms

other than single nucleon knockout. Assuming that processes involving pion-production be

properly identified, the most important competing mechanism is multi-nucleon knockout,

leading to two particle-two hole (2p2h) final states. Note that in the MiniBooNE analysis

(see Chapter 2) these final states cannot be distinguished from the one particle-one hole

final states associated with single nucleon knockout.

Multinucleon knockout is known to occur due to:

• NN correlations in the initial state;

• final state interactions between the struck nucleon and the spectator particles;

• coupling to the two-body nuclear electroweak current.

As we already pointed out, the effect of NN correlations is taken into account in the

LDA spectral function. It gives rise to the tail extending to large ω, clearly visible in

Fig. 4.5. On the other hand, the available estimates suggest that in the MiniBooNE

kinematical setup final state interactions cannot explain the reported excess of CCQE

events. The most important correction is likely to arise from processes involving the

nuclear two-body current, the inclusion of which is long known to be needed to explain

the nuclear electromagnetic response in the transverse channel.



Chapter 5

Contribution of the two-nucleon
current operator

In this Chapter we will discuss meson-exchange currents (MEC), and their contribution

to the nuclear cross sections. Meson exchange is known to be the mechanism driving NN

interactions at large and intermediate distances. However, it should be kept in mind that

the description in terms of meson exchange is only justified at energies below the meson

production threshold. At higher energies the non-nucleonic degrees of freedom have to be

explicitly taken into account.

As a first step, we shall limit ourselves to a preliminary analysis, in which electro-

magnetic interactions and pion exchange are considered. After analyzing the structure

of the main contributions to the two-nucleon current and the problems arising from the

requirement of gauge invariance, we will derive the expression of the nuclear cross section

including one- and two-body currents. In order to keep the formalism as light as possible,

we will consider a deuterium target.

5.1 The nuclear electroweak current operator

Most calculations of MEC contributions to the electron and neutrino scattering cross

section have been carried out expanding the current operator in powers of |q|/M [23].



52 Contribution of the two-nucleon current operator

The resulting nuclear electromagnetic and axial current operators are written as a sum of

one-, two-, and many-body terms, depending on the degrees of freedom of an increasing

number nucleons:

j0(q) = %(q) =
∑
i

%
(1)
i (q) +

∑
i<j

%
(2)
ij (q) + . . . , (5.1)

j(q) =
∑
i

j
(1)
i (q) +

∑
i<j

j
(2)
ij (q) + . . . , (5.2)

Aa(q) =
∑
i

A
(1)
a,i (q) +

∑
i<j

A
(2)
a,ij(q) + . . . . (5.3)

The one-body operators %
(1)
i and j

(1)
i are obtained from the covariant single-nucleon cur-

rent:

jµ = ū(p′)
[
FV (Q2)γµ + FM(Q2)

iσµνqν
2m

]
u(p) (5.4)

whose expression is discussed in both Chapter 3 and Appendix A, while the one-body

contribution to the axial current is obtained from:

Aµa = ū(p′)
[
FA(Q2)γµ + FP (Q2)qµ

]
γ5
τa
2
u(p) . (5.5)

The Q2 dependence of FA is given by Eq.(2.6), while the induced pseudoscalar form factor

is parametrized in the form FP (Q2) = GP (Q2)/2M , with

GP (Q2) =
gπNN(Q2)

gπNN(0)

GP (0)

1 +Q2/m2
π

, (5.6)

gπNN(Q2) being the πNN strong-interaction form factor.

In this work, we will use a fully relativistic expression of the electromagnetic two-body

current, to be discussed in the next section.

Before, switching to electromagnetic interactions, in Fig. 5.1 we show the total CCQE

neutrino-deuteron cross section obtained using Eq.(3.37) and the deuteron wave function

described in Appendix C, and including one-body currents only. The axial form factor

has been assumed to exhibit a dipole Q2-dependence, with an axial mass MA = 1.03 GeV.
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Figure 5.1: CCQE neutrino-deuteron total cross section as a function of neutrino energy.
The theoretical results have been obtained using Eq.(3.37), the deuteron wave function
described in Appendix C and the nculeon axial mass MA = 1.03 GeV. The experimental
data are from Refs. [24, 25, 26].

It is apparent that, as discussed in Chapter 2, within the limited statistics of deuteron

experiments the data is compatible with this value of MA.

5.2 Electromagnetic two-body current operator

At intermediate and large inter nucleon separation distances, NN interactions are

known to be due to π- and %-meson exchanges. Here we will focus only on processes

mediated by pions.

