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Introduction

According to the standard model of particle physics, neutrinos are massless. If
this were the case, neutrinos of different flavors would be degenerate, and one could
always find a basis in which the Hamiltonian and the lepton flavors are both diagonal.
However, the observation of neutrino oscillations has unambiguously established that
neutrinos have non vanishing masses, although many orders of magnitude smaller
that those of charged leptons.

Neutrino oscillation experiments are sensitive to differences between squared
neutrino masses, but do not provide any information on either the absolute neutrino
mass scale or the neutrino mass hierarchy.

The experimental searches of neutrinoless double β-decay (for a recent review,
see, e.g., Ref. [1]), on the other hand, may tell us whether neutrinos are Majorana
or Dirac particles and shed light on the absolute mass scale.

In a double β-decay reaction, a very long-lived nucleus with mass number A and
atomic number Z disintegrates spontaneously into a nucleus with the same mass
number and atomic number decreased by two units, with emission of two electrons
and zero or two anti-neutrinos. According to the standard model this process is
mediated by the weak interaction and it is always associated with the occurrence of
anti-neutrinos in the final state. On the other hand, if the neutrino is a Majorana
particle, implying that the same field describes particle and antiparticle, we can
observe a final state without neutrinos, as the two neutrino fields are contracted to
give rise to a propagator.

The calculation of the nuclear transition matrix element entering the expression
of the decay rate involves severe difficulties, as it requires an accurate description
of nuclear dynamics. Nucleon-nucleon interactions, besides being non spherically
symmetric and spin and isospin dependent, are in fact known to exhibit a strongly
repulsive core, which makes standard perturbation theory inapplicable.

Calculations of transition matrix elements for complex nuclei, such as those
employed in neutrinoless double β-decay experiments, are carried out within the
framework of the nuclear shell model, based on the assumption that the nucleon-
nucleon interactions can be described in terms of a mean field. However, this
approach, while being very successful in explaining a wealth of nuclear data, fails to
take into account nucleon-nucleon correlations, that are expected to play a significant
role in a reaction involving two nucleons.

Recently, a number of high precision electron-nucleus scattering experiments
aimed at assessing the validity and limits of the shell model picture, made possible
by the availability of continuous electron beam facilities, have shown that correlation
effects are important, and lead to a sizable deviation from the shell model predictions.



v

In this Thesis we discuss the inclusion of correlation effects on the nuclear
transition matrix element of the neutrinoless double β-decay, and report the numerical
results of a preliminary study of this process in 48Ca.

In Chapter 1, we summarize the main elements of the physics of massive neutrinos
and briefly discuss neutrino oscillations in vacuum.

In Chapter 2, we outline the theoretical formalism to be employed in the descrip-
tion of β-decays and derive the expression of the decay rate of both two-neutrino and
neutrinoless double β-decay, pointing out the differences between the two processes.

The aim of Chapter 3 is to present the main features of nuclear structure
and dynamics, based on nucleon-nucleon interaction. We focus on the difficulties
associated with the nuclear many-body problem. In the last two Sections we
discuss the shell model and the inclusion of correlation effects through two different
procedures based on correlated basis function theory: using either correlated two-
nucleon states or using the theory of spectroscopic factors.

In Chapter 4, we derive the analytic expression of the nuclear matrix elements. In
the first Section we analyze the pure shell model, while in the second Section we show
how central and spin-dependent correlations modify the Fermi and Gamow-Teller
nature of the transition matrix elements.

Finally, in Chapter 5, we present the numerical results in the case of pure shell
model and with inclusion of correlation effects.

Throughout this Thesis we always use a system of units in which � = c = 1

where � is Planck’s constant and c is the speed of light.



Chapter 1

Physics of massive neutrinos

In the Standard Model of elemenatry particles, neutrino is conisdered a massles
lepton. Moreover neutrino does not carry any electrical charge, it is observable
only via weak interactions with definite left-handed chirality and it is paired with a
charged lepton (e, µ, τ) in weak isodoublets.

However, neutrino oscillations and beta decays experiments have unambiguosly
demonstrated that neutrino is a massive particle with a mass much smaller than
the electron one. From a theoretical point of view, the nature of the mass of the
neutrino has not yet been estabilished phenomenologically; neutrino can be a Dirac
particle (i.e. different from its antiparticle) or a Majorana particle (i.e. identical
from its antiparticle).

1.1 Dirac neutrinos
A Dirac neutrino mass can be generated with the same Higgs mechanism that

gives masses to quarks and charged leptons in the Standard Model. We need
only to introduce the sterile right-handed neutrinos that do not undergo weak
interactions. After the electroweak symmetry breaking we obtain the following Dirac
mass Lagrangian:

LD = −mDνν = −mD(νLνR + νRνL) = − yv√
2

(νLνR + νRνL) , (1.1)

where νL and νR are the left-handed and right-handed neutrino field respectively
defined as

νL ≡ PLν ≡ 1 − γ5
2

ν , νR ≡ PRν ≡ 1 + γ5
2

ν , (1.2)

y is a Yukawa coupling constant and v is the vacuum expectation value of the Higgs
field. Note that, in this mechanism, the neutrino mass is proportional to v, as
the masses of charged leptons and quarks. However we know that the mass of the
neutrino is much smaller than those of charged leptons and quarks and there is no
explanation of the very small value of y that is needed.
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1.2 Majorana neutrinos 2

1.2 Majorana neutrinos
In 1937, E. Majorana [2] discovered that a four-component spinor is not necessary

for the description of a neutral massive fermion as in the Dirac theory. It is sufficient
a two-component spinor if we put the so-called Majorana condition

ψL = ψC , (1.3)

where ψ is the fermion field and ψC is the charged conjugated field defined as

ψC
= C ψ

T
, (1.4)

in which C is the charge conjugation operator1. Eq. (1.3) implies the equality of
particle and antiparticle.

Applying the operator PL defined in (1.2) to Eq. (1.3), we obtain:

ψL = ψC
R . (1.5)

This equation shows that ψL and ψR are not independent and therefore we can write
the fermion field only with the two independent components of ψL (or equivalently
ψR), e.g.

ψ = ψL + ψC
L . (1.6)

We can construct a mass Lagrangian for a Majorana fermion in the following
way:

LM = −mM (νC
L νL + νLνC

L ) , (1.7)

where we have introduced an overall factor 1/2 in order to obtain the correct equations
of motion. Note that the Majorana mass term in Eq. (1.7), contrary to the Dirac
mass term in Eq. (1.1), is not invariant under the global U(1) gauge transformation
νL → eiφνL. This implies that, for the Majorana case, the conservation of the total
lepton unmber can be violated.

1.3 One-generation Dirac-Majorana mass term
In this section we want to construct the neutrino mass Lagrangian considering,

for simplicity, only one generation. In the most genral case, in which there exist
both the left-handed neutrino field νL and the right-handed neutrino field νR, the
neutrino mass term can be written as

Lmass = LD + L
L
M + L

R
M , (1.8)

where
LD = −mDνRνL + h.c. (1.9)

1The charge conjugation operator satisfies the following relations:

C γµ T C−1 = −γµ , C† = C−1 , CT = −C .
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1.3 One-generation Dirac-Majorana mass term 3

is the Dirac mass term and

L
L
M = −1

2
mLνC

L νL + h.c. =
1

2
mLνT

L C
†νL + h.c. , (1.10)

L
R
M = −1

2
mRνC

R νR + h.c. =
1

2
mLνT

RC
†νR + h.c. (1.11)

are the Majorana mass terms for the left-handed and right-handed fields respectively.
If we define the column matrix of left-handed chiral fields

NL =

�
νL

νC
R

�

=

�
νL

CνR
T

�

, (1.12)

eq. (1.8) can be rewritten in the following way:

Lmass =
1

2
NT

L C
† M NL + h.c. , (1.13)

where
M =

�
mL mD

mD mR

�

(1.14)

is the mass matrix.
From (1.13) it is clear that the chiral fields νL and νR do not have a definite mass,

because of the off-diagonal term mD. In order to find the massive neutrinos fields,
we have to diagonalize the mass matrix in (1.14). The matrix M is a symmetric
complex matrix and it can be diagonalized with a unitary transformation of the
chiral fields (U † = U−1), i.e.

NL = U nL , (1.15)

where
nL =

�
ν1L

ν2L

�

(1.16)

is the column matrix of left-handed massive neutrino fields. The unitary matrix U
must be such that

UT M U =

�
m1 0

0 m2

�

, (1.17)

with m1, m2 real and positive.
Using the transformation (1.15), the mass term in (1.13) can be rewritten as

Lmass =
1

2

2�

k=1
mkνT

kLC
†νkL + h.c. = −1

2

2�

k=1
mkνkνk , (1.18)

where we have defined the Majorana massive neutrino field

νk = νkL + νC
kL = νkL + CνkL

T . (1.19)

Hence, a Dirac-Majorana mass term implies that massive neutrino are Majorana
particles.
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1.4 The seesaw mechanism 4

In order to determine the values of the masses mk, let us consider the simplest
case in which M is a real matrix. The unitary matrix U can be written as

U = O ρ , (1.20)

where
O =

�
cos θ sin θ

− sin θ cos θ

�

(1.21)

is an orthogonal 2 × 2 matrix and

ρ =

�
ρ1 0

0 ρ2

�

(1.22)

is a diagonal matrix of phases with ρ2
k = 1. The matrix O is such that

O
T M O =

�
m�

1 0

0 m�
2

�

, (1.23)

where m�
1 and m�

2 are the eigenvalues of the mass matrix given by

m�
2,1 =

1

2

�
mL + mR ±

�
(mL − mR)2 + 4m2

D

�
. (1.24)

The mixing angle θ in (1.21) is such that

tan 2θ =
2mD

mR − mL
. (1.25)

Note that the role of the matrix ρ is to change the sign of m�
1 when it is negative,

in fact, from Eq. (1.17), we have:

UT M U = ρT RT M R ρ =

�
ρ2

1m�
1 0

0 ρ2
2m�

2

�

. (1.26)

Hence, the two real and positive masses are given by

mk = ρ2
km�

k , (1.27)

with ρ2
2 = 1 (from Eq. (1.24) follows that m�

2 is always positive), ρ2
1 = 1 if m�

1 > 0

and ρ2
1 = −1 if m�

1 < 0.

1.4 The seesaw mechanism
Let us consider the neutrino mass Lagrangian (1.13) in the framework of the

Standard Model:

• mD is allowed because it is generated with the Higgs mechanism;

• mL must vanish, in fact the mass term νC
L νL is not invariant under SU(2)L

because νL has third component I3 of the weak isospin equal to 1/2, therefore
νC

L νL has I3 = 1;
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1.5 Three-generation Dirac-Majorana mixing 5

• νR is a weak isospin singlet. As a consequence, and in constrast with mD or
mL, the mass parameter mR is therefore not connected to a Higgs vacuum
expectation value, and could be arbitrarily high.

Hence
mL = 0 , mD � mR . (1.28)

From Eqs. (1.24), (1.27), (1.25) and taking in mind that, since m�
1 is negative,

ρ2
1 = −1, we get

m1 � m2
D

mR
, (1.29)

m2 � mR , (1.30)

tan 2θ = 2
mD

mR
� 1 . (1.31)

This is the so-called seesaw mechanism: the heavier ν2 is, the lighter ν1 is. The
smallness of the mixing angle implies that ν1 is composed mainly of active νL and
ν2 is composed mainly of sterile νR:

ν1L � −iνL , ν2L � νC
R . (1.32)

The seesaw mechanism is very important because it gives an explanation of the
smallness of the neutrino mass with respect to the masses of the charged leptons
and quarks.

1.5 Three-generation Dirac-Majorana mixing
The aim of this section is to extend the theory of the neutrino mixing discussed

above, to the case of three generations of left-handed neutrinos. The three known
active left-handed neutrino fields are νeL, νµL, ντL; in addition we can consider Ns

sterile right-handed neutrino fields νsR, with s = s1, . . . , sNs . We will now consider,
for semplicity, only three sterile right-handed neutrino fields νs1, νs2, νs3.

The most general mass term is always the Dirac-Majorana mass term

Lmass = LD + L
left
M + L

right

M , (1.33)

with the Dirac mass term

LD = −
�

s=s1,s2,s3

�

α=e,µ,τ

νsR MD
sα ναL + h.c. (1.34)

and the majorana mass terms

L
left
M =

1

2

�

α,β=e,µ,τ

νT
αL C

† ML
αβ νβL + h.c. , (1.35)

L
right

M =
1

2

�

s,s�=s1,s2,s3

νT
sR C

† MR
ss� νs�R + h.c. . (1.36)
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1.5 Three-generation Dirac-Majorana mixing 6

All the three mass matrices ML, MR and MD are complex; the Majorana mass
matrices ML and MR are also symmetric.

Eq. (1.33) can be rewritten as

Lmass =
1

2
NT

L C
† MNL + h.c. , (1.37)

where we have defined
NL =

�
νL

νC
R

�

, (1.38)

with

νL =




νeL

νµL

ντL



 , νC
R =




νC

s1R
νC

s2R
νC

s3R



 ; (1.39)

and the Dirac-Majorana mass matrix is given by

M =

�
ML (MD)T

MD MR

�

. (1.40)

In order to find the mass eigenstates, we have to diagonalize M in (1.40). This
can be done defining the left-handed flavor fields as unitary linear combinations of
the left-handed components of the 6 fields with definite mass:

NL = V nL , with nL =




ν1L

...
ν6L



 . (1.41)

The unitary matrix V is chosen such that

V T M V =





m1 0 . . . 0

0 m2 . . . 0

...
... . . . ...

0 0 . . . m6




, (1.42)

with mk (k = 1, . . . , 6) real and positive. In this way the Dirac-Majorana mass term
in Eq. (1.33) becomes:

Lmass = −1

2

6�

k=1
mkνC

kLνkL + h.c. = −1

2

6�

k=1
mkνkνk , (1.43)

where

ν =




ν1
...

ν6



 (1.44)

are Majorana neutrino fields:

νk = νkL + νC
kL = νkL + CνkL

T , with νC
k = νk . (1.45)



1.5 Three-generation Dirac-Majorana mixing 7

The mixing of active and sterile neutrinos is explicitly given by

ναL =

6�

k=1
VαkνkL (α = e, µ, τ) , (1.46)

νC
sR =

6�

k=1
VskνkL (s = s1, s2, s3) , (1.47)

which implies the possibility of oscillations between active and sterile states.
Now we want to generalize the seesaw mechanism discussed in the previous

section to the case of three generations. Therefore we consider the case in wich,
in Eq. (1.40), ML = 0 and the eigenvalues of MR are much larger than all the
eigenvalues of MD. In this way, the mixing matrix V can be written as

V = W U , (1.48)

where the matrices W and U are unitary; specifically W is such that the mass matrix
can be diagonalized by blocks, up to corrections of the order (MR)−1MD [3]:

W T M W �
�

Mlight 0

0 Mheavy

�

. (1.49)

The 3 × 3 mass matrices Mlight and Mheavy are given by

Mlight � −(MD
)
T

(MR
)
−1 MD , Mheavy � MR . (1.50)

The heavy masses are given by the eigenvalues of MR, whereas the light masses
are given by the eigenvalues of Mlight. Eq. (1.50) realizes the seesaw mechanism
in the case of three generations. Since the off-diagonal terms of W are of order of
(MR)−1MD, Mlight and Mheavy are decoupled in low energies processes. Hence, in
the Standard Model, we consider Mlight:

U † Mlight U =




m1 0 0

0 m2 0

0 0 m3



 , (1.51)

wich implies the mixing

ναL =

3�

k=1
Uαk νkL (α = e, µ, τ) . (1.52)

The 3 × 3 unitary mixing matrix U , also known as PMNS matrix, has 9 inde-
pendent real parameters: 3 mixing angles and 6 phases. This matrix is equal to
the CKM mixing matrix of quarks apart from the fact that, in our case, we must
consider the Majorana nature of the neutrinos. Regarding the CKM, five of the six
phases are not physical because they can be eliminated by a suitable transformation
of the quark fields, which leave the Lagrangian invariant. Similar arguments can
be applied to the mixing of three Dirac neutrinos. Since in the Majorana case the
mass term is not invariant under a phase transformation, the left-handed massive
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1.6 Neutrino oscillation in vacuum 8

neutrino fields cannot rephased in order to eliminate two phases. This implies that
the 3 × 3 mixing matrix of Majorana neutrinos U depends on three mixing physical
CP-violating phases. Hence we can write:

U = UD DM , (1.53)

where UD contains the so-called Dirac phase, and DM contains the so-called Majorana
phases.