Before defining the interaction Lagrangians, it is useful to specify our notation. The

isospin triplet of pion fields πa(x) with a = 1, 2, 3 is written in the form

πa =
∑
p

1

2ωp

[
cp,ae

ipx + h.c.
]
, (5.7)

where the annihilation and creation operators, cp,a and c†p,a, satisfy standard commutation

relations, and ωp ≡ (p2 +m2
π)1/2.
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Figure 5.2: Feynmann diagrams describing the two-body current associated with one-pion
exchange.

The non-interacting Lagrangian is given by

Lπ =
1

2
∂µπa∂

µπa −
1

2
m2
ππaπa . (5.8)

To simplify the notation, in the following we will denote Lmass = −1
2
m2
ππaπa, in the

derivation of the interaction terms. The first step consists of introducing the charged

pion fields

π+ =
π1 + iπ2√

2
, π− =

π1 − iπ2√
2

. (5.9)

Substitution of the above definitions in Eq.(5.8) leads to

Lπ =
(
∂µ
π1 + iπ2√

2

)∗(
∂µ
π1 + iπ2√

2

)
+

1

2
∂µπ3∂

µπ3 + Lmass . (5.10)

We now include electromagnetic interactions of charged pions through minimal substitu-

tion, i.e. replacing

∂µπ∓ −→
[
(∂µ ∓ ieAµ)π∓

]
. (5.11)

Neglecting terms quadratic in the electromagnetic field, this procedure yields

Lπ = (∂µ − ieAµ)
(π1 − iπ2)√

2
(∂µ + ieAµ)

(π1 + iπ2)√
2

+
1

2
∂µπ3∂

µπ3 + Lmass

=
1

2
∂µπ1∂

µπ1 +
1

2
∂µπ2∂

µπ2 +
1

2
∂µπ3∂

µπ3 + eAµ(π1∂
µπ2 − π2∂

µπ1) + Lmass .

(5.12)
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It is worth noting the appearance of the term

Lππγ = eAµ(π1∂
µπ2 − π2∂

µπ1) , (5.13)

describing the interaction between two π-mesons and a γ.

On he other hand, the Lagrangian describing the interaction vertex involving two

nucleons and a π can be written, assuming pseudovector πNN coupling, as

LπNN =
f

mπ

N̄γ5γ
µ(∂µπa)τaN , (5.14)

where

N =

(
p
n

)
, (5.15)

is a isospin doublet describing the nucleon field, and f denotes the πNN coupling constant.

The electromagnetic currents corresponding to diagrams (a)-(c) of Fig. 5.2 are ob-

tained by computing the S-matrix element:

Sfi = Sfi(P
′
1, P

′
2, P1, P2)− Sfi(P ′1, P ′2, P2, P1) (5.16)

for the absorption of a virtual photon by a system of two nucleons, namely for the process:

γ +N1 +N2 −→ N ′1 +N ′2 (5.17)

with P1, P2(P ′1, P
′
2) being the initial (final) four-momenta of the two participating nucleons.

The electromagnetic current is then defined according to

Sfi(P
′
1, P

′
2, P1, P2) = −ieAµ(Q)2πδ(E ′1 + E ′2 − E1 − E2 − ω)〈P ′1P ′2|jµ(Q)|P1P2〉. (5.18)

where Aµ(Q) is related to the matrix element of the electromagnetic field between the

state describing the incident photon with momentum Q and the vacuum state, namely

〈0|Aµ(X)|γ(Q)〉 = Aµ(Q)e−iQ·X . (5.19)
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Finally, the on-shell matrix element of the two-body current can be written in terms of a

function jµ(p′1, p
′
2, p1, p2) as follows:

〈P ′1P ′2|jµ(Q)|P1, P2〉

= (2π)3δ(3)(p′1 + p′2 − q − p1 − p2)
M2

V 2(Ep1Ep2Ep′
1
Ep′

2
)1/2

jµ(p′1, p
′
2, p1, p2),

(5.20)

where M is the nucleon mass, V is the normalization volume and Ep =
√
p2 +M2 the

on-shell energy of a nucleon with momentum p.