A convenient parameterization for UD is:

UD
=




c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13
s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13



 . (1.54)

where cab ≡ cos θab and sab ≡ sin θab. θ12, θ13, θ23 are the three mixing angles
(0 ≤ θab ≤ π/2) and δ13 is the Dirac CP-violating phase (0 ≤ δ13 < 2π).

The diagonal unitary matrix DM can be written as

DM
=




1 0 0

0 eiλ21 0

0 0 eiλ31



 , (1.55)

where λ21 and λ31 are the two physical Majorana CP-violating phases.

1.6 Neutrino oscillation in vacuum
Neutrino oscillation is a phenomen in which a neutrino created with a specific

flavor state, becames a neutrino with a different flavor state. In order to find the
transition probability of this kind of process, let us consider the following weak
interaction process:

A → B + α+
+ να , (1.56)

the neutrino created together with the charged lepton α+ is described by the flavor
states

|να� =
�

k

U∗
αk |νk� (α = e, µ, τ) ; (1.57)

inverting Eq. (1.57) we get the mass states

|νk� =
�

α

Uαk |να� . (1.58)

The time evolution of the flavor state is given by

|να(t)� =
�

k

U∗
αke−iEkt

|νk� (1.59)

and, substituting Eq. (1.58) into Eq. (1.59), we obtain

|να(t)� =
�

β=e,µ,τ

�
�

k

U∗
αke−iEktUβk

�

|νβ� . (1.60)
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1.6 Neutrino oscillation in vacuum 9

Since the mixing matrix U is not diagonal, after a time t, a pure flavor state becomes
a superposition of different flavor states. Hence, the amplitude of transitions between
two different flavor states να → νβ as a function of time is given by

Aνα→νβ (t) ≡ �νβ|να(t)� =
�

k

U∗
αkUβke−iEkt . (1.61)

The tranistion probability is then

Pνα→νβ (t) =

���Aνα→νβ (t)
���
2

=
�

k,j

U∗
αkUβkUαjU∗

βje−i(Ek−Ej)t . (1.62)

Since in oscillation experiments neutrinos are ultrarelativistic particles, the dispersion
relation can be approximated by

Ek � E +
m2

k

2E
, (1.63)

where E is the neutrino energy neglecting the mass contribution. Hence, in Eq.
(1.62), we have

Ek − Ej �
∆m2

kj

2E
, (1.64)

in which ∆m2
kj is the squared-mass difference

∆m2
kj ≡ m2

k − m2
j . (1.65)

In neutrino oscillation experiments the propagation time t is not measured, only
the distance L between the source and the detector is known. Since ultrarelativistic
neutrinos propagate almost at the speed of light, we can approximate t � L.
Therefore the transition probability in Eq. (1.62) can be written as

Pνα→νβ (L, E) =
�

k,j

U∗
αkUβkUαjU∗

βj exp

�

−i
∆m2

kjL

2E

�

. (1.66)

This equation shows that the phases of neutrino oscillations

Φkj = −i
∆m2

kjL

2E
(1.67)

are determined by the two quantities depending on the experiment L, E and by the
squared-mass differences ∆mkj which are physical constants. Instead, the amplitude
of oscillations are determined by the elements of the mixing matrix U , which are
constants of nature.

Let us now conisder the case of two-neutrino mixing2. We have two flavor
neutrino states να and νβ which are linear combinations of the two massive neutrinos
ν1 and ν2. The mixing matrix U can be parameterized in the following way:

U =

�
cos θ sin θ

− sin θ cos θ

�

. (1.68)

2This approximation is very useful because the oscillation formulas are very simpler and many
experiments are not sensitive to the influence of three-neutrino mixing.
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From Eq. (1.66), we can derive the tranistion probability

Pνα→νβ (L, E) = sin
2

2θ sin
2

�
∆m2L

4E

�

, (1.69)

where
∆m2 ≡ ∆m2

21 ≡ m2
2 − m2

1 . (1.70)

The transition probability in Eq. (1.69) can be measured if

∆m2L

4E
� 0.1 ÷ 1 ; (1.71)

Since the value of ∆m2 is fixed, different experiments can be designed in order to
be sensitive to different values of ∆m2, by choosing appropriate values of the ratio
L/E.

• Short-BaseLine experiments (SBL), with L/E � 1 eV−2 and the associ-
ated sensitivity ∆m2 � 0.1 eV2;

• Long-BaseLine experiments (LBL) and atmospheric neutrinos ex-

periments, with L/E � 104 eV−2 and the associated sensitivity ∆m2 �
10−4 eV2;

• Very Long-BaseLine experiments (VLBL) and solar neutrinos ex-

periments, with L/E � 3 × 105 eV−2 and the associated sensitivity ∆m2 �
3 × 10−5 eV2.

Atmospheric and solar experiments have measured two different mass splittings,
currently their values are:

∆m2
atm = m2

2 − m2
1 = (2.35

+0.12
−0.09) × 10

−3
eV

2 , (1.72)
|∆m2

sol| = |m2
3 − (m2

1 + m2
2)/2| = (7.58

+0.22
−0.26) × 10

−5
eV

2 , (1.73)

respectively. The best-fit values and 1σ ranges quoted were obtained from s recent
global 3-neutrino fit [4]. Note that ∆m2

atm � |∆m2
sol

| . These data are compatible
with two different mass orderings: the normal and inverted orderings (see Fig. 1.1).
In the first case |∆m2

sol
| corresponds to the gap between the two lightest mass

eigenstates, while in the second case |∆m2
sol

| corresponds to the gap between the two
heaviest mass eigenvalues. Therefore, to complete our knowledge on neutrino masses,
we need two pieces of information: the neutrino mass ordering and the absolute
value of the lightest neutrino mass. The latter can be obtained from neutrinoless
double beta decay searches, to be discussed in the following Chapters.
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Figure 1.1. Knowledge on neutrino masses and mixings from neutrino oscillation experi-
ments. Panels (a) and (b) show the normal and inverted mass orderings, respectively.
Neutrino masses increase from bottom to top. The electron, muon and tau flavor
content of each neutrino mass eigenstate is shown via the red, green and blue fractions,
respectively.



Chapter 2

Beta decays

The aim of this Chapter is to describe the main features of beta decays. For
pedagogical purposes we will first focus the single beta decay based on the Fermi
theory and extend the analysis to both two-neutrino and neutrinoless double beta
decay, pointing out the differences between the two processes.

In our discussion we will use the interaction Lagrangian first proposed by Fermi:

LF (x) =
G

2

�
N(x)τ+γµ

(gV − gAγ5)N(x)

�
[e(x)γµ(1 − γ5)ν(x)] + h.c.

=
G

2
Jµ

(x)jµ(x) + h.c. . (2.1)

In the above equation, G = GF cos θC = 1.15 × 10−5 GeV−2, GF being the Fermi
weak coupling constant, θC the Cabibbo angle, gV = 1 and gA = 1.25. The nucleon
field is defined as an isospin doublet

N =

�
p
n

�

, (2.2)

where p and n are the proton and neutron field, respectively, while τ+ is the isospin
raising operator; e and ν are the electron and neutrino fields, respectively. The
Fermi Lagrangian violates charge conjugation and, due to its V − A nature, parity.

2.1 Single beta decay
Single β− (β+) decay is a process in which a parent nucleus N with mass number

A and atomic number Z decays into a daughter nucleus N � with same mass number
but atomic number increased (decreased) by one unit and emits an electron (positron)
and an antineutrino (neutrino), i.e.

N (A, Z) → N
�
(A, Z + 1) + e−

+ νe (β−
) , (2.3)

N (A, Z) → N
�
(A, Z − 1) + e+

+ νe (β+
) . (2.4)

In the following, let us consider the β− decay (an analogous calculation holds for
the β+ decay). The Fermi Lagrangian in Eq. (2.1), being an effective interaction term,
can be used in the limit of low momentum transfer. Using relativistic perturbation
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theory at first order, the expression for the S matrix element for the β− decay is
given by

Sβ = i
�

d4x �e, νe, N
�
| LF (x) |N � = (2π)

4δ(4)
(Pf − Pi)Mif , (2.5)

where Pi and Pf denote the total four-momentum of initial and final states, respec-
tively and Mif the Feynman amplitude. The differential decay rate of the process
is given by

dΓβ =
1

2sN + 1

�

sN ,sN �

�

se,sν

|Sβ|
2F (Z, Ee)

d3pe

(2π)3
d3pν

(2π)3 , (2.6)

where sN and sN � are the spins of the initial and final nucleus, respectively, while
Pe = (Ee, pe), se, Pν = (Eν , pν) and sν denote the four-momenta and spins of the
electron and the antineutrino, respectively. The function F (Z, Ee), called Fermi
factor, results from the effect of the Coulomb field of the daughter nucleus on the
emitted electron 1. The amplitude Mif can be written in the form:

Mif =
G√
2

�ΨN � |

A�

n=1
Jµ

n |ΨN � �e, ν| jµ |0� =

=
G√
2

�ΨN � |

A�

n=1
Jµ

n |ΨN � 1

2
√

EeEν
ueγµ (1 − γ5) vν , (2.8)

where, in the non relativistic limit,

�ΨN � |

A�

n=1
Jµ

n |ΨN � = �ΨN � |

A�

n=1

�
gV δµ0

+ gAδµiσi
n

�
τ+

n |ΨN � , (2.9)

ΨN and ΨN � being the wave functions characterizing the states of the initial and
final nucleus, respectively, and σi (i = 1, 2, 3) are the spin Pauli matrices.

Using the above results we can finally obtain the halflife for neutron beta decay
in the form:

ln 2

T β
1/2

=

�
dΓβ =

1

(2π)2

�
F (Z, Ee)|pe|EeE2

ν

×
�
g2

V

�
1 +

pe · pν

EeEν

�
|MF

β |
2

+ g2
A

�
1 − 1

3

pe · pν

EeEν

�
|MGT

β |
2
�

dEedΩedΩν (2.10)

where Eν = E0 − Ee, E0 being the total energy released in the decay process. In Eq.
(2.10), |MF

β |2 and |MGT
β |2 are the square moduli of the single β decay Fermi and

1The Fermi factor is approximately given by

F (Z, Ee) =
�

±2πZe2

v

�
1

1 − e∓2πZe2/v
for β∓ (2.7)

where v = |pe|/Ee is the velocity of the electron. Note that the Fermi factor enhances the probability
of β− emission and decreases that of β+ especially at low energies.
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2.2 Double beta decay 14

Gamow-Teller nuclear matrix elements, respectively, defined as

|MF
β |

2
= |�ΨN � |

A�

n=1
τ+

n |ΨN �|2 , (2.11)

|MGT
β |

2
= |�ΨN � |

A�

n=1
τ+

n σn |ΨN �|2 . (2.12)

2.2 Double beta decay
Double beta decay is a rare nuclear transition in which a parent nucleus with

Z protons decays into a daughter nucleus with Z + 2 protons and the same mass
number A. The decay can occur only if the initial nucleus is less bound than the
final nucleus, and both more bound than the intermediate one. Such a condition,
in nature, is satisfied for many even-even nuclei, but it is not for all the odd-odd
ones because of the nuclear paring force (see Section 3.1). The decay can usually
proceed from the ground state of the initial nucleus with spin and parity always 0+,
to the ground state of the final nucleus with 0+, although, in some cases, decays
into excited states with 0+ or 2+ are energetically possible.

Double beta decays are second order processes in the weak interaction and can
occur in two modes: the two-neutrino double beta decay (2β2ν) and the neutrinoless
double beta decay (2β0ν). The 2β2ν decay, first proposed by M. Goeppert-Mayer in
1935 [5], is a process of the type

N (A, Z) → N
�
(A, Z + 2) + e−

1 + e−
2 + νe1 + νe2 (2β−

2ν) , (2.13)
N (A, Z) → N

�
(A, Z − 2) + e+

1 + e+
2 + νe1 + νe2 (2β+

2ν) , (2.14)

and it consists of the simultaneous beta decay of two neutrons in a nucleus.
The 2β0ν decay, first proposed by W. H. Furry in 1939 [6], is a process of the

type

N (A, Z) → N
�
(A, Z + 2) + e−

1 + e−
2 (2β−

0ν) , (2.15)
N (A, Z) → N

�
(A, Z − 2) + e+

1 + e+
2 (2β+

0ν) . (2.16)

2β0ν decays are possible if neutrinos are massive Majorana particles and, for this
reason, are forbidden in the Standard Model.

The Q-value of 2β decays (the recoil energy of the final nucleus is negligible) is
given by

Q2β = MN − MN � − 2me , (2.17)

where MN and MN � are the masses of the initial and final nuclei, respectively, and
me is the electron mass. Since the 2β2ν decays have a four-body leptonic final state,
the sum of the kinetic energies of the two decay electrons have a continuous spectrum
from zero to the Q-value, while in the 2β0ν decays the sum of the kinetic energies of
the two decay electrons is equal to the Q-value.

Other details regarding the properties of 2β2ν and 2β0ν will be provided in the
following Subsections.
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2.2.1 Two-neutrino double beta decay
The 2β2ν is a second order process in the weak interaction, therefore in the case

of 2β−
2ν (2.13) the transition matrix element reads (the Feynman diagram is depicted

in Fig. 2.1):

S2ν = −
�

d4xd4y �e1, e2, νe1, νe2, N
�
| T {LF (x)LF (y)} |N � . (2.18)

The amplitude consists of a lepton part

Lρσ = �e1, e2, νe1, νe2| jρ(x)jσ(y) |0� = �e1, νe1| jρ(x) |0��e2, νe2| jσ(y) |0� (2.19)

and an hadronic part

Hρσ
= �ΨN � | Jρ

A(x)Jσ
A(y) |ΨN � , (2.20)

with

Jρ
A =

A�

n=1
Jρ

n . (2.21)

The calculation of Lρσ is straightforward (see the previous Section), and gives the
result

Lρσ =
1

4

1
�

Ee1Eν1

1
�

Ee1Eν1
ue1γµ (1 − γ5) vν1ue2γµ (1 − γ5) vν2ei(Pe1 +Pν1 )xei(Pe2 +Pν2 )y .

(2.22)
In the calculation of the hadronic contribution we have to take into account the fact
that beta decay processes involve a neutron belonging to the unobserved intermediate
state. Hence we write

Hρσ
=

�

m

�ΨN � | Jρ
A(x) |Ψm��Ψm| Jσ

A(y) |ΨN � (2.23)

where Ψm is a complete set of states of the intermediate (A, Z + 1) nucleus. The
time dependence of Hρσ can be factorized according to

Hρσ
=

�

m

ei(EN � −Em)x0ei(Em−EN )y0�ΨN � | Jρ
(x)A |Ψm��Ψm| Jσ

(y)A |ΨN � (2.24)

and combined with the time dependence of Lρσ. Carrying out the x0 and y0
integrations, taking into account the time ordering operator and exchange term, we
find

�
dx0dy0 T

�
�

m

�ΨN � | Jρ
A(x) |Ψm��Ψm| Jσ

A(y) |ΨN � ei(Ee1 +Eν1 )x0ei(Ee2 +Eν2 )y0

�

=

= (2π) δ (EN � + Ee1 + Eν1 + Ee2 + Eν2 − EN )

×
�

m

�
�ΨN � | Jρ

A(x) |Ψm��Ψm| Jσ
A(y) |ΨN �

Em + Ee2 + Eν2 − EN
+

�ΨN � | Jρ
A(y) |Ψm��Ψm| Jσ

A(x) |ΨN �
Em + Ee1 + Eν1 − EN

�

.

(2.25)

In numerical calculations, one often uses the approximation
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Figure 2.1. Feynman diagram for two-neutrino double beta decay.

Ee1 + Eν1 ≈ Ee2 + Eν2 ≈ MN − MN �

2
, (2.26)

where MN and MN � are the masses of initial and final nucleus, respectively.
Carrying out the phase-space integration, yielding the factor GN

2ν , we finally find
the expression for the halflife

[T 2ν
1/2]

−1
= GN

2ν |M
N
2ν |

2 , (2.27)

where
M

N
2ν = MGT

2ν −
�

gV

gA

�2
MF

2ν . (2.28)

In Eq. (2.28), MF
2ν and MGT

2ν are the the 2β2ν decay Fermi and Gamow-Teller
nuclear matrix elements, respectively, defined as

MF
2ν =

�

m

�ΨN � |
�A

j=1 τ+
j |Ψm��Ψm|

�A
k=1 τ+

k |ΨN �
Em − MN +MN �

2
, (2.29)

MGT
2ν =

�

m

�ΨN � |
�A

j=1 σjτ+
j |Ψm� · �Ψm|

�A
k=1 σkτ+

k |ΨN �
Em − MN +MN �

2
. (2.30)

2.2.2 Neutrinoless double beta decay
In neutrinoless double beta decay the conservation of the total lepton number

is violated by two units. Since in the Standard Model the total lepton number is
conserved, 2β0ν decay is forbidden in the Standard Model. In order to understand
what is missing in the Standard Model, let us consider the 2β−

0ν decay in (2.15)
illustrated in Fig. 2.2. Since no antineutrino is emitted, the two antineutrino lines
should be joined to form a virtual neutrino propagator. In the Standard Model this
is not possible for two reasons:
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Figure 2.2. Feynman diagram for neutrinoless double beta decay.

• An antineutrino νe emitted in the upper leptonic vertex cannot be absorbed
in the lower leptonic vertex, which can absorb only a neutrino νe.

• The helicity of the neutral lepton emitted in the upper leptonic vertex is
positive and the lower leptonic vertex can absorb only a neutral lepton with
negative helicity.

Therefore, there are two necessary conditions for the occurrence of 2β0ν decay:

• The electron neutrino must be a Majorana particle, i.e. νe = νe. In this case
the total lepton number is not conserved.

• The electron neutrino must be a massive particle, i.e. mνe �= 0. In this case,
the upper leptonic vertex can emit a neutrino with negative helicity with
relative amplitude mνe/Eνe , which is absorbed by the lower leptonic vertex
with relative amplitude equal to unity.

Massive Majorana neutrinos are described by the field

νe(x) =

�
d3p

(2π)32E

�

r

�
ar(p)ur(p)e−ipx

+ a†
r(p)vr(p)eipx

�
. (2.31)

The corresponding second order S matrix element for 2β−
0ν is

S0ν = −
�

d4xd4y �e1, e2, N
�
| T {LF (x)LF (y)} |N � . (2.32)

Note from Figs. 2.1 and 2.2 that the hadronic contribution to the amplitude is the
same as in the case of 2β2ν . The leptonic contribution is given by

Lρσ = �e1, e2| T {jρ(x)jσ(y)} |0� =

= �e1, e2| T {e(x)γρ (1 − γ5) νe(x)e(y)γσ (1 − γ5) νe(y)} |0� . (2.33)
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Let us now consider neutrino mixing, i.e. the electron neutrino state is a superposition
of mass eigenstates

νeL(x) =

3�

k=1
UekνkL , (2.34)

hence the weak interaction vertex is described by eLγρUekνkL. Moreover, we have
to consider that neutrinos are Majorana particles, i.e.

νT
k = −νk C , (2.35)

C being the charge conjugation matrix. Using the above two properties, the propa-
gator describing the internal neutrino line in Fig. 2.2 is given by

G(x − y) = �0| T
�

νeL(x)νT
eL(y)

�
|0�

=
1 − γ5

2

3�

k=1
U2

ek�0| T
�

νk(x)νT
k (y)

�
|0�

�
1 − γ5

2

�T

= −1 − γ5
2

3�

k=1
U2

ek�0| T {νk(x)νk(y)} |0� C
1 − (γ5)T

2

= −i
3�

k=1
U2

ek

�
d4q

(2π)4
mk

q2 − m2
k

e−iq(x−y) 1 − γ5
2

C , (2.36)

where we used (1 − γ5)/q(1 − γ5) = 0. The squared neutrino mass in the dominator is
negligible in comparison with the average neutrino energy and momentum. Hence,
the neutrino propagator can be approximated by2

G(x − y) = −i �mν�
�

d4q

(2π)4
e−iq(x−y)

q2 − m2
k

1 − γ5
2

C , (2.37)

where �mν� is the so called effective Majorana mass defined as

�mν� =

3�

k=
U2

ekmk . (2.38)

Eq. (2.37) shows that the lepton contribution to the amplitude is proportional to
�mν�. In addition, we can perform the q0 integration in Eq. (2.37), obtaining

G(x − y) = −i �mν�
�

d3q

(2π)3
e−i[ωq(x0−y0)−q·(x−y)]

2ωq

1 − γ5
2

C , (2.39)

where ωq =

�
|q|2 + m2

k. As already stated, the hadronic contribution to the
amplitude is the same as in the case of 2β2ν , however, in the neutrinoless case its
time dependence is combined with a different time dependence arising from the

2We do not consider here the possibility of mixing of the electron neutrino with heavy massive
neutrinos.
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leptonic contribution. Carrying out the time integration we find (compare to the
right hand side of Eq. (2.25))

(2π) δ (EN � + Ee1 + Ee2 − EN )

×
�

m

�
�ΨN � | Jρ

A(x) |Ψm��Ψm| Jσ
A(y) |ΨN �

ωq + Em + Ee2 − EN
+

�ΨN � | Jρ
A(y) |Ψm��Ψm| Jσ

A(x) |ΨN �
ωq + Em + Ee1 − EN

�

.

(2.40)

We can now use the closure approximation for intermediate nuclear states. Within
this approximation, energies of intermediate states Em + Ee − EN are replace by an
average value �E� ≈ 5 ÷ 10 MeV, and the sum over intermediate states is taken by
closure, i.e.

�
m |Ψm��Ψm| = 1. This simplifies the numerical calculation drastically.

Finally, collecting the nuclear and leptonic parts together and carrying out the
integrations we obtain the expression of the halflife

[T 0ν
1/2]

−1
= GN

0ν |M
N
0ν |

2 |�mν�|2

m2
e

, (2.41)

In the above equation, me is the electron mass, GN
0ν is the phase space factor given

by [7]
GN

0ν =
a0ν

m2
e ln 2

�
dΩ0ν F (Z, Ee1)F (Z, Ee2) (2.42)

with

a0ν =
(GgA)4m9

e

64π2 (2.43)

dΩ0ν = m−5
e |pe1||pe2|Ee1Ee2δ (Ee1 + Ee2 + EN � − EN ) dEe1dEe2d(p̂e1 · p̂e2) ,

(2.44)

and MN
0ν is the 2β0ν decay nuclear transition matrix element

M
N
0ν = MGT

0ν −
�

gV

gA

�2
MF

0ν , (2.45)

in which MF
0ν and MGT

0ν are the 2β0ν decay Fermi and Gamow-Teller nuclear matrix
elements obtained using the closure approximation, respectively, defined as

MF
0ν = �ΨN � |

A�

j,k=1
τ+

j τ+
k H(r) |ΨN � , (2.46)

MGT
0ν = �ΨN � |

A�

j,k=1
(σj · σk) τ+

j τ+
k H(r) |ΨN � . (2.47)

The function H(r) in Eqs. (2.46) and (2.47) is the so called neutrino potential given
by

H(r) =
2RA

πr

� +∞

0
dq

q sin(qr)

ωq(ωq + �E�) , (2.48)

in which RA is the nuclear radius. The neutrino potential is what remains after
performing the integration over the virtual neutrino momentum q in Eq. (2.39).
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Since the neutrino mass is very small, we have ωq ∼ |q| and the neutrino potential
can be approximated by

H(r) =
2RA

πr

� +∞

0
dq

sin(qr)

q + �E� . (2.49)

2.3 Summary of experimental results
Studying 2β0ν decay may give access to the absolute scale of neutrino mass, since,

as discussed in details in the previous Sections, the halflife of a nucleus is given by
Eq. (2.41). Hence, by studying 2β0ν decay rate, we can obtain information on the
effective Majorana mass and, therefore, on the masses of light neutrinos.

2β2ν decay is the longest ever observed among radioactive decay processes, its
typical lifetimes are of the order of 1018 ÷ 1021 years. The observed values of M2ν

are used to investigate the nuclear structure and the nuclear interactions associated
with the 2β0ν decay. For a list of 2β2ν halflives measured in several isotopes, see
Table 2.1 [8].

Isotope T 2ν
1/2 (years) Experiments

48Ca (4.4+0.6
−0.5) × 1019 Irvine TPC [9], TGV [10], NEMO3 [11]

76Ge (1.5 ± 0.1) × 1021 PNL-USC-ITEP-YPI [12], IGEX [13], H-M [14]
82Se (0.92 ± 0.07) × 1020 NEMO3 [15], Irvine TPC [16], NEMO2 [17]
96Zr (2.3 ± 0.2) × 1019 NEMO2 [18], NEMO3 [19]

100Mo (7.1 ± 0.4) × 1018 NEMO3 [15], NEMO2 [20], Irvine TPC [21]
116Cd (2.8 ± 0.2) × 1019 NEMO3 [11], ELEGANT [22], Solotvina [23], NEMO2 [24]
130Te (6.8+1.2

−1.1) × 1020 CUORICINO [25], NEMO3 [26]
136Xe (2.11 ± 0.21) × 1021 EXO-200 [27]
150Nd (8.2 ± 0.9) × 1018 Irvine TPC [21], NEMO3 [28]

Table 2.1. Current best direct measurements of the halflife of 2β2ν processes. The values
reported are taken from the averaging procedure described in [8].

2β0ν double beta decay searches have been carried out over more than half a
century and several double beta emitting isotopes have been investigated. The
currents best limits on the halflife of 2β0ν are listed In Table (2.2).

From the expression of the effective Majorana mass of Eq. (2.38), it is clear that
2β0ν is directly connected to neutrino oscillations phenomenolgy and it provides
direct information on the absolute neutrino mass scale, as cosmology and β decay
experiments do. The relationship between the effective Majorana mass and the
lightest neutrino mass is affected by the uncertinities in the measured oscillation
parameters, the unknown neutrino mass ordering and the unknown phases of neutrino
mixing matrix (see Fig. 2.3).
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Isotope T 0ν
1/2 (years) Experiment

48Ca > 5.8 × 1022 ELEGANT [29]
76Ge > 1.9 × 1025 Heidelberg-Moscow [30]
82Se > 3.6 × 1023 NEMO3 [31]
96Zr > 9.2 × 1021 NEMO3 [19]

100Mo > 1.1 × 1024 NEMO3 [31]
116Cd > 1.7 × 1023 Solotvina [23]
130Te > 2.8 × 1024 CUORICINO [32]
136Xe > 4.5 × 1023 DAMA [33]
150Nd > 1.8 × 1022 NEMO3 [28]

Table 2.2. Current best limits on the halflife of 2β0ν processes for the most interesting
isotopes. All values are at 90% C.L.

Figure 2.3. The effective neutrino Majorana mass mββ as a function as a function of the
lightest neutrino mass, mlight. The light gray, red (dark gray, green) band corresponds
to the normal (inverted) ordering, respectively, in which case mlight is equal to m1 (m3)
(see Section 1.6). The excluded region comes from cosmological bounds, the horizontally
excluded one from 2β0ν constraints.



Chapter 3

Nuclear structure and dynamics

3.1 The nuclear charge density and the semiempirical-
mass formula

Let us consider an atomic nucleus with atomic number Z and mass number A.
The nuclear charge density ρch(r) can be parametrized in the form

ρch(r) = ρ0
1

1 + e(r−RA)/D
, (3.1)

where RA = r0A1/3 is the nuclear radius, with r0 = 1.20 fm and D = 0.54 fm. The
nuclear charge density is nearly constant within the nuclear volume, its value is
roughly the same for all stable nuclei within a distance RT ∼ 2.5 fm independent
of A, called surface thickness; over RT , ρch(r) drops from ∼ 90 % to ∼ 10 % of the
maximum (see Fig. 3.1).

The measured mass of a nucleus is given by

M(Z, A) = Zmp + (A − Z)mn − B(Z, A) , (3.2)

where mp and mn are the rest mass of the proton and the neutron respectively and
B(Z, A) is the (positive) nuclear binding energy. The semiempirical-mass formula
states that the A and Z dependence of the binding energy can be parametrized in
the following way:

B(Z, A) = aV A − aSA2/3 − aC
Z2

A1/3 − aA
(A − 2Z)2

4A
+ λ aP

1

A1/2 . (3.3)

In the above equation, the first term proportional to A is the volume term and
describes the bulk energy of nuclear matter; the second term proportional to A2/3 is
the surface term; the third term is the the Coulomb term which takes into account
the electrostatic repulsion between protons; the fourth term, called asymmetry term,
is required to describe the experimental observation that stable nuclei tend to have
the same number of neutrons and protons. The last term, called pairing term, is
needed to describe the property that even-even nuclei (i.e. nuclei having even Z and
even A − Z) tend to be more stable than even-odd or odd-odd nuclei; λ can assume
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Figure 3.1. Nuclear charge distribution of 128Pb, normalized to Z/ρ(0) (Z = 82). The
solid line has been obtained using the parametrization of Eq. (3.1), while the diamonds
represent the results of a model independent analysis of electron scattering data.

−1, 0 and +1 for even-even, even-odd and odd-odd nuclei, respectively. aV , aS , aC ,
aA and aP are constants.

Let us now consider the case of nuclei with the same number of protons and
neutrons, i.e. Z = A/2. The nuclear density and binding energy of such nuclei have
the following proprieties.

• The nuclear densities exhibits a saturation to a value ρ0 ∼ 0.16 fm−3, i.e. the
density of atomic nuclei, measured by elastic electron-nucleus scattering, is
nearly constant and does not depend upon A for large A (see Fig. 3.2).

• The binding energy per nucleon, in the large A limit (A ≥ 20) and neglecting
the Coulomb term, becomes approximately constant because only the volume
term survives, i.e.

B(Z, A)

A
∼ 8.5 MeV . (3.4)

3.2 The nucleon-nucleon interaction
In our model of the nucleon-nucleon (NN) interaction we will consider nucleons

as nonrelativistic pointlike particles. We can infer the main features of the NN
interaction from the proprieties of the nuclear charge distribution and binding energy
per nucleon discussed in the previous section.