We now begin analyzing diagram (c), as we have all the tools needed to derive the

pion-in-flight current matrix element (isospin summation is understood). We obtain

jµp (p′1, p
′
2; p1, p2) =

f 2

m2
π

N̄(p′1)γ5γ
µ(k1

µ)τ (+)N(p1)
( 1

k2
1 −m2

π

)
× Fπ

2
(k1 − k2)µ

( 1

k2
2 −m2

π

)
N̄(p′2)γ5γ

ν(−ik2
ν)τ

(−)N(p1) ,

(5.21)

yielding

jµp =
p2

m2
π

iε3abτaτbN̄(p′1)γ5/k1N(p1)
Fπ(k1 − k2)µ

(k2
1 −m2

π)(k2
2 −m2

π)
N̄(p′2)γ5/k2N(p2) . (5.22)

The contributions associated with the Feynman diagrams (a)-(b) in Fig. 5.2, correspond-

ing to the so called seagull (or contact) current matrix element, are given by

jµs =
f 2

m2
π

iε3abN̄(p′1)τaγ5/k1N(p1)
F V

1

k2
1 −m2

π

N̄(p′2)τbγ5γ
µN(p2) + (1→ 2) . (5.23)

In the above equation, k1 and k2 are the four momenta given to nucleons 1 and 2, as

illustrated in Fig. 5.2, while F 1
V and Fπ are the electromagnetic isovector nucleon and

pion form factor, respectively.

The electromagnetic current must obey the continuity equation:

∂µj
µ = 0 , (5.24)

implying

∇ · j + i[H, j0] = 0 . (5.25)
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The currents defined in Eqs.(5.22) and (5.23), commute with the one-pion exchange po-

tential by construction. However, realistic nuclear hamiltonians involve phenomenological

potentials exhibiting a more complex structure (see Chapter 3). A procedure to generalize

Eqs.(5.22) and (5.23), to make them consistent with the requirement of current conser-

vation, has been developed in Refs.[27, 28]. However, in this exploratory study we will

restrict ourselves to the pion-exchange currents defined on in Eqs.(5.22) and (5.23).

5.3 Electron-deuteron cross section

In Born approximation, the differential cross section of the process e + 2H → e +X,

can be written in the form (compare to Eq. (3.37)):

d2σ

dΩe′dEe′
=
α2

Q4

Ee′

Ee
LµνW

µν (5.26)

where Ee is the energy of the incident beam and Ee′ is the energy of the outgoing electron

in the final state while. The tensor Lµν is the symmetric part of the leptonic tensor defined

in Eq.(3.14), while

W µν =
1

2s+ 1

∑
Ms

∑
x

〈0|Jµ|x〉〈x|Jν |0〉δ(4)(p0 + q − px) , (5.27)

where p0 and px are the four-momenta of the initial and final hadronic states, respectively,

while s and Ms denote the target spin and its projection along the quantization axis.

The nuclear current, involving both one- and two-body contributions, can be written

in the form

〈x1x2|Jµ|x1x2〉 = Jµ1 (x1) + Jµ1 (x2) + Jµ2 (x1,x2) = Jµ(x1,x2) , (5.28)

impying that transformation to momentum space yields

Jµ(q1,q2) =

∫
d3x1d

3x2e
−i(q1x1+q2x2)Jµ(x1,x2)

= Jµ1 (q1)(2π)3δ(3)(q2) + Jµ2 (q2)(2π)3δ(3)(q1) + Jµ2 (q1,q2) .

(5.29)
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The initial and final states are defined as

〈x1x2|0〉 = ψ(x1,x2)|1 M〉|0 0〉 , (5.30)

where |1 M〉 and |0 0〉 refer to spin and isospin states, respectively, and

〈x1x2|x〉 = 〈x1|p1〉〈x2|p2〉 |s1s2〉|t1t2〉 , (5.31)

s1t1 and s2t2 being the spin-isospin quantum numbers of the two final state nucleons,

carrying momenta p1 and p2.

From Eq.(5.31) it follows that in Eq.(5.27) we can replace∑
x

−→
∑
s1s2

∑
t1t2

∫
d3p1

(2π)3

d3p2

(2π)3
, (5.32)

obtaining

W µν =
1

3

∑
M

∑
s1s2

∑
t1t2

∫
d3p1

(2π)3

d3p2

(2π)3
δ(4)(p0 + q − pX)

× 〈0|Jµ|p1s1t1,p2s2t2〉〈p1s1t1,p2s2t2|Jν |0〉.
(5.33)

Let us now consider the matrix element of the nuclear current operator. Inserting a

cmplete set of two-nucleon states |k1σ1τ1,k2σ2τ2〉 it can be rewritten in the form:

〈p1s1t1,p2s2t2|Jν |0〉 =
∑
σ1σ2

∑
τ1τ2

∫
d3k1

(2π)3

d3k2

(2π)3

× 〈p1s1t1,p2s2t2|Jν |k1σ1τ1,k2σ2τ2〉
( m

Ek1

)1/2( m

Ek2

)1/2

〈k1σ1τ1,k2σ2τ2|0〉 ,
(5.34)

where Ek = (|k|2 +M2)1/2 and

〈k1σ1τ1,k2σ2τ2|0〉 =

∫
d3x1d

3x2〈k1|x1〉〈k2|x2〉ψ(x1,x2)〈σ1σ2|1M〉〈τ1τ2|0 0〉 . (5.35)

Let us now introduce center of mass and relative coordinates, in both position and mo-

mentum space

X =
x1 + x2

2
, x = x1 − x2 , (5.36)

K = k1 + k2 , k =
k1 − k2

2
, (5.37)
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in terms of which we can write the deuteron wave function

ψ(x1,x2) = eiKCM ·Xψ(x) −→ ψ(x) (5.38)

where we have chosen to work in the laboratory frame, which amounts to setting KCM = 0.

Therefore, we find:

〈k1σ1τ1,k2σ2τ2|0〉 = (2π)3δ(3)(k1 + k2)

×
∫

d3xei(k1−k2)x/2ψ(x)〈σ1σ2|1M〉〈τ1τ2|0 0〉 ,
(5.39)

and substitution in Eq.(5.34) yields

〈p1s1t1,p2s2t2|Jν |0〉 =
∑
σ1σ2

∑
τ1τ2

∫
d3k1

(2π)3

d3k2

(2π)3

( m

Ek1

)1/2( m

Ek2

)1/2

(2π)3δ(3)(k1 + k2)

× ψ̃
(k1 − k2

2

)
〈p1s1t1,p2s2t2|Jν |k1σ1τ1,k2σ2τ2〉〈σ1σ2|1M〉〈τ1τ2|0 0〉 ,

(5.40)

i.e.

〈p1s1t1,p2s2t2|Jν |0〉 =
∑
σ1σ2

∑
τ1τ2

∫
d3k

(2π)3

(m
Ek

)
ψ̃(k)

〈p1s1t1,p2s2t2|Jν |k1σ1τ1,k2σ2τ2〉〈σ1σ2|1M〉〈τ1τ2|0 0〉 ,
(5.41)

ψ̃(k) being the deuteron wave function in momentum space.

We now rewrite the current in terms of its Fourier transform, using again center-

of.mass and relative coordinates:

Q = q1 + q2 , ξ =
q1 − q2

2
,

P = p1 + p2 , p =
p1 − p2

2
.

(5.42)

We thus find

〈p1s1t1,p2s2t2|Jν |k1σ1τ1,k2σ2τ2〉 =

∫
d3Xd3xe−iP·Xe−ip·x

∫
d3Q

(2π)3

d3ξ

(2π)3
e−iQ·Xeiξ·xeik·x

× ūs1
(P

2
+ p

)
ūs2

(P

2
− p

)
χ+
t1
χ+
t2
Jµ
(Q

2
+ ξ,

Q

2
− ξ
)
χτ1χτ2uσ1(k)uσ2(−k)

= ūs1

(P

2
+ p

)
ūs2

(P

2
− p

)
χ+
t1
χ+
t2
Jν
[P

2
+ (p− k),

P

2
− (p− k)

]
χτ1χτ2uτ1(k)uτ2(−k) ,

(5.43)
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where us(p) and χs denote Dirac and Pauli spinors, respectively. Note that, although the

electromagnetic current is diagonal in isospin space, we have kept the isospin dependence

of matrix elements explicit, for future use in the case of the charged weak current.

Collecting things together we finally arrive at

〈p1s1t1,p2s2t2|Jν |k1σ1τ1,k2σ2τ2〉 =

∫
d3k

(2π)3

(m
Ek

)
ψ̃(k)

× 〈Jν1
[P

2
+ (p− k)

]
(2π)3δ(3)

[P
2
− (p− k)

]
+ Jν1

[P
2
− (p− k)

]
(2π)3δ(3)

[P
2

+ (p− k)
]

+ Jν2

[P
2

+ (p− k),
P

2
− (p− k)

]
〉

(5.44)

where 〈. . . 〉 denotes the spin-isospin matrix element, summed over σ1, σ2, τ1 and τ2.

The resulting expression of the target tensor

W µν =
1

3

∑
M

∑
s1s2

∑
t1t2

∫
d3P

(2π)3

d3p

(2π)3
δ[ω +M − EX(P,p)]δ(3)(q−P)∫

d3k

(2π)3

d3k′

(2π)3

(m
Ek

)( m
Ek′

)
ψ̃∗(k′)ψ̃(k)

〈Jµ1 (. . . )(2π)3δ(3)
[P

2
+ (p− k′)

]
+ Jµ1 (. . . )(2π)3δ(3)

[P
2

+ (p− k′)
]

+ Jµ2 (. . . )

× 〈µ→ ν, k′ → k〉 ,
(5.45)

can be used to obtain the inclusive cross section from Eq. (3.37).

Note that, in the absence of two-nucleon currents the resulting cross section reduces

to the form of Eq. (3.53), in which the elementary neutrino cross section is replaced by

the corresponding electron cross section and the target spectral function reduces to

P (p, E) = |ψ(k)|2δ(E − Ed) , (5.46)

Ed = 2.225 MeV being the deuteron binding energy.
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5.4 Numerical results

As a first step, we have tested the approach described in the previous Section including

only the one-body current contribution. The current has been constructed following the

procedure described in Appendix A, using the state-of-the-art parametrization of the

vector form factors of Ref. [13].

The structure of the deuteron wave function employed in all calculations, correspond-

ing to the NN potential model generally referred to as Argonne v18 [29], is discussed in

Appendix C.

Figure 5.3: Electron-deuteron cross section at beam energy Ee = 12.59 GeV and scattering
angle θe = 10◦. The dot-dash and dashed lines correspond to quasi-elastic and inelastic
scatering, respectively, whereas the solid lines show the sum of the two contributions.
Experimental data are from Ref. [30].

In Fig. 5.3 the results of our calculations are compared to the data of Ref. [30],

corresponding to beam energy Ee = 12.59 GeV and scattering angle θe = 10◦. In addition

to quasi elastic scattering (dash-dot line), we have included the contributions of single

nucleon knockout processes leading to the production of hadrons other than nucleons,

as well as deep inelastic scattering, computed within the approach described in Ref.
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Figure 5.4: Electron-deuteron cross section at beam energy Ee = 1.020 GeV and scattering
angle θe = 180◦. The dot-dash and dashed lines correspond to quasi-elastic and inelastic
scatering, respectively, whereas the solid lines show the sum of the two contributions.
The thick dashed line corresponds to the MEC contribution, multiplied by a factor of 10.
Experimental data are from Ref. [31].

[2] (dashed line). It is apparent that the resulting cross section (solid line) provides a

quantitative description of the data over the whole range of energy loss, thus suggesting

that two-nucleon currents do not play a significant role in this kinematical setup. This

was to be expected, as MEC contribute to the cross section in the transverse channel, the

contribution of which is strongly suppressed at small scattering angles.

For comparison, in Fig. 5.4 we compare our results to data corresponding to lower

electron energy, Ee = 1.020 GeV, and backward angle θe = 180◦ [31]. It clearly appears

that in this case the cross section computed including one-body currents only fails to

explain the data. Sizable differences between theory and experiment occur in the so

called dip region, between the quasi elastic peak and the region where inelastic processes

dominate. Inclusion of the pion in flight and seagull contributions to the two-nucleon

current, described in the previous Section, provides a correction depicted by the thick
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dashed line of Fig. 5.4. Note that, to make the MEC contribution visible on the scale of

the figure, it has been multiplied by a factor of 10. In the kinematical setup of Fig. 5.3

the calculated MEC contribution turns out to be totally negligible.

The results of Fig. 5.4 indicate that, while the calculated MEC contribution exhibits

the expected ω-dependence, it provides a small correction, its magnitude being less than

3% of the cross section obtained from the one-body current. This results strongly suggests

that the calculation must be extended to include the full two-body current, taking into

account gauge invariance.
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Summary and Conclusions

In this Thesis, we have studied the possible role of reaction mechanisms other than

single nucleon knock out in the determination of the charged current quasi elastic (CCQE)

neutrino-nucleus cross section.

As neutrino oscillation experiments use nuclei as detectors, a fully quantitative under-

standing of neutrino-nucleus interactions is required to reduce the systematic errors. In

this context, the CCQE channel, being dominant at neutrino energies <∼ 1 GeV, is critical

to the analysis of the data recently reported by the MiniBooNE Collaboration. Theo-

retical and experimental studies of electron scattering have shown that the quasi elastic

nuclear cross section can be computed to remarkable accuracy within the approach based

on the impulse approximation (IA) and Nuclear Many Body Theory (NMBT). In addition

to being relevant for data analysis, the study of CCQE neutrino interactions is interesting

in its own right, as it may help to clarify the controversial issue of wether the nucleon