The saturation of the nuclear density discussed above implies that nucleons
cannot be packed together too tightly. Hence, at short distances, the NN force must
be repulsive. If we describe the NN interaction with a nonrelativistic potential v
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Figure 3.2. Saturation of central nuclear densities measured by elastic electron-nucleus
scattering.

depending on the interparticle distance r, we can write

v(r) > 0 for |r| < rC , (3.5)

where rC is the radius of the repulsive core.
The fact that the nuclear binding energy per nucleon is roughly the same for

all nuclei with A ≥ 20 (see Eq. (3.4)), tells us that the NN interaction has a finite
range r0, i.e.

v(r) = 0 for |r| > r0 . (3.6)

Moreover, the energies of the levels with the same parity and angular momentum
of the spectra of the so-called mirror nuclei are the same up to small electromagnetic
corrections1. This fact shows that the NN interaction does not distinguish protons
and neutrons, i.e. nuclear forces are charge symmetric. Charge symmetry is a
manifestation of a more general property of the NN interaction, called isotopic
invariance. Since the mass difference between proton and neutron is very small, they
can be considered as two states of the same particle, the nucleon. The Lagrangian
density of these two states can be written as

L = N( iγµ∂µ − m)N , (3.7)

where
N =

�
p
n

�

, (3.8)

p and n being the four-spinors associated with the proton and the neutron, respec-
tively. We say that the theory is isotopic invariant, as in the case of Eq. (3.7), if the

1Mirror nuclei are pairs of nuclei having the same A and charges differing by one unit, e.g. 15
7N

(A = 15, Z = 7) and 15
8O (A = 15, Z = 8).
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Lagrangian density is invariant under the SU(2) global phase transformation

U = ei α·τ , (3.9)

where α = (α1, α2, α3) is a constant vector and τ = (τ1, τ2, τ3) is the vector of the
Pauli matrices. We have just seen that the nucleon can be described as a doublet in
isospin space; proton and neutron correspond to isospin projections T3 = +1/2 and
T3 = −1/2, respectively. Proton-proton and neutron-neutron pairs always have total
isospin T = 1 (triplet state), whereas a proton-neutron pair may have either T = 0

(singlet state) or T = 1. Hence, isospin invariance implies that the NN interaction
depends on the total isospin T but not on the projection T3. For example, the
potential v(r) acting between two protons with spins coupled to S = 0 is the same as
the potential acting between a proton and a neutron with spins and isospins coupled
to S = 0 and T = 1.

The details of the NN interaction can be best understood in the two-nucleon
system. There is only one NN bound state, the nucleus of deuterion, or deuteron
(2H), consisting of a proton and a neutron coupled to total spin and isospin S = 1

and T = 0, respectively. This is a clear manifestation of the spin dependence of
nuclear forces.

Another important feature of the NN interaction can be inferred from the
observation that the deuteron exhibits a nonvanishing quadrupole moment, implying
that its charge distribution is not spherically symmetric. Hence, the NN interaction
is noncentral.

3.3 The two-nucleon system
H. Yukawa, in 1935, first proposed the theoretical description of the NN inter-

action. He made the hypothesis that nucleons interact through the exchange of a
particle (it is the same mechanism of the electromagnetic interaction, in which the
exchanged particle is the photon). The relation between the mass µ of the particle
and the interaction range r0 is

r0 ∼ 1

µ
. (3.10)

Using r0 ∼ 1 fm, the above relation yields µ ∼ 200 MeV.
Yukawa’s idea has been successfully implemented identifying the exchanged

particle with the π meson (or pion), discovered in 1947, whose mass is mπ ∼ 140 MeV.
The pion is a spin zero pseudoscalar particle (i.e. it has spin parity 0−) that comes
in three charge states, denoted π+, π0 and π−. The mass differences between these
three states is very small and hence the pion can be considered as an isospin triplet
T = 1. The associated isospin projections to π+, π0 and π− are T3 = +1, 0, and −1,
respectively.

The pion-nucleon interaction Lagrangian, compatible with the observation that
nuclear interactions conserve parity, can be written as

LI = −igNγ5(π · τ )N , (3.11)
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Figure 3.3. Feynman diagram describing the one-pion-exchange process between two
nucleons. The corresponding amplitude is given by (3.13).

where g is the coupling constant, τ is the isospin of the nucleon and π = (π1, π2, π3)

is the vector whose elements are defined as

π1 =
π+ + π−

√
2

, π2 =
i(π+ − π−)√

2
, π3 = π0 . (3.12)

The two-nucleon interaction through the exchange of a pion is described by the
Feynman’s diagram in Fig. 3.3. Using standard Feynman’s diagram techniques, the
amplitude of this process can be written as

�f | M |i� = −ig2 u(p�
2, s�

2)γ5u(p2, s2)u(p�
1, s�

1)γ5u(p1, s1)

k2 − m2
π

�τ1 · τ2� , (3.13)

where k = p�
1 − p1 = p2 − p�

2, k2 = kµkµ = k2
0 − |k|2, u(p, s) is the Dirac spinor

associated with a nucleon of four momentum p ≡ (E, p) (E =
�

|p|2 + m2) and spin
projection s and

�τ1 · τ2� = η†
2�τ η2 η†

1�τ η1 , (3.14)
ηi being the two-component Pauli spinor describing the isospin state of particle i.
Since the ratio between the momentum and the mass of the nucleons inside the
nucleus is small (typically � 3%), we can take the nonrelativistic limit of Eq. (3.13),
leading to define a NN interaction potential that can be written in coordinate space
as

vπ =
g2

4m2 (τ1 · τ2)(σ1 · ∇)(σ2 · ∇)
e−mπr

r

=
g2

(4π)2
m3

π

4m2
1

3
(τ1 · τ2)

��
(σ1 · σ2) + S12

�
1 +

3

x
+

3

x2

��
e−x

x

− 4π

m3
π

(σ1 · σ2) δ(3)
(r)

�
, (3.15)

where x = mπ|r| and

S12 =
3

r2 (σ1 · r)(σ2 · r) − (σ1 · σ2) . (3.16)
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Figure 3.4. Charge densities of two nucleons set at three different values of the relative
distance d. Note that in the case with d = 1 fm the two nucleons begin to overlap.

is the operator describing the noncentral nature of nuclear forces. The interaction
potential in Eq. (3.15) satisfies all the proprieties discussed in the above Section.
Note that the repulsive nature of the NN interaction is described by the term
proportional to δ(3)(r).

For g2/(4π) ∼ 14, vπ provides an accurate description of the long range part
(|r| > 1.5 fm) of the NN interaction, as shown by the very good fit of the experimental
data in NN scattering processes with high angular momentum. In these processes,
due to the strong centrifugal barrier, the probability of finding the two nucleons at
small relative distances becomes in fact negligibly small. At medium- and short-range
we have to take into account more complicated processes, such as the exchange
of two or more pions (possibly interacting among themselves) or havier particles
like the ρ and ω mesons (mρ = 770 MeV and mρ = 782 MeV). Moreover, if the
relative distance between becomes very small (|r| � 0.5 ÷ 1 fm), nucleons, being
composite and finite in size, are expected to overlap (see Fig. 3.4). In this regime, NN
interactions should in principle be described in terms of interactions between nucleon
constituents (i.e. quarks and gluons) according to the quantum chromodynamics.
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3.4 Phenomenological potentials
Phenomenological potentials describing the full NN interaction are generally

written as
v = ṽπ + vR , (3.17)

where ṽπ is the one-pion-exchange potential, defined by Eq. (3.15), stripped of the
δ-function contribution, whereas vR describes the interaction at medium and short
range. The spin-isospin dependence and the noncentral nature of the NN interactions
can be properly described rewriting Eq. (3.17) in the form

vij =
�

ST

[vT S(rij) + δS1vtT (rij)S12]P2S+1Π2T +1 , (3.18)

S and T being the total spin and isospin of the interacting pair, respectively. In the
above equation, P2S+1 (S = 0, 1) are the spin projection operators

P1 =
1

4
[1 − (σ1 · σ2)] , P3 =

1

4
[3 + (σ1 · σ2)] , (3.19)

satisfying

P1 + P3 = 1 , P2S+1 |S�� = δSS� |S�� , P 2
2S+1 = P2S+1 , (3.20)

and Π2T +1 (T = 0, 1) are the isospin projection operators that can be written as in
Eq. (3.19) replacing σ with τ . The functions vT S(rij) and vtT (rij) describe the radial
dependence of the interaction in the different spin-isospin channels and reduce to
the corresponding components of the one-pion-exchange potential at large rij . Their
shapes are chosen in such a way as to reproduce the available NN data (deuteron
binding energy, charge radius and quadrupole moment and the NN scattering data).

An alternative representation of the NN potential, based on the set of six
operators

On=1,...,6
ij = [1, (σi · σj), Sij ] ⊗ [1, (τi · τj)] , (3.21)

is given by

vij =

6�

n=1
vn

(rij)On
ij . (3.22)

Note that the operators defined in Eq. (3.21) form an algebra, as they satisfy the
relation

On
ijOm

ij =
�

l

KnmlO
l
ij , (3.23)

where the coefficients Knml can be easily obtained from the properties of Pauli
matrices. The typical shape of the NN potential of (3.22) in the state of relative
angular momentum l = 0 and total spin and isospin S = 0 and T = 1 is shown in
Fig. 3.5. The short range repulsive core, to be ascribed to heavy meson exchange
or to complicated mechanisms involving nucleon constituents, is followed by an
intermediate range attractive region, largely due to two-pion exchange processes.
Finally, at large interparticle distance the one-pion-exchange mechanism dominates



3.5 Nonrelativistic many-body theory 29

Figure 3.5. Radial dependence of the NN potential describing the interaction between two
nucleons in the state of relative angular momentum l = 0, and total spin and isospin
S = 0 and T = 1, respectively.

While the static potential of Eq. (3.22) provides a reasonable account of deuteron
properties, in order to describe NN scattering in S and P wave, we have to include
the two additional momentum dependent operators

On=7,8
ij = L · S ⊗ [1, (τi · τj)] , (3.24)

L being the orbital angular momentum.
The potentials yielding the best available fits of NN scattering data are written

in terms of eighteen operators, with

On=9,...,14
ij = [L2, L(σi · σj), (L · S)

2
] ⊗ [1, (τi · τj)] , (3.25)

On=15,...,18
ij = [1, (σi · σj), Sij ] ⊗ Tij , (τzi + τzj) , (3.26)

where
Tij =

3

r2 (τi · r)(τj · r) − (τi · τj) . (3.27)

The operators On=15,...,18
ij take care of small charge symmetry breaking effects, due

to the different masses and coupling constants of the charged and neutral pions.

3.5 Nonrelativistic many-body theory
Within nonrelativistic many-body theory, a nucleus is seen as a collection of

pointlike protons and neutrons whose dynamics are described by the Hamiltonian

H =

A�

i=1

p2
i

2m
+

A�

j>i=1
vij + . . . , (3.28)
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where pi is the momentum carried by the i-th nucleon, vij is the two body potentials
describing NN interactions of Eq. (3.22) and the ellipsis refer to the possible existence
of interactions involving more than two nucleons.

The Schrödinger equation
HΨ = EΨ (3.29)

associated to the Hamiltonian in Eq. (3.28) has been solved for nuclei with not too
large A. The numerical solution is trivial for A = 2 only; for A = 3 the Schrödinger
equation can still be solved using deterministic approaches; while for A > 3 stochastic
methods have to be employed.

Another important aspect of the Hamiltonian of Eq. (3.28) is that we cannot
easily carry out perturbation theory in the basis provided by the eigenstates of the
noninteracting system because of the strongly repulsive nature at short distances of
the NN interactions.

The simplest approximation we can carry out is the so called mean field approxi-
mation. In this scheme the complicated NN potential is replaced by a mean field in
Eq. (3.28), i.e.

A�

j>i=1
vij →

A�

i=1
Ui , (3.30)

with the potential U chosen in such a way that the single particle Hamiltonian

h =
p2

2m
+ U (3.31)

be diagonalizable. Within this framework the nuclear ground state wave function
reduces to a Slater determinant, constructed using the A lowest energy eigenstates
of h:

Ψ0 =
1√
A!

det{φi} , (3.32)

the φi’s (i = 1, 2, . . . , A) being solutions of the Schrödinger equation

hφi = �iφi , (3.33)

and the corresponding ground state energy is given by

E0 =

A�

i=1
�i . (3.34)

In other words, we treat nucleons as independent particles. This procedure is the
basis of the Nuclear Shell Model, to be discussed in the next Section.

3.6 The Nuclear Shell Model
The Nuclear Shell Model (NSM) is based on the assumption that nucleons in a

nucleus behave as independent particles moving in a mean field. Let us assume that
the potential describing the nuclear mean field U0 be central. the most popular choices
of the central potential are the Woods-Saxon and the isotropic three-dimensional
harmonic oscillator. The latter is the one that will be used in our work because,
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unlike the Woods-Saxon potential, it allows for an exact factorization of the center
of mass contributions in the calculation of matrix elements of two-body operators.
Hence, we set

U0(r) =
1

2
mωr2 , (3.35)

where m is the nucleon mass and ω is a parameter. The Schrödinger equation for
the nucleon wave function φ is

[T + U0(r)] φk,l,ml
(r) = Ek.l,ml

φk,l,ml
(r) , (3.36)

where T is the kinetic term

T = − 1

2m
∇2

= − 1

2m

�
1

r

d2

dr2 r − l2
r2

�

, (3.37)

k, l and ml being the principal, orbital angular momentum and orbital angular
momentum projection quantum numbers, respectively. Eq. (3.36) can be solved
exactly, leading to

φk,l,ml
(r) = Rk,l(r)Y l

ml
(r̂) , (3.38)

in which
Rk,l(r) = Nk,lr

le−νr2
L

l+ 1
2

k (2νr2
) (3.39)

is the radial wave function, where ν = mω/2,

Nk,l =

����
�

2ν3

π

2k+2l+3 k! νl

(2k + 2l + 1)!!
(3.40)

is a normalization factor, L
l+ 1

2
k (2νr2) is the generalized Laguerre polynomial of

degree k defined as

L
l+ 1

2
k (2νr2

) =

k�

i=0

(−2νr2)i

i!

�
k + l +

1
2

k − i

�

(3.41)

and Y l
ml

(r̂) is the spherical harmonic2. The energy spectrum does not depend on
the magnetic quantum number (i.e. Ek.l,ml

= Ek.l) and it is given by

Ek.l =

�
2k + l +

3

2

�
ω . (3.42)

2Recall that the spherical harmonics are eigenfunctions of the l2 and lz operators

l2Y l
ml

(r̂) = l(l + 1)Y l
ml

(r̂)

and
lzY l

ml
(r̂) = mlY

l
ml

(r̂) ,

and are orthonormal functions
�

Y l
ml

(r̂)Y l�

m�
l
(r̂) dΩ = δll� δmlm�

l
.
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If we consider the spin s of the nucleons, the central potential of the NSM may
also contain a spin-orbit term of the form

USO = −2λ l · s , (3.43)

where λ is a constant. The total angular momentum j = l + s is conserved and the
wave function takes the form

φα(r) = Rk,l(r) [Y l
ml

(r̂) ⊗ χs
ms

]
j
m , (3.44)

where χs
ms

is the spin wave functions, s and ms being the spin and spin projec-
tion quantum numbers, respectively, α stands for the set of all quantum numbers
(k, l, ml, s, ms, j, m), j and m being the total angular momentum and the total an-
gular momentum projection quantum numbers, respectively. The symbol ⊗ denotes
the Clebsch-Gordan product, i.e.