axial mass, driving the Q2-dependence of the axial form factor, is modified in the nuclear

environment. This possibility has been recently suggested to explain the excess of CCQE

events detected by the MiniBooNE and K2K Collaborations using carbon and oxygen

targets, respectively. A sizable modification of the axial form factor would be somewhat

surprising, as no evidence of a similar effect in the vector form factors has been observed

by electron-nucleus scattering. Moreover, the analysis of the sample of CCQE events

collected by the NOMAD collaboration using a carbon target does not appear to support

a large value of the axial mass.
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Based on previous work, we have argued that the excess CCQE cross section is likely

to be ascribed to flux average, on account of which in neutrino scattering the contributions

of different reaction mechanisms, some of them leading to the same final state, mix up. Of

particular relevance, in this context, are the contributions of processes involving meson-

exchange currents (MEC), which is known to be sizable in the electron-nucleus scattering

cross section in the transverse channel.

As a first step towards the development of a consistent treatment of one- and two-

nucleon currents, we have considered the contribution of pion-exchange currents in the case

of electron-deuteron scattering. Our numerical results suggest that these contributions

are negligible at small angle, where the data can be explained in terms of ons-body current

only. At backward angles, while not be totally negligible, the calculated MEC contribution

turns out to be small, and does not explain the discrepancy between theory and data.

Numerical calculations have required the development of new computer code in fortran

language, as well as significant revisions of the existing code. The typical CPU time needed

to compute the total CCQE cross section at fixed neutrino energy turned out to be of the

order of few minutes on a high level personal computer.

The work described in the Thesis must be regarded as part of an ongoing effort, aimed

at extending the formalism successfully applied to the analysis of electron-scattering data

to the case of neutrino scattering. This approach has already produced high quality

results for the single nucleon knock out contribution to the CCQE neutrino-nucleus cross

section, allowing at the same time for the identification of the problems arising from the

flux average that led us to investigate the role of competing reaction mechanisms..

Further development of our project will require the inclusion of exchange currents

associated with mesons other than pions, and a careful treatment of the problem of gauge

invariance, needed to achieve consistency between the two-body current and the nuclear

hamiltonian employed in the calculation of the nuclear spectral functions. The final goal
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is the calculation of the neutrino-carbon cross section using one- and two-nucleon vector

and axial currents.
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Appendix A

Form factors

A.1 Nucleon current

The hadronic currents are not easily expressed in terms of quarks currents because of

the composite structure of the hadrons, but the hadronic currents must obey the same

fundamental symmetries as the quark currents. The hadronic currents should then have

the V-A structure of (vector current) - (axial current).

〈p′|j+
hadµ|p〉 = jVµ − jAµ (A.1)

As the Lorentz vectors, the vector and axial currents are written as

jVµ = ū(p′)
[
γµFV (q) +

iσµνqν

2M
+ qµFS(q)

]
u(p) (A.2)

jAν = ū(p)
[
γµγ5FA(q) + γ5qµFP (q) + iγ5σµνq

νFT (q)
]
u(p) (A.3)

Here, u’s are the nucleon spinors. When nucleon currents are assumed to be transferred

in the same way as the quark current under the charge conjugation and time reverse, the

second-class form factors, FT (q) and FS(q), vanish and all other form factors become real.
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A.2 Nucleon form factors

The weak (charge-lowering) current, p → n and its conjugate n → p, together with

the electromagnetic current, are believed to form an isospin triplet of conserved vector

currents. The form factors in the weak current are then directly related to those in the

electromagnetic current. The weak-charged current is the incremental or decremental

operator of isospin, that is, the current is expressed by the components (τ1 and τ2) of the

isovector, i.e.

J±µ = ŪΓµ
τ1 ± τ2

2
U (A.4)

where Γµ = γµFV (q) + iσµνq
νFM(q)/(2M) and U is the isodublet, (p n)T . On the other

hand, the electromagnetic current is the sum of the isoscalar and the diagonal component

(τ3) of the isovector and then

Jemµ =
1

2
ŪΓSµU + ŪΓµ

τ3

2
U (A.5)

The first term in the right-hand side of the above equation is the isoscalar current and

the other is the isovector current. Decomposing the above equation into the proton and

neutron currents, we obtain

Jemµ = p̄
1

2

(
ΓSµ + Γµ

)
p+ n̄

1

2
(ΓSµ − Γµ)n (A.6)

Therefore the form factors of the isovector current becomes

Fi(q) = F p
i (q)− F n

i (q) (A.7)