[Y l
ml

(r̂) ⊗ χs
ms

]
j
m =

�

ml,ms

�l, ml, s, ms|j, m� Y l
ml

(r̂)χs
ms

. (3.45)

Taking s =
1
2 and j = l ±

1
2 , we obtain the following energy spectrum:

Ek,l,j =






�
2k + l +

3

2

�
ω − λl for j = l +

1

2

�
2k + l +

3

2

�
ω + λ(l + 1) for j = l − 1

2

. (3.46)

The addition of the spin-orbit potential to the harmonic oscillator reproduces the
main features of the observed nuclear spectra, exhibiting the so called magic numbers3.
Fig. 3.6 shows the energy levels obtained using the harmonic oscillator plus spin-orbit
potential. It clearly appears that this model provides a correct prediction of the
magic numbers, reported in round brackets.

In Table 3.1 we summarize the information on the harmonic oscillator plus
spin-orbit orbitals employed in the calculation discussed in this Thesis.

Using the eigenfunctions obtained from the solution of the Schrödinger equation,
one can compute the nuclear density distribution, ρ(r), from

ρ(r) =
�

α

|φα(r)|
2 , (3.47)

where the sum runs over all occupied orbitals of the ground state. In Fig. 3.7 we
have plotted ρ(r) for the nucleus 48Ca. Experimental data obtained from elastic
electron-nucleus scattering experiments show that the overall shape is reproduced,
but sizable discrepancies occur. However, these differences are not to be ascribed to
the limitations of the NSM because, if one replace the harmonic oscillator with the
Woods-Saxon potential, the densities obtained turn out to be in very good agreement
with experiments.

3A magic number is a number of nucleons arranged into complete shells within the atomic
nucleus. Atomic nuclei consisting of such a magic number of nucleons are more stable. The seven
most widely recognized magic numbers are: 2, 8, 20, 28, 50, 82, 126.
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Figure 3.6. Energy spectrum predicted by the nuclear shell model with an isotropic
oscillator potential without spin-orbit (left) and with spin-orbit (right) interaction. The
number to the right of a level indicates its degeneracy. The boxed integers indicate the
magic numbers.

.

N = 2k + l k l Orbital Energy nj
�

j nj

0 0 0 1s 1
2

3/2ω 2 2

1 0 1 1p 3
2

5/2ω − λ 4

1 0 1 1p 1
2

5/2ω + 2λ 2 8

2 0 2 1d 5
2

7/2ω − 2λ 6

2 1 0 2s 1
2

7/2ω 2

2 0 2 1d 3
2

7/2ω + 3λ 4 20

3 0 3 1f 7
2

9/2ω − 3λ 8 28

Table 3.1. Harmonic oscillator plus spin-orbit orbitals employed in the calculations discussed
in this Thesis. The number of nucleons in the j-th orbital is denoted by nj , the number
of the last column denote the magic numbers.
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Figure 3.7. Nucleon densities for 48Ca: protons (red line) and neutrons (blue line) calculated
with the harmonic oscillator wave function parameter for 48Ca. We set ν = 0.126 fm−1

.

3.7 Nucleon-nucleon correlations
The NSM has been successfully applied to explain many nuclear properties.

However, single-nucleon knock out experiments, aimed at establishing its validity,
also exposed its failure to properly describe the full complexity of nuclear dynamics
[34].

Consider, for example, the process

e + A → e�
+ p + (A − 1) . (3.48)

In the impulse approximation regime, in which the space resolution of the probe is
less than the average NN separation distance, electron-nucleus scattering reduces to
the incoherent sum of elementary scattering processes involving individual nucleons
(see Fig. 3.8) and the final state interactions between the knocked out nucleon and
the spectator (A − 1)-particle system can be neglected. Within this picture, energy
conservation requires that

ω =

�
|p|2 + m2 + EA−1 − MA , (3.49)

where ω = Ee − Ee� is the energy transfer, p is the momentum of the outgoing
proton and EA−1 =

�
|q − p|2 + M2

A−1. According to the NSM, if the knocked out
nucleon is initially in the single particle state of binding energy Bα, the mass of the
recoiling nucleus is given by

MA−1 = MA − m + Bα . (3.50)
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Figure 3.8. Schematic representation of the impulse approximation regime, in which the
nuclear cross section is replaced by the incoherent sum of cross sections describing
scattering of individual nucleons, the recoiling (A − 1)-nucleon system acting as a
spectator.

In the non-relativistic limit, i.e. assuming EA−1 ≈ MA−1, the missing energy
E = ω − Tp, where Tp =

�
|p|2 + m2 − m, is given by E = Bα. As a consequence,

the measured missing energy spectra are expected to exhibit spectroscopic lines,
corresponding to the occupied shell model states in the ground state of the target
nucleus, the strength of which provides a measure of the degeneracy, d = 2j + 1.

Experimental data show that, while the peaks corresponding to knock-out from
shell model orbits can be clearly identified in the missing energy spectra, the
corresponding strengths turn out to be consistently and sizable lower than expected,
independent of the nuclear mass number. This discrepancy is mainly due to the
effect of dynamical correlations induced by the NN force, whose effect is not taken
into account in the independent particle model. Correlations give rise to scattering
processes, leading to the virtual excitation of the participating nucleons to states of
energy larger than the Fermi energy, thus depleting the NSM states within the Fermi
sea. As an example, Fig. 3.9 shows the missing energy spectrum of the reaction

e +
16

O → e�
+ p +

15
N , (3.51)

featuring the spectroscopic lines corresponding to the 1p1/2 and 1p3/2 states.
Fig. 3.10 shows a compilation of the strengths of the valence NSM orbits of

a number of nuclei, ranging from carbon to lead, measured by both electron- and
hadron-induced proton knock out. Note that the fractional strengths are normalized
in such a way that the NSM prediction is 100. It clearly appears that all observed
strengths are largely below this value.

3.7.1 Spectral function and spectroscopic factors
In the plane wave impulse approximation, the cross section of process (3.48) can

be written as
dσ

dωdΩe�dΩpdTp
= |p|(m + Tp)σepP (p − q, E) , (3.52)

where σep is the elementary electron-proton cross section and P (k, E) is the spectral
function, which contains all the information on nuclear dynamics. In the NSM, the
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Figure 3.9. Missing energy spectrum of the reaction e + 16O → e� + p + 15N.

Figure 3.10. Integrated strengths of the valence NSM states, measured in electron- (open
circles) and hadron-induced (crosses) proton knock out experiments, as a function of
the target mass number (taken from [35]). The solid horizontal line represents the NSM
prediction.
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spectral function takes the simple form

P (k, E) =
�

α

|φα(k)|
2δ(E − Bα) , (3.53)

showing that |k|2P (k, E) is the probability distribution of finding a proton of
momentum k and binding energy E in the nuclear ground state.

In the presence of correlations, the NSM states are depleted, i.e.

Zα =

�
d3k |�φα(k)|

2 < 1 , (3.54)

�φα(k) being the new states, and the δ-function acquires a width, providing a measure
of the finite lifetime of single particle states. In addition, correlations give rise to
final states in which one of the spectator particle is excited to the continuum. These
processes contribute a background term to the spectral function, extending to larger
values of E. The spectral function of a correlated system is usually written in the
form

P (k, E) = PMF (k, E) + PB(k, E) , (3.55)

where PB(k, E) denotes the correlation background, while PMF (k, E) can be written
as (compare to Eq. (3.53))

PMF (k, E) =
�

α

Zα|φα(k)|
2f(E − Bα) , (3.56)

with
f(E) =

Zα

π

Γα

E2 + Γ2
α

, (3.57)

which amounts to assume
�φα(k) =

�
Zαφα(k) . (3.58)

The calculation of Zα, called spectroscopic strength (or spectroscopic factor), can
be carried out within the framework of many-body theory. The starting point is the
definition

�φα(k) =

�
d3r �φα(r)e−ik·r , (3.59)

where
�φα(r) =

√
A

�
d3r2 · · · d3rA Ψ∗

α(r2, . . . , rA)Ψ0(r, r2, . . . , rA) (3.60)

Ψ0(r, r2, . . . , rA) being the ground state of the A-particle system and Ψα(r2, . . . , rA)

the state of (A − 1)-particle in which a state α is removed.
Although this identification is not rigorous, as correlations push a small fraction

of the strength of the state α to very large energy, Zα can be regarded as the
occupation probability of the single particle state.

It is common practice to distinguish between two types of correlations: long-
and short-range correlations. The long-range correlations are related to collective
excitations of the system. The short-range correlations (SRC) are instead connected
to the strongly repulsive core of the NN interaction. Inclusion of correlations requires
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the use of a realistic phenomenological nuclear Hamiltonian of the form (3.28),
obtained by fitting nuclear properties and nucleon-nucleon scattering data.

Our work has been carried out within a scheme in which non perturbative effects
due to the short-range repulsion are embodied in the basis functions. This approach,
called the Correlated Basis Function theory, will be briefly discuss in the next
Subsection.

3.7.2 The Correlated Basis Function theory
The aim of the Correlated Basis Function (CBF) theory [36] is the solution of

the many-body Schrödinger equation

HΨ(1, . . . , A) = EΨ(1, . . . , A) , (3.61)

where Ψ(1, . . . , A) is the wave function describing the system of A particles. Eq.
(3.61) is solved by using the variational principle

E[Ψ] =
�Ψ| H |Ψ�

�Ψ|Ψ� ≥ E0 , (3.62)

E0 being the true ground state energy; note that the larger the overlap �Ψ0|Ψ� the
closer E[Ψ] is to E0, Ψ0 being the true ground state. The minimum obtained in this
manner is an upper bound of the eigenvalue of the Eq. (3.61). We search solutions
of the type

Ψ(1, . . . , A) = F (1, . . . , A)Φ(1, . . . , A) , (3.63)
in which F (1, . . . , A) is a many-body correlation operator and Φ(1, . . . , A) is a Slater
determinant composed of single-particle wave functions. The operator F (1, . . . , A),
embodying the correlation structure induced by the NN interaction, is written in
the form

F (1, . . . , A) = S




A�

i<j=1
fij



 , (3.64)

where S is the symmetrization operator and the functions fij are expressed in terms
of the two-body correlation functions fn(rij). The structure of the fij must reflect
the complexity of the NN potential; hence, we can write

fij =

6�

n=1
fn

(rij)On
ij , (3.65)

with the On
ij defined by Eq. (3.21). The shapes of the radial functions fn(r) are

determined using the variational principle in Eq. (3.62), this procedure leads to a
set of Euler-Lagrange equations, whose solutions satisfy the boundary conditions

lim
r→∞

fn
(r) =

�
1 n = 1

0 n > 1
. (3.66)

The short range behavior of the two-nucleon correlation functions is such that the
quantity

f †
ijHijfij = f †

ij

�
p2

i

2m
+

p2
j

2m
+ vij

�

fij , (3.67)
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which reduces to Hij at large interparticle distances, is well behaved as r → 0.
More generally, one can define a complete, although non orthonormal, set of

correlated states. For example, in the case of uniform nuclear matter, the unperturbed
Fermi gas states |nF G� are replaced by the set of correlated states

|n� =
F |nF G�

�nF G| F †F |nF G�1/2 . (3.68)

Once the correlated basis has been defined, the nuclear Hamiltonian can be split
in two pieces

H = H0 + H1 , (3.69)

where H0 and H1 denote the diagonal and off-diagonal components of H, respectively,
defined by the equations

�m| H0 |n� = δmn �m| H |n� , (3.70)
�m| H1 |n� = (1 − δmn) �m| H |n� . (3.71)

The above definitions imply that, if the correlated states have large overlaps with
the eigenstates of H, the matrix element of H1 are small, and the perturbative
expansions in powers of H1 is rapidly convergent.

3.7.3 Spectroscopic factors in uniform nuclear matter and lead
In this Section we outline the calculation of the spectroscopic factors using

correlated wave functions. For the sake of simplicity, we will consider isospin
symmetric nuclear matter. Due to transition invariance, in this system, single
particle states are plane waves4:

φα(r) = φh(r) =
eih·r
√

V
, (3.72)

where V is the normalization volume. The spectroscopic factor defined in Eq. (3.54)
can be written as

Zh =

�
d3k |�φh(k)|

2 , (3.73)

where �φh(k) is the matrix element to be computed defined as (see Eq. (3.60))

�φh(k) =
√

A
�

d3r1 · · · d3rA Ψ∗
h(r2, . . . , rA)Ψ0(r1, . . . , rA)e−ik·r1 , (3.74)

Ψ0(r1, . . . , rA) being the ground state of the A-particle system and Ψh(r2, . . . , rA)

the state of (A − 1)-particle in which a state of momentum h is removed within the
Fermi sea. Within the correlated basis function formalism, according to Eq. (3.63),
the wave functions can be written in the form:

Ψ0(r1, . . . , rA) = FAΦ(r1, . . . , rA) , (3.75)
Ψh(r2, . . . , rA) = FA−1Φh(r2, . . . , rA) , (3.76)

4The dependence on spin and isospin degrees of freedom does not play a role in this context,
and will be omitted.
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where Φ(r1, . . . , rA) and Φh(r2, . . . , rA) are Slater determinants defined in Eq. (3.32).
The many-body correlation operators FA and FA−1 are given by (see the previous
Section)

FA =

A�

j>i=1
f(rij) , (3.77)

FA−1 =

A�

j>i=2
f(rij) . (3.78)

In the case discussed in this Section the correlation operator is real. Hence, Eq.
(3.74) becomes

�φh(k) =
√

A
�

d3r1 · · · d3rA Φ∗
h(r2, . . . , rA)FA−1FAΦ0(r1, . . . , rA)e−ik·r1 . (3.79)

We can now expand

FA−1FA =

�
A�

k=2
f(r1k)

��
A�

j>i=2
f2

(rij)

�

=

�
A�

k=2

�

1 + g(r1k)

���
A�

j>i=2

�

1 + h(rij)

��

= 1 +

A�

k=2
g(r1k) +

A�

j>i=2
h(rij) + . . . , (3.80)

where g(r1k) = f(r1k) − 1 and h(rij) = f2(rij) − 1. We are interested to the leading
order, i.e. 1 +

�A
k=2 g(r1k), thus Eq. (3.79) becomes

�φh(k) =
√

A
�

d3r1 · · · d3rA

�
1 + (A − 1)g(r12)

�

× Φ∗
h(r2, . . . , rA)Φ0(r1, . . . , rA)e−ik·r1 + . . . . (3.81)

Using the relation

Φ∗
h(r2, . . . , rA)Φ0(r1, . . . , rA) = Φ∗

h(r2, . . . , rA)
�

α

eikα·r1
√

V

1√
A

Φα(r2, . . . , rA) ,

(3.82)
where the sum is over the states of the Fermi gas, the first term of the right-hand
side of Eq. (3.79) is given by

1√
V

�
d3r1

�

α

e−i(k−kα)·r1

×
�

d3r2 · · · d3rA Φ∗
h(r2, . . . , rA)Φα(r2, . . . , rA) =

(2π)3
√

V
δ(k − h) , (3.83)

where we used the orthonormal condition
�

d3r2 · · · d3rA Φ∗
h(r2, . . . , rA)Φα(r2, . . . , rA) = δhα . (3.84)
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Using a further expansion of the Slater determinants

Φ∗
h(r2, . . . , rA)Φ0(r1, . . . , rA) =

�

γ �=h

e−ikγ ·r2
√

V

1√
A − 1

Φ∗
hγ(r3, . . . , rA)

×
�

α

eikα·r1
√

V

�

β �=α

eikβ ·r2
√

V

1
�

A(A − 1)
Φαβ(r3, . . . , rA) , (3.85)

the second term of the right-hand side of Eq. (3.79) is given by

1

V 3/2

�
d3r1d3r2 g(r12)

�

α

�

β �=α

�

γ �=h

�
e−i(k−kα)·r1e−i(kγ−kβ)·r2

�

×
�

d3r3 · · · d3rA Φ∗
hγ(r3, . . . , rA)Φαβ(r3, . . . , rA) . (3.86)

If we use the orthonormal condition
�

d3r3 · · · d3rA Φ∗
hγ(r3, . . . , rA)Φαβ(r3, . . . , rA) = δhαδγβ − δhβδγα , (3.87)

the expression in Eq. (3.86) becomes

1

V 3/2

�
d3r1d3r2 g(r12)

�

α

�

e−i(k−h)·r1 − e−i(k−kα)·r1e−i(kα−h)·r2

�

. (3.88)

The above integral can be solved using the transformation of variables

r1 = R +
r12
2

, r2 = R − r12
2

, (3.89)

and passing to the continuum, i.e.
�

α

→ V

(2π)3

�
d3k . (3.90)

Hence, we have

1

V 3/2

�
d3r1d3r2 g(r12)

V

(2π)3

�
d3k e−i(k−h)·r1 =

(2π)3
√

V
δ(k − h)

ρ

ν
�g(0) , (3.91)

in which we used
V

(2π)3

�
d3k =

V

(2π)3
4

3
π|kF |

3
= V

ρ

ν
, (3.92)

kF , ρ and ν being the Fermi momentum, the nucleon density and the degeneracy,
respectively, and �g denote the Fourier transform of g. Moreover, we have

1

V 3/2

�
d3r1d3r2 g(r12)

V

(2π)3

�
d3k e−i(k−kα)·r1e−i(kα−h)·r2

=
1

V 3/2

�
d3Rd3r12 g(r12)

V

(2π)3

�
d3k e−i(k−h)·Re−i(k+h−2kα)· r12

2

=
(2π)3
√

V
δ(k − h)

ρ

ν

�
d3r12 g(r12) l(kF · r12)e−ik·r12 , (3.93)
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Figure 3.11. Spectroscopic strength in function of the energy Z(e), eF is the Fermi energy.
The red line gives the estimated Z(e) in 208Pb. Experimental data are taken from Ref.
[37]

in which we used
1

(2π)3

�
d3k eikα·r12 =

ρ

ν
l(kα · r12), (3.94)

the function l(x) is defined as

l(x) =
3

x3 (sin x − x cos x) . (3.95)

Using the results of Eqs. (3.83), (3.91) and (3.93), �φh(k) in Eq. (3.81) is given by

�φh(k) =
(2π)3
√

V
δ(k − h)

�

1 +
ρ

ν

�
�g(0) −

�
d3x g(x) l(kF · x)e−ik·x

��

+ . . . . (3.96)

The contributions to �φh(k) can be represented by diagrams that can be classified
according to their topological structure and summed up to all orders solving a set
of coupled integral equations [38]. The results of these calculations, corrected to
account for surface effects, turn out to be in fairly good agreement with the data
obtained from electron scattering experiments with a 208Pb target (see Fig. 3.11).



Chapter 4

Calculation of nuclear matrix
elements

The Fermi (F ) and Gamow-Teller (GT ) transition matrix elements for 2β0ν

decay obtained using the closure approximation given by Eqs. (2.46) and (2.47) can
be written in the general form

Mα
0ν = �Ψf , J

π
f |

A�

j,k=1
τ+

j τ+
k Oα

jk(r) |Ψi, J
π
i � . (4.1)

where α = F , GT , Ψi and Ψf are the ground states of the intial and final nucleus,
respectively, J π

i and J π
f are the total angular momentum and parity of the initial

and final nucleus, respectively. Oα
jk(r) is an operator defined as

OF
jk(r) = H(r) = SF

jk H(r) , (4.2)
OGT

jk (r) = (σj · σk) H(r) = SGT
jk H(r) , (4.3)

where H(r) si the neutrino potential given by

H(r) =
2RA

πr

� +∞

0

sin(qr)

q + �E� dq . (4.4)

In the above equations, r = |rj − rk|, RA is the nuclear radius and �E� is the average
energy of the virtual intermediate states used in the closure approximation.

The aim of this Chapter is to describe the structure of Mα
0ν in the pure shell

model picture and after with inclusion of correlation effects.

4.1 Pure shell model
We assume that two neutrons of the initial state nucleus decay while the other

nucleons act as spectators. Due to the two-body nature of the transition operator,
the matrix element in Eq. (4.1) can be reduced to a sum of products of the so called
two-body transition densities and antisymmetrized two-body matrix elements, i.e.

Mα
0ν =

�

j1,j2,j�
1,j�

2,J

TBTD (j1, j2, j�
1, j�

2, J, J
π
i , J

π
f )

× �j�
1j�

2; J T ; J
π
i | τ+

1 τ+
2 Oα

12(r) |j1j2; J T ; J
π
f �a . (4.5)
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In the above equation, the indeces 1 and 2 label the quantum numbers of the two
decaying neutrons, while 1 and 2 with primes refer to the final protons, j is the total
angular momentum quantum number of a nucleon participating in the decay, while J
is the total angular momentum quantum number of the pair of nucleons participating
in the decay, T is the total isospin of the pair of nucleons which takes the value of 1

both for the intial and final state and | · · · �a denotes an antisymmetrized two-particle
state. The coefficients TBTD (j1, j2, j�

1, j�
2, J, J π

i , J π
f ) are the two-body transition

densities and take into account how the spectator nucleons rearrange themselves.
In order to carry out the calculation, the two-body matrix element in Eq. (4.5)

must be decomposed into products of reduced matrix elements of operators acting
in spin and coordinate space. In addition, the coordinate space matrix element must
be decomposed in two contributions, arising from the center of mass and relative
motion.

Hence, the matrix elements of Oα
12 for non-antisymmetrized jj-coupling scheme

can be written as

�k�
1l�1j�

1, k�
2l�2j�

2; J T = 1; J
π
i | Oα

12(r) |k1l1j1, k2l2j2; J T = 1; J
π
f �

=
�

S,Λ

�
l�1

1

2
j�

1, l�2
1

2
j�

2

����
1

2

1

2
S, l�1l�2Λ

�

J

�
l1

1

2
j1, l2

1

2
j2

����
1

2

1

2
S, l1l2Λ

�

J

× 1√
2S + 1

�
1

2

1

2
S � Sα

12 � 1

2

1

2
S

�

×
�

k,l,K,L

�

k�,l�,K�,L�
�kl, KL|k1l1, k2l2�Λ �k�l�, K �L�

|k�
1l�1, k�

2l�2�Λ �k�l�| H(r) |kl� ,

(4.6)

where

�
l1

1

2
j1, l2

1

2
j2

����
1

2

1

2
S, l1l2Λ

�

J
=

�
(2j1 + 1)(2j2 + 1)(2S + 1)(2Λ + 1)





l1
1
2 j1

l1
1
2 j2

Λ S J



 ,

(4.7)
in which k and l with labels are the principal and angular momentum quantum
numbers of a nucleon participating in the decay, respectively, while k and l without
labels are the principal and angular momentum quantum numbers of the relative
motion, respectively, K and L are the principal and angular momentum quantum
numbers of the center of mass motion, Λ and S are the orbital angular momentum
and the spin quantum numbers of the pair of nucleons, respectively. The last factor in
Eq. (4.7) is a 9-j symbol which takes into account the coupling of angular momenta.
�kl, KL|k1l1, k2l2�Λ, called Talmi-Moshinsky brackets, are the coefficients of the
transformation from the (r1, r2) representation to the (r = (r1−r2), R = (r1+r2)/2):

�r1|k1l1� �r2|k2l2� =
�

k,l,K,L

�kl, KL|k1l1, k2l2�Λ �r|kl� �R|KL� . (4.8)

The Talmi-Moshinsky transformation is only possible for harmonic oscillator radial
wave function. This is why we choose to use this basis. The reduced matrix elements
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of the relevant operators Sα
ij in Eq. (4.6) are given by

�
1

2

1

2
S � � 1

2

1

2
S

�
=

√
2S + 1 , (4.9)

�
1

2

1

2
S � (σ1 · σ2) � 1

2

1

2
S

�
=

√
2S + 1[2S(S + 1) − 3] . (4.10)

The radial relative motion matrix element is given by

�k�l�| H(r) |kl� =

� +∞

0
r2dr Rk�l�(r)H(r)Rkl(r) , (4.11)

Rkl(r) and Rk�l�(r) being the radial wave functions of the harmonic oscillator potential
of the initial and final state, respectively.

The antisymmetrized form of the two-body matrix elements can be obtained
using

�j�
1j�

2; J T ; J
π
i | τ+

1 τ+
2 Oα

12(r) |j1j2; J T ; J
π
i �a =

1
�

(1 + δj�
1j�

2
)(1 + δj1j2)

× [�j�
1j�

2; J T ; J
π
i | τ+

1 τ+
2 Oα

12(r) |j1j2; J T ; J
π
f �

− (−1)
j1+j2+J�j�

1j�
2; J T ; J

π
i | τ+

1 τ+
2 Oα

12(r) |j2j1; J T ; J
π
f �] . (4.12)

4.2 Including correlations
In our work we will neglect the contribution of non central correlations. Hence,

Eq. (3.65) reduces to

f12 = fc(r) + fσ(r)(σ1 · σ2) + fτ (r)(τ1 · τ2) + fστ (r)(σ1 · σ2)(τ1 · τ2) . (4.13)

For neutron-neutron and proton-proton pairs, having T = 1, we have

(τ1 · τ2) =
1

2
[4T (T + 1) − 6] = 1 , (4.14)

leading to
f12(r) = [fc(r) + fτ (r)] + [fσ(r) + fστ (r)](σ1 · σ2) . (4.15)

The implementation of correlation effects can be carried out replacing the wave
functions

φα(r1)φβ(r2) → f12(r) φα(r1)φβ(r2) , (4.16)
or, equivalently, one can replace the bare transition operators with effective transition
operators

Oα
12(r) → Õα

12(r) = f †
12(r) Oα

12(r) f12(r) = f2
12(r) Oα

12(r) . (4.17)

In the following, for sake of semplicity, we will omit the dependence on r. Using the
property (σ1 · σ2)2 = 3 − (σ1 · σ2), we obtain

f2
12 = [(fc +fτ )

2
+3(fσ +fστ )

2
] +2(fσ +fστ )[(fc +fτ )−(fσ +fστ )](σ1 ·σ2) . (4.18)

In our analysis we will consider two cases:
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• (fc + fτ ) �= 0 and (fσ + fστ ) = 0, the effective Fermi and Gamow-Teller
operators take the form:

ÕF
12 = (fc + fτ )

2 OF
12 , (4.19)

ÕGT
12 = (fc + fτ )

2 OGT
12 ; (4.20)

• (fc + fτ ) �= 0 and (fσ + fστ ) �= 0, the effective Fermi and Gamow-Teller
operators take the form:

ÕF
12 = [(fc + fτ )

2
+ 3(fσ + fστ )

2
] OF

12

+ 2(fσ + fστ )[(fc + fτ ) − (fσ + fστ )] OGT
12 , (4.21)

ÕGT
12 = 6(fσ + fστ )[(fc + fτ ) − (fσ + fστ )] OF

12

+ [(fc + fτ )
2

+ 7(fσ + fστ )
2 − 4(fc + fτ )(fσ + fστ )] OGT

12 . (4.22)

Note that due to the presence of spin dependent correlations, in the second case,
the Fermi tranistions acquire a Gamow-Teller-like part and vice versa.

The implementation of correlation effects can be carried out in an alernative way
replacing the wave functions

φα(r1)φβ(r2) → �φα(r1)�φβ(r2) , (4.23)

where �φα(r1) and �φβ(r2) are the depleted shell model states defined in Eq. (3.60)
and written as

�φα(r1) =
�

Zαφα(r1) , (4.24)
�φβ(r2) =

�
Zβφβ(r2) , (4.25)

where Zα and Zβ are the spectroscopic factors.

In the next Chapter we will discuss the implementation of correlation effects in
the two ways explained above in Eqs. (4.17) and (4.23) for the calculation of the
neutrinoless double beta decay matrix element.



Chapter 5

Numerical calculations

As our analysisis is aimed at studying the effects of nucleon-nucleon correlations,
we will keep the complications associated with the shell model description to a
minimum.

In our work we analyzed the reaction

48
20Ca → 48

22Ti + e−
+ e− . (5.1)

The transition above is from the ground state of 48Ca with J π
48Ca = 0+ to the ground

state of 48Ti with J π
48Ti = 0+; the energy level scheme is shown in Fig. 5.1. We

choose to study the reaction (5.1) for many reasons [39]. First of all, 48Ca is the
lightest element that can undergo double beta decay and its shell structure is quite
simple, as the number of protons (20) and neutrons (28) are both magic numbers
corresponding to closed shells. As shown in Table 3.1 the neutrons fill all the levels
of the shells 1s 1

2
, 1p 3

2
, 1p 1

2
, 1d 5

2
, 2s 1

2
, 1d 3

2
and 1f 7

2
; while the protons fill up the

levels 1s 1
2
, 1p 3

2
, 1p 1

2
, 1d 5

2
, 2s 1

2
and 1d 3

2
. Moreover, 48Ca has Q2β = 4.271 MeV, the

highest Q2β-value in nature which could contribute to an increased decay probability.
In addition, the high-energy γ and β radiation emitted in this process could help
eliminate most of the background noise. Another important reason to choose 48Ca
for the study of 2β0ν decay is that shell model calculations have provided the correct
prediction of 2β2ν decay halflife for this element [9, 40]. On the other hand, the small
natural abundance of this isotope, 0.187%, increases the difficulty of an experimental
investigation. In addition, the results of previous calculations [41, 42] suggest that
the nuclear matrix element of 48Ca is smaller, by a factor of 4-5, than those of
other 2β emitters, such as 76Ge and 82Se [43]. However, experiments on double beta
decay of 48Ca, suce as CANDLES [44] and CARVEL [45], may reach the sensitivity
required for measuring such transitions, and the availability of theoretical predictions
may be useful.

In this Chapter we will describe the calculation of the neutrinoless double beta
decay matrix element in the two different ways described in Section 4.2. In Section 5.1
the calculation is carried out replacing the Fermi and Gamow-Teller operators with
effective operators using correlation functions consistently determined by a realistic
phenomenological Hamiltonian within the framework of the correlated basis function
theory [46]. In Section 5.2 we will replace the shell model wave functions with the
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Figure 5.1. Energy level scheme of double beta decay 48
20Ca → 48

22Ti

depleted shell model wave functions using spectroscopic factors also computed within
the correlated basis function theory in [36].

5.1 Using correlated two-nucleon states
5.1.1 Hilbert space

In our work, in order to carry out the calculation of the Fermi and Gamow-Teller
transition matrix elements Mα

0ν of Eq. (4.5), we will consider the case in which the
neutrons and protons involved in the decay processes only occupy the 1f 7

2
shell. As

a consequence, in the non-antisymmetrized matrix element of Eq. (4.6), we set

k1 = k2 = k�
1 = k�

2 = 0 , (5.2)
l1 = l2 = l�1 = l�2 = 3 , (5.3)

j1 = j2 = j�
1 = j�

2 =
7

2
. (5.4)

Because the transition operators act only on the relative wave functions, we have
that the quantum numbers relative to the center of mass motion are conserved, i.e.