The form factors in the vector current, FV (q) and FM(q) are determined phenomenologi-

cally as:
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FV (q) =

(
1− q2

4M2

)−1[
GE(q)− q2

4M2
GM(q)

]
(A.8)

FM(q) =

(
1− q2

4M2

)−1

[−GE(q) +GM(q)] (A.9)

Here, GE(q) and GM(q) are Sachs form factors,

Gp
E(q) =

Gp
M(q)

µp
=
Gn
M(q)

µn
=

(
1− q2

M2
V

)−2

(A.10)

and Gn
E(q) = 0, where the subscripts p and n denote the form factors for the proton and

neutron, respectively. The size parameter is taken to be M2
V = 0.71 GeV2. The proton

and neutron magnetic moments are µp ≈ 2.793 and µn ≈ −1.913 in the unit of the nuclear

magneton (e~/2Mp with Mp, the proton mass). We thus obtain the Sachs form factors

for the charged current as

GE(q) =

(
1− q2

M2
V

)−2

(A.11)

GM(q) = (µp − µn)

(
1− q2

M2
V

)−2

(A.12)

The form factors in the axial current, namely, FA(q) and FP (q), are related as

Fp(q) =
2MFA(q)

m2
π − q2

(A.13)

under PCAC (partially conserved axial current) hypothesis

∂µjAaµ = fπm
2
ππ

a (A.14)

with (a= 1, 2, and 3) together with the assumption that the gauge bosons couple with

the nucleon dominantly through the pion exchange in the pseudoscalar channel. FA(q) is
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phenomenologically determined as

FA(q) = gA

(
1− q2

M2
A

)−2

(A.15)

with

gA = −1.261± 0.004

MA = 1.032± 0.036
(A.16)

The FP (q) contribution can be neglected except for the case of the tau-neutrino cross

sections.

A.3 Comments

The vector current associated with the nucleon in free space, is conserved, as

qµjVµ = ū(p′)
[
qµγµFV (q) +

iσµνq
µqν

2M
FM(q)

]
u(p)

= ū(p′)[(p′µγµ − pµγµ)FV (q)]u(p)

= 0

(A.17)

where we used σµν = −σνµ and the Dirac equation for the nucleon free-space

pµγµu(p) = Mu(p) (A.18)

This Dirac equation is not valid for the interacting nucleon, such as nucleons in nuclei.

The vector current is not conserved when the nucleus is described by a system of the

interacting nucleons through static potentials. The conservation can be recovered by

properly including the meson degrees of freedom, such as the exchange currents.

As well known, the axial current is not conserved in free space:

qµjAµ = ū(p′)
[
qµγµγ5FA(q) + q2γ5FP (q)

]
u(p)

= ū(p′)
[
i
√

2fπ(q2)m2
ππ

(−)
]
u(p)

=
2fπ(mπ)2m2

π

q2 −m2
π

gπNN(q2)ū(p′)γ5u(p)

(A.19)

where the PCAC hypothesis is applied as an operator relation with π(−) = (π1− iπ2)/
√

2.



Appendix B

Integration limits

Let us analyze in detail the integration limits involved in the calculation of the quasi-

elastic and anelastic cross sections. The integration over momentum in neutrino-nucleus

cross section can be cast in the form

d3p = p2dpd cos γdφ (B.1)

where γ is the angle between p and q and the integral on the azimuthal angle φ can be

readily done, yielding a factor 2π. Denoting by W the invariant mass of the final hadronic

state produced in the interaction, cos γ can be written in the form:

cos γ =
−W 2 − |p|2 − |q|2 + (ω̃ + Ep)

2

2|p||q|
(B.2)

or, equivalently,

cos γ =
s+M2

A−1 −W 2 − 2(ω +MA)EA−1

2|p||q|
(B.3)

where MA−1 = MA−M +E, s is the squared center of mass energy and E2
A−1 = M2

A−1 +

|p|2. The quantity cos γ has to satisfy the constraint −1 ≤ cos γ ≤ 1, leading to the lower

and upper bounds for |p|:

|p|± =
1

2s

∣∣∣Λ|q| ± (ω +MA)[Λ2 − 4sM2
A−1]1/2

∣∣∣ (B.4)

with Λ = s + M2
A−1 −W 2. The upper limit of the E integration can be found requiring

the argument of the square root entering the definition of |p|± to be non negative. This
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leads to Λ ≥ 2
√
sMA−1 and finally to the bound

Emax =
√
s−MA − (W −M) (B.5)

We restrict ourselves to the quasi-elastic case. Up to now the integration limits we have

found are completely general. The quasi-elastic case is recovered once we put W = M .