K = K � , L = L� . (5.5)

In addition, as we do not include the effects of non-central correlations, we have

l = l� . (5.6)
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In conclusion, the matrix element of Eq. (4.6) becomes

�k�
1l�1j�

1, k�
2l�2j�

2; J T = 1; 0
+

| Oα
12(r) |k1l1j1, k2l2j2; J T = 1; 0

+�

=
�

S,Λ

����

�
l1

1

2
j1, l2

1

2
j2

����
1

2

1

2
S, l1l2Λ

�

J

����
2

1√
2S + 1

�
1

2

1

2
S � Sα

12 � 1

2

1

2
S

�

×
�

k,k�,l,K,L

�kl, KL|k1l1, k2l2�Λ �k�l, KL|k1l1, k2l2�Λ �k�l| H(r) |kl� . (5.7)

Moreover, conservation of energy requires that

2k1 + l1 + 2k2 + l2 = 2k�
1 + l�1 + 2k�

2 + l�2 = 6 , (5.8)

which implies in turn

2k + l + 2K + L = 2k�
+ l� + 2K �

+ L�
= 6 , (5.9)

and, using Eqs. (5.5) and (5.6), we obtain

k = k� . (5.10)

Using the above constraints, the analytic form of the nuclear matrix element in Eq.
(5.7) further simplifies in the following way:

�k�
1l�1j�

1, k�
2l�2j�

2; J T = 1; 0
+

| Oα
12(r) |k1l1j1, k2l2j2; J T = 1; 0

+�

=
�

S,Λ

����

�
l1

1

2
j1, l2

1

2
j2

����
1

2

1

2
S, l1l2Λ

�

J

����
2

1√
2S + 1

�
1

2

1

2
S � Sα

12 � 1

2

1

2
S

�

×
�

k,l,K,L

|�kl, KL|k1l1, k2l2�Λ|
2 �kl| H(r) |kl� . (5.11)

If we substitute the values of the quantum numbers in the equation above, we obtain:
�

0 3
7

2
, 0 3

7

2
; J 1; 0

+
�����O

α
12(r)

�����0 3
7

2
, 0 3

7

2
; J 1; 0

+
�

=
�

S,Λ

�����

�

3
1

2

7

2
, 3

1

2

7

2

�����
1

2

1

2
S, 3 3 Λ

�

J

�����

2
1√

2S + 1

�
1

2

1

2
S � Sα

12 � 1

2

1

2
S

�

×
�

k,l,K,L

|�kl, KL|0 3, 0 3�Λ|
2 �kl| H(r) |kl� . (5.12)

We still have to fix the bounds on the sums over the quantum numbers. From energy
conservation in Eq. (5.9) we get

�

k,l,K,L

→
6�

L=0

6−L�

l=0

1
2 (6−L−l)�

K=0
, (5.13)

where, as a consequence, the value of k is fixed. Being the total spin of a couple
of two fermions, S can only take the values 0 and 1. The sum over Λ, having
l1 = l2 = 3, runs from 0 to 6 but, to conserve parity it only includes even values: 0, 2,
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J TBTD (J, 0+)

0 1.214

2 −0.572

4 0.021

6 0.000

Table 5.1. Numerical values of the two-body transition densities TBTD (J, 0+)

4, 6.. Finally, the total angular momentum of a pair of nucleons with j1 = j2 = 7/2,
J , runs from 0 to 7, but we only have to keep even values, as required by the
antisymmetrization of the two-body matrix element in Eq. (4.12).

Using the definition of 9-j symbols of Eq. (4.7), the final expression for the
nuclear matrix element of Eq. (4.5) is given by

Mα
0ν =

�

J=0,2,4,6
TBTD (J, 0

+
)

�

S=0,1

�

Λ=0,2,4,6
64(2Λ + 1)(2S + 1)





3
1
2

7
2

3
1
2

7
2

Λ S J





2

× 1√
2S + 1

�
1

2

1

2
S � Sα

12 � 1

2

1

2
S

�

×
6�

L=0

6−L�

l=0

1
2 (6−L−l)�

K=0
|�kl, KL|0 3, 0 3�Λ|

2 �kl| H(r) |kl� . (5.14)

The numerical values of the two-body transition densities, TBTD (J, 0+), computed
in [47], are listed in Table 5.1.

5.1.2 Correlation functions
To extend our calculation using the correlated wave function formalism, we

need the analytic form of the correlation functions of Eq. (3.65). We have used
f1(r) ≡ fc(r)+fτ (r) and f2(r) ≡ fσ(r)+fστ (r), where fc(r), fτ (r), fσ(r) and fστ (r)

are the correlation functions introduced in Section 4.2, and obtained in [46] using a
realistic nuclear Hamiltonian. The numerical results for these functions have been
fitted with the following analytic expressions:

f1(r) = a − be−cr2
+ de−e(r−f)2

, (5.15)
f2(r) = ae−br2

(1 + cr + dr2
) . (5.16)

The parameter values are given in Table 5.2, while the shapes of the correlation
functions are plotted in Figs. 5.2 and 5.3.

5.1.3 Numerical results
Using the analytic form for the correlation functions of Eqs. (5.15) and (5.16),

we can write down the expressions of the Fermi and Gamow-Teller nuclear transition
matrix elements of Eq. (5.14) considering two interesting cases.
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f1(r) Value f2(r) Value
a 1.00 a 0.04

b 0.92 b 1.39

c 2.56 c 2.92

d 0.33 d −5.97

e 0.57

f −0.94

Table 5.2. Fit parameters for the correlation functions.

• f1(r) �= 0 and f2(r) = 0. Using the effective Fermi and Gamow-Teller operators
of Eqs. (4.19) and (4.20), we get

MF
0ν =

�

J=0,2,4,6
TBTD (J, 0

+
)

�

S=0,1

�

Λ=0,2,4,6
64(2Λ+1)(2S+1)





3
1
2

7
2

3
1
2

7
2

Λ S J





2

×
6�

L=0

6−L�

l=0

1
2 (6−L−l)�

K=0
|�kl, KL|0 3, 0 3�Λ|

2 �kl| f2
1 (r)H(r) |kl� , (5.17)

MGT
0ν =

�

J=0,2,4,6
TBTD (J, 0

+
)

�

S=0,1

�

Λ=0,2,4,6
64(2Λ+1)(2S+1)





3
1
2

7
2

3
1
2

7
2

Λ S J





2

×
�
2S(S + 1) − 3

� 6�

L=0

6−L�

l=0

1
2 (6−L−l)�

K=0
|�kl, KL|0 3, 0 3�Λ|

2 �kl| f2
1 (r)H(r) |kl� .

(5.18)

• f1(r) �= 0 and f2(r) �= 0. Using the effective Fermi and Gamow-Teller operators
of Eqs. (4.21) and (4.22), we get

MF
0ν =

�

J=0,2,4,6
TBTD (J, 0

+
)

�

S=0,1

�

Λ=0,2,4,6
64(2Λ+1)(2S+1)





3
1
2

7
2

3
1
2

7
2

Λ S J





2

×
6�

L=0

6−L�

l=0

1
2 (6−L−l)�

K=0
|�kl, KL|0 3, 0 3�Λ|

2
�

�kl|
�
f2

1 (r) + 3f2
2 (r)

�
H(r) |kl�

+
�
2S(S + 1) − 3

�
�kl| 2f2(r)

�
f1(r) − f2(r)

�
H(r) |kl�

�

, (5.19)
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MGT
0ν =

�

J=0,2,4,6
TBTD (J, 0

+
)

�

S=0,1

�

Λ=0,2,4,6
64(2Λ+1)(2S+1)





3
1
2

7
2

3
1
2

7
2

Λ S J





2

×
6�

L=0

6−L�

l=0

1
2 (6−L−l)�

K=0
|�kl, KL|0 3, 0 3�Λ|

2
�

�kl| 6f2(r)

�
f1(r) − f2(r)

�
H(r) |kl�

+
�
2S(S + 1) − 3

�
�kl|

�
f2

1 (r) + 7f2
2 (r) − 4f1(r)f2(r)

�
H(r) |kl�

�

. (5.20)

Numerical calculations have been carried out setting the harmonic oscillator constant
to the value ν = 0.126 fm−2 and the average energy of the intermediate states
�E�=7.72 Mev [39].

The Fermi and Gamow-Teller matrix elements can be written as

Mα
0ν =

� +∞

0
dr gα

(r) . (5.21)

We have developed a FORTRAN code to compute integrals of the form of Eq.
(5.21), where the integration region extends up to Rmax = 20 fm. The values of
the Talmi-Moshinsky brackets have been obtained from the FORTRAN subroutine
TMB [48] while for the 9-j symbols we have used the FORTRAN subroutine W9J
described in [49]. Altogether, the calculations of M0ν requires few seconds of CPU
time in a personal computer of intermediate level.

The inclusion of correlations results in a modification of the integrand, gα(x),
in the matrix elements. In Figs. 5.4 and 5.5 we comapre gα(x) for the Fermi and
Gamow-Teller matrix elements, considering three cases: pure shell model, adding
spin-independent correlation and, finally, adding both spin-independent and spin-
dependent correlations. It clearly appears that the main effect associated with the
spin-independent correlation function f1(r) is a suppression at r � 1 fm, arising from
the short range repulsive core of the NN interaction. Moreover, in Table 5.3 we have
reported the computed numerical values for the neutrinoless double beta decay M0ν

in the three cases.
Fig. 5.6 shows the dependence of M0ν on the average energy of the intermediate

states �E�; values from 0 to 15 MeV have been considered. Fig. 5.6 suggests that
the closure approximation does not critically depend on the value of �E�.

The results of our numerical calculations indicate that the inclusion of spin
independent correlations leads to a suppression of the shell model matrix element of
∼ 20%, while spin-dependent correlations produce an increase of ∼ 3%.

The results of previous studies, carried out neglecting spin-dependent effects,
have shown a strong dependence on the choice of f1(r). For example, the authors of
reference [39] found that, while using the Miller-Spencer correlation function leads
to a suppression of the Fermi and Gamow-Teller matrix elements of ∼ 35% and
∼ 15%, respectively. Using the so called AV18 model leads to a smaller suppression
of MF

0ν and an enhancement of MGT
0ν . In this context, is very important to point



5.1 Using correlated two-nucleon states 54

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0  2  4  6  8  10

gF (
r)

r [fm]

NSM
NSM + f1(r)

NSM + f1(r) + f2(r)

Figure 5.4. Integrand of the Fermi matrix element in three cases: pure nuclear shell model
(red line), nuclear shell model with central correlations (green line) and nuclear shell
model with central and spin-dependent correlations.

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  2  4  6  8  10

gG
T (

r)

r [fm]

NSM
NSM + f1(r)

NSM + f1(r) + f2(r)

Figure 5.5. Integrand of the Gamow-Teller matrix element in three cases: pure nuclear
shell model (red line), nuclear shell model with central correlations (green line) and
nuclear shell model with central and spin-dependent correlations.



5.2 Using spectroscopic factors 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16

M
0

/M
0

(0
 M

eV
)

<E> [MeV]

Figure 5.6. Dependence of M0ν divided by M0ν calculated at �E� = 0 MeV on the average
energy of the intermediate states �E�.

out that in our calculation the correlation function are consistently determined by a
realistic phenomenological Hamiltonian, through a many-body calculation.

MF
0ν MGT

0ν M0ν

NSM 0.756 −2.269 −2.753

NSM + f1(r) 0.584 −1.752 −2.126

NSM + f1(r) + f2(r) 0.598 −1.793 −2.175

Table 5.3. Matrix element values obtained numerically.

5.2 Using spectroscopic factors
As pointed out above, the implementation of correlation effects can be alter-

natively carried out using spectroscopic factors. As discussed in Sections 3.7 and
4.2, the shell model wave function of each neutron of 48Ca in the initial state is
rescaled by a factor

�
Zn

1f7/2
(48Ca), and that of each proton in the final state of 48Ti

by a factor
�

Zp
1f7/2

(48Ti). As a consequence, the neutrinoless double beta decay
transition matrix element, M0ν , is rescaled by a total factor

M0ν → �M0ν =

�
1 − Zp

1f7/2
(

48
Ti)

�
Zn

1f7/2(
48

Ca) M0ν . (5.22)

In our discussion we assume 1 − Zp
1f7/2

(48Ti) � Zn
1f7/2

(48Ca), i.e.

M0ν → �M0ν =

�
Zn

1f7/2(
48

Ca)

�2
M0ν . (5.23)
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Although the validity of this assumption should be carefully investigated, nuclear
matter results suggest that it is quite accurate. The calculation of the spectroscopic
factors of doubly closed shell nuclei has been carried out in Ref. [36] using correlated
basis function theory with more refined correlations. The computed values are
Zn

1f7/2
(48Ca) = 0.91 ÷ 0.95, leading to a suppression of the shell modell matrix

element of ∼ 10 ÷ 20 %. Therefore the results obtained in this manner are consistent
with those of Subsection 5.1.3.



Conclusions

We have performed a numerical study of the effects of nucleon-nucleon correlations
on the nuclear matrix element of neutrinoless double beta decay of 48Ca. Our work
is motivated by the fact that correlation effects have been shown to play a critical
role in electron-nucleus scattering, and are expected to be relevant in any processes
involving a nucleon pair.

We have considered two different strategies, both based on the formalism of
correlated basis functions. Compared to previous studies, this approach allows for a
consistent treatment of spin-dependent correlations. The correlation functions have
been obtained from highly realistic models of the nuclear Hamiltonian, providing an
excellent description of the properties of the two-nucleon system and light nuclei.
The same correlation functions have also been extensively and successfully used in
the analysis of electron-nucleus scattering data [50].

Our numerical results suggest that including correlations leads to a suppression
of the nuclear matrix element of ∼ 20 %. This estimate is quite robust, as it turns out
to be largely independent of the procedure employed to carry out the calculations.

Including spin-dependent correlations through a modification of the two-nucleon
states leads to a mixing of the Fermi and Gamow-Teller contributions to the transition
matrix elements. The Gamow-Teller transition acquires in fact a Fermi-like like
contribution, and vice versa. However, the results of our calculations show that this
effect is quite small, thus suggesting that correlation effects can also be described
by modifying the normalization of the shell model states through the inclusion of
spectroscopic factors Zα < 1. This change of normalization accounts for the depletion
of the Fermi sea arising from scattring processes involving strongly correlated
nucleons. The results obtained from the two different implementations of correlations
appear to be consistent, and suggest that their effects are sizable.

Our study should be regarded as exploratory, as it involves a number of simplifying
assumptions. We have considered 48Ca, which is the lightest element that can undergo
double β-decay and has the highest Q2β-value in nature, because its shell structure
is quite simple. Moreover we have only studied transitions between nucleons in the
1f 7

2
shell. However, it has to be emphasized that, in principle, the formalism we

have employed allows one to carry out a more realistic calculation of the neutrinoless
double β-decay in a fully consistent fashion. For example, the effective Hamiltonian
constructed within the correlated basis function approach, could be used in the shell
model determination of the two-body transition densities.



Appendix A

Properties of the operators On
ij

In this Appendix, we discuss the properties of the six operators defined in Eq.
(3.21), as well as some useful properties of the Pauli matrices.

A.1 Pauli matrices
In the standard representation, in which σ3 is chosen to be diagonal, the threee

Pauli matrices are given by (we specialize here to the spin matrices σi: analog
properties obviously hold for the isospin matrices τ i)

σ1
=

�
0 1

1 0

�

, σ2
=

�
0 −i
i 0

�

, σ3
=

�
1 0

0 −1

�

. (A.1)

The Pauli matrices satisfy

σiσj
= δij + i�ijkσk , (A.2)

�ijkσjσk
= 2iσi , (A.3)

that can be put in the form

[σi, σj
] = 2i�ijkσk , (A.4)

{σi, σj
} = 2δij , (A.5)

where �ijk is the totally antisymmetric tensor and i, j, k = 1, 2, 3. The first properties
shows that the Pauli matrices are the generators of an SU(2) algebra.