The ν − nucleus cross section can be cast in a simpler form once we use the energy con-

serving δ-function to perform integration on cos γ in Eq. (B.1).

We have to evaluate the Jacobian of the transformation

∂

∂ cos γ
(s−M2) ≡ 2|p||q|, (B.6)

leading to the final formula

d2σIA
dΩdEl

=
2π

|q|

∫
dpdE|p|P (p, E)

d2σelem
dΩdEl

(B.7)

The integration limits of the Resonance production case are analyzed in Ref[[?]].



Appendix C

Deuteron wave function

The general form of the deuteron wave fuction is given by:

ψ(r1, r2) = Ω−1/2eiP·Rψ(r) (C.1)

in which center of mass and relative coordinates (both in position and impulse basis),

namely

R =
(r1 + r2)

2

r = r1 − r2

P = p1 + p2

p =
p1 − p2

2

(C.2)

have been introduced. Therefore, the probability of finding the two nucleons with relative

distance r is: ∣∣ψ(r)
∣∣2 (C.3)

let us try to formally derive its expression.

The deuteron is the only bound state of two nucleons, with isospin T= 0, spin parity

Jπ = 1+, and binding energy EB = 2.225 MeV. For two-spin 1/2 nucleons, only total

spins S= 0, 1 are allowed. Then the total orbital angular momentum is restricted to

J − 1 < l < J + 1, i.e. l= 0,1 or 2. Since the parity is π = (−1)l = +1, only l= 0 and l=
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2 are allowed, this also implies we have S= 1.

We begin combining the two spins together to produce a total spin S= 1.

χ1
1 = | ↑1〉| ↑2〉 (C.4)

χ0
1 =

√
1

2

(
| ↑1〉| ↓2〉+ | ↓1〉| ↑2〉

)
(C.5)

χ−1
1 = | ↓1〉| ↓2〉 (C.6)

Recalling the following definitions:

Y0,0 =
1√
4π

(C.7)

Y1,1 = −
√

3

8π
eiφ sin θ , Y1,0 =

√
3

4π
cos θ (C.8)

Y2,2 =

√
15

32π
ei2φ sin2 θ, Y2,1 = −

√
15

32π
eiφ sin 2θ, Y2,0 =

√
5

16π
(3 cos2 θ − 1) (C.9)

(C.10)

we define the spin angle functions, i.e. Y as:

Y
mj
lsj =

∑
ms

〈l, s;ml,ms|jmj〉χmss Y ml
l (C.11)

where:

〈l, s;ml,ms|jmj〉 (C.12)

is the Clebsh-Gordon coefficient. As an example:

Y 1
001(r̂) =

∑
ms

〈0, 1; 0,ms|0, 1〉χms1 Y 0
0 (r̂)

= 〈0, 1; 0, 1|0, 1〉χ1
1Y

0
0 (r̂)

= χ1
1Y

0
0 (r̂)

(C.13)

Thus, the deuteron wave function depending on the relative coordinate, is written as:

ψ(r) =
u(r)

r
Y 1

011(r̂) +
w(r)

r
Y 1

211(r̂) (C.14)



77

yielding to:

|ψ(r)|2 =
1

4π

u2(r)

r2
+

1

32π

w2(r)

r2

[
(3 cos2 θ − 1)2 + 18 cos2 θ · sin2 θ + 9 sin4 θ

]
+

1

4π

1√
2

u(r)w(r)

r2
(3 cos2 θ − 1)

(C.15)

u(r) and w(r) indicate the radial functions, moreover Y ’s are normalized so that the

functions obey the condition: ∫ ∞
0

dr
{
u2(r) + w2(r)

}
= 1 (C.16)

If the neutron-proton potential is:

V (r) = Vc(r) + VT (r)S12 + VLSL · S, (C.17)

where

S12 = 3(σ1 · r)(σ2 · r)/r2 − σ1 · σ2, (C.18)

then the equations for u(r) and v(r) are:

d2u

dr2
= {−ε+ f1(r)}u+ f2(r)w

d2w

dr2
= f2(r)u+ {−ε+

6

r2
+ f2(r)}w,

(C.19)

where

ε = ME/~2 (C.20)

and

f1(r) = MVc(r)/~2, f2(r) = 81/2MVT (r)/~2,

f3(r) = M
[
Vc(r)− 2VT (r)− 3VLS(r)

]
/~2

(C.21)

The boundary conditions are that u = w = 0 for r = 0 and for r →∞.
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