A.2 Projection operators
Let now σ1 and σ2 be the vectors of Pauli matrices for particle 1 and 2, re-

spectively (i.e. σ1 ≡
�
σ1

1, σ2
1, σ3

1
�
). From the properties (A.2)-(A.3), it follows

that
(σ1 · σ2)

2
= 3 − 2(σ1 · σ2) . (A.6)

As (σ1 · σ2) is a scalar quantity, we can interpret the above equation as an algebraic
one, with solutions (σ1 ·σ2) = −3 and (σ1 ·σ2) = 1. They correspond to the states of
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total spin S = 0 (spin singlet channel) and S = 1 (spin triplet channel), respectively.
It is thus useful introducing the operators P2S+1 (and the analog Π2T +1 for the
isospin states), defined as

P(S=0) ≡ P1 =
1 − (σ1 · σ2)

4
, (A.7)

P(S=1) ≡ P3 =
3 + (σ1 · σ2)

4
, (A.8)

which project onto states of definte total spin 0 or 1, respectively:

P2S+1|S�� = δSS� |S�� , (A.9)

The projection operators satisfy to

P 2
2S+1 = P2S+1 , (A.10)

P1 + P3 = 11 , (A.11)
P1P3 = P3P1 = 0 , (A.12)

where 11 is the two-dimensional identity matrix.

A.3 Spin and isospin exchange operators
Consider the two-nucleon spin states (or the analog isospin states)

|0 0� =
1√
2

(| ↑↓� − | ↓↑) ,

|1 − 1� = | ↓↓� ,

|1 0� =
1√
2

(| ↑↓� + | ↓↑) ,

|1 1� = | ↑↑� ,

where |0 0� ≡ |S = 0 MS = 0� etc., and the inverse relations

| ↑↑� = |1 1� ,

| ↑↓� =
1√
2

(|1 0� + |0 0�) ,

| ↓↑� =
1√
2

(|1 0� − |0 0�) ,

| ↓↓� = |1 − 1� .

From properties (A.9), and from

(P3 − P1) | ↑↑� = | ↑↑� , (P3 − P1) | ↓↓� = | ↓↓� ,

(P3 − P1) | ↑↓� = | ↓↑� , (P3 − P1) | ↓↑� = | ↑↓� ,

it follows that Pσ ≡ P3 − P1 is the spin-exchange operator, satisfying

Pσ|S MS� = (−)
S+1

|S MS� . (A.13)
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A similar exchange operator can be defined for isospin, Pτ ≡ Π3 − Π1, with

Pτ |T MT � = (−)
T +1

|T MT � . (A.14)

Combining the above results we find

Pστ ≡ PσPτ =
1

4

�
1 + (σ1 · σ2)

��
1 + (τ1 · τ2)

�
, (A.15)

with
Pστ |S MS , T MT � = (−)

S+T
|S MS , T MT � . (A.16)

A.4 The tensor operator S12

The tensor operator S12 is defined as

S12 ≡ 3

r2 (σ1 · r) (σ2 · r) − (σ1 · σ2) , (A.17)

where r is the relative coordinate of particels 1 and 2 while r = |r|.
Making use of Eq.(A.2), it can be shown that

S12(σ1 · σ2) = (σ1 · σ2)S12 = S12 . (A.18)

As we saw, (σ1 · σ2) = 1 on triplet states, while (σ1 · σ2) = −3 on singlet states.
The above equation thus implies that the tensor operator only acts on triplet states
and

[S12, P3] = 0 . (A.19)

Moreover,
S2

12 = 6 − 2S12 + 2(σ1 · σ2) . (A.20)

The tensor operator is a function of r satisfying

∇S12 =
3

r2

�

σ1 (σ2 · r) + σ2 (σ1 · r) − 2
r
r2 (σ1 · r) (σ2 · r)

�

, (A.21)

∇2S12 = − 6

r2 S12 . (A.22)

For any function u(r), Eq.(A.21) implies

(∇u) · (∇S12) =
du

dr

r
r

· (∇S12) = 0 . (A.23)

Moreover

(∇S12)
2

=
6

r2 (8 − S12) , (A.24)

[S12, (∇S12)] =
36

r2 i (S × r) , (A.25)

[S12, (∇S12)] ∇ =
36

r2 (L · S) , (A.26)



A.5 Algebra of the six operators (??) 61

where S = (σ1 + σ2) /2 and L = r×p = −i (r × ∇) is the orbital angular momentum
operator of the relative motion.

From Equation (A.22), we can calculate
�
S12, ∇2S12

�
= 0 , (A.27)

and
(∇S12) [S12, ∇] = − (∇S12)

2 . (A.28)

A.5 Algebra of the six operators (??)
Equations (A.6), (A.18) and (A.20) show that the six operators

O1,...,6
= 1, (τ1 · τ2), (σ1 · σ2), (σ1 · σ2)(τ1 · τ2), S12, S12(τ1 · τ2) , (A.29)

close an algebra, i.e. they satisfy

OiOj
=

�

k

Kk
ijOk . (A.30)

The coefficients Kk
ij are easily obtained by calculating

O1Oi
= OiO1

= Oi
=⇒ Kk

1i = Kk
i1 = δk

i

O2O2
= 3O2 − 2O2

=⇒ Kk
22 = 3δk

1 − 2δk
2 ,

O2O3
= O3O2

= O4
=⇒ Kk

23 = Kk
32 = δk

4 ,

O2O4
= 3O3 − 2O4

=⇒ Kk
24 = Kk

42 = δk
3 − 1δk

4 ,

O2O5
= O5O2

= O6
=⇒ Kk

25 = Kk
52 = δk

6 ,

O2O6
= O6O2

= 3O5 − 2O6
=⇒ Kk

26 = Kk
62 = 3δk

5 − 2δk
6 ,

O3O3
= 3O1 − 2O3

=⇒ Kk
33 = 3δk

1 − 2δk
3 ,

O3O4
= O4O3

= 3O2 − 2O4
=⇒ Kk

34 = Kk
43 = 3δk

2 − 2δk
4 ,

O3O5
= O5O3

= O5
=⇒ Kk

35 = Kk
53 = δk

5 ,

O3O6
= O6O3

= O6
=⇒ Kk

36 = Kk
63 = δk

6 ,

O4O4
= 9O1 − 6O2 − 6O3

+ 4O4
=⇒ Kk

44 = 9δk
1 − 6δk

2 − 6δk
3 + 4δk

4 ,

O4O5
= O5O4

= O6
=⇒ Kk

45 = Kk
54 = δk

6 ,

O4O6
= O6O4

= 3O5 − 2O6
=⇒ Kk

46 = Kk
64 = 3δk

5 − 2δk
6 ,

O5O5
= 6O1

+ 2O3 − 2O5
=⇒ Kk

55 = 6δk
1 + 2δk

3 − 2δk
5 ,

O5O6
= O6O5

= 6O2
+ 2O4 − 2O6

=⇒ Kk
56 = Kk

65 = 6δk
2 + 2δk

4 − 2δk
6 ,

O6O6
= 18O1 − 12O2

+ 6O3 − 4O4 − 6O6
+ 4O6

=⇒ Kk
66 = 18δk

1 − 12δk
2 + 6δk

3 − 4δk
4 − 6δk

4 + 4δk
6 .
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A.6 Matrix elements
Finally, we report a number of expectation values of operators involving Pauli

matrices, in two-nucleon states of definite total spin and isospion, |S MS , T MT �.

�P2S�+1Π2T �+1� = δSS�δT T � , (A.31)
�P2S�+1Π2T �+1Pστ � = (−)

S+T δSS�δT T � , (A.32)
�

SMS

δS�1�S12P2S�+1Π2T �+1� = δS�1δT T �
�

MS

�1 MS |S12|1 MS� = 0 ,(A.33)

�

SMS

δS�1�S12P2S�+1Π2T �+1Pστ � = 0 . (A.34)

A.7 Matrix elements . . .
The explicit expressions for the matrices entering Eq.(??), defined by

Ai
λµ = �λµ|Oi

12|λµ� , Bi
λµ = �λµ|Oi

12|µλ� , (A.35)

where |λµ� denotes the two-nucleon spin-isospin state, can be easily obtained from
the above properties of the six operators On≤6.
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We find

A1
=





1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1



 , (A.36)

A2
=





1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1



 , (A.37)

A3
=





1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1



 , (A.38)

A4
=





1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1



 , (A.39)

A5
=





1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1





�
3 cos

2 θ − 1

�
= A2

�
3 cos

2 θ − 1

�
, (A.40)

A6
=





1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1





�
3 cos

2 θ − 1

�
= A4

�
3 cos

2 θ − 1

�
, (A.41)

B1
=





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



 , (A.42)

B2
=





1 0 2 0

0 1 0 2

2 0 1 0

0 2 0 1



 , (A.43)

B3
=





1 2 0 0

2 1 0 0

0 0 1 2

0 0 2 1



 , (A.44)

B4
=





1 2 2 4

2 1 4 2

2 4 1 2

4 2 2 1



 , (A.45)

B5
=





1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1





�
3 cos

2 θ − 1

�
, (A.46)

B6
=





1 −1 2 −2

−1 1 −2 2

2 −2 1 −1

−2 2 −1 1





�
3 cos

2 θ − 1

�
, (A.47)
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where θ is the angle between r and the z axis.

A.8 Change of representation
In this Section we discuss the different representation for the operators of the

“v6” algebra. A generic operator x can be written as

x =

6�

p=1
xp

ijOp
= xc+xτ (τ1·τ2)+xσ(σ1·σ2)+xστ (σ1·σ2)(τ1·τ2)+xtS12+xtτ S12(τ1·τ2) ,

(A.48)
in the basis of operators (A.29), or as

x =
�

T S

[xT 0 + δS1xtT S12] P2S+1Π2T +1 , (A.49)

in the “TS-representation”.
The transformation matrix is given by





1 −3 −3 9

1 1 −3 −3

1 −3 1 −3

1 1 1 1









xc

xτ

xσ

xστ



 =





x00
x10
x01
x11



 , (A.50)

�
1 −3

1 1

� �
xt

xtτ

�

=

�
xt0
xt1

�

, (A.51)

or





xT S = xc + (4T − 3)xτ + (4S − 3)xσ + (4S − 3)(4T − 3)xστ ,

xtT = xt + (4T − 3)xtT .
(A.52)

The inverse transformation is given by

1

16





1 3 3 9

−1 1 −3 3

−1 −3 1 3

1 −1 −1 1









x00
x10
x01
x11



 =





xc

xτ

xσ

xστ



 , (A.53)

1

4

�
1 3

−1 1

� �
xt0
xt1

�

=

�
xt

xtτ

�

, (A.54)



Appendix B

Correlated two particles states

At lowest order of CBF, the effective interaction Veff is defined by the equation

�H� = �0F G|T0 + Veff |0F G� . (B.1)

As the above equation suggests, the approach based on the effective interaction
allows one to obtain any nuclear matter observables using perturbation theory in
the FG basis. The effective interaction is given by XXX

Veff =
�

i<j

veff(ij) , (B.2)

where

veff(ij) = fij

�
− 1

m
∇2

+ v(ij)

�
fij =

6�

p=1
vp

eff(rij)Op
ij , (B.3)

Op
ij being the operators listed in Eq. (3.21). The energy per nucleon in the Hartree-

Fock approximation is then given by

E

N
=

3

5

p2
F

2m
+

1

N

�

i<j

�ij| veff(ij) |ij�a , (B.4)

where pF is the Fermi momentum. Assuming that the correlation operator be
hermitian, the second term in the right hand side of the above equation can be
written as

�

i<j

�ij| veff(ij) |ij�a =
�

i<j

�ij|
1

2

�
f12, [ t1 + t2, f12]

�
+ f12v12f12 |ij − ji� , (B.5)

with
ti = − 1

2m
∇2

i , t1 + t2 = − 1

m
∇2 − 1

4m
∇2

R , (B.6)

where ∇ acts on the relative coordinate r, while ∇R acts on the center of mass
coordinate R, defined as

r = r1 − r2 , R =
1

2
(r1 + r2) , (B.7)

respectively.
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Including only the static part of the interaction, both the correlation function
f12 and the two-nucleon potential v12 are written as

f12 =

6�

p=1
fp

(r12)Op
12 , v12 =

6�

p=1
vp

(r12)Op
12 . (B.8)

The FG two-nucleon state is given by

|ij� =
1

V
e

i(ki·r1+kj ·r2)
|S MS , T MT �

=
1

V
e

i(k·r+K·R)
|S MS , T MT � , (B.9)

with

|ki|, |kj | ≤ pF

k =
1

2
(ki − kj) , K = ki + kj . (B.10)

We will discuss the potential and kinetic energy term separately.

B.1 Potential energy
Consider the operator

w12 = f12v12f12 , (B.11)

and the decomposition of f12 in the TS-representation

f12 =
�

ST

�
fST + δS1ftT S12

�
P2S+1Π2T +1 . (B.12)

In the above equation, P2S+1 and Π2T +1 are spin and isospin projection operators.
By writing the corresponding decomposition for w12 and v12 and calculating

w12 =
�

T S

�

δS0f2
T 0vT 0 + δS1

�
vT 1

�
f2

T 1 + 8f2
tT + 2

�
fT 1ftT − f2

tT

�
S12

�
+

+ vtT

�
16

�
fT 1ftT − f2

tT

�
+

�
f2

T 1 − 4fT 1ftT + 12f2
t1

�
S12

���

P2S+1Π2T +1 ,

we can identify

wT 0 = vT 0 f2
T 0

wT 1 = vT 1
�
f2

T 1 + 8f2
tT

�
+ 16vtT

�
fT 1ftT − f2

tT

�
(B.13)

wtT = 2vT 1
�
fT 1ftT − f2

tT

�
+ vtT

�
f2

T 1 − 4fT 1ftT + 12f2
t1

�
.

After replacing
�

i<j

→ 1

2

�

ij

, (B.14)
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the potential energy contribution reads

�w� =
1

2

1

V 2
�

SMS

�

T MT

�

kikj

�

S�T �

� �
d3r1d3r2

�
wS�T �(r)�P2S�+1Π2T �+1� +

δS�1wtT �(r)�S12P2S�+1Π2T �+1�
�

−
�

d3r1d3r2 e
i(ki·r−kj ·r) (B.15)

�
wS�T �(r)�P2S�+1Π2T �+1Pστ � + δS�1wtT �(r)�S12P2S�+1Π2T �+1Pστ �

��

,

where Pστ is the spin-isospin exchange operator1. The expectation values �O� are
taken over two-nucleon states of definite total spin and isospin |S MS , T MT �. Using

�
d3r1d3r2 =

�
d3r d3R = V

�
d3r (B.20)

and the definition of the Slater function,
�

|k|≤pF

e
ik·r

=
V

(2π)3

�

|k|≤pF

d3k eik·r
=

N

ν
�(pF r) , (B.21)

we finally obtain

�w� =
1

2

1

V 2
N2

ν2 V
�

ST

(2S + 1) (2T + 1)

�
d3r wST (r)

�
1 − (−1)

S+T �2
(pF r)

�
,

(B.22)
i.e., in the case of symmetric nuclear matter (ν = 4),

1

N
�w� =

ρ

32

�
d3r

��
w00(r) + 9w11(r)

�
a−(pF r) +

+
�
3w01(r) + 3w10(r)

�
a+(pF r)

��
, (B.23)

where ρ = N/V is the density and

a±(x) = 1 ± �2
(x) . (B.24)

1Pσ ≡ P3 − P1 is the spin-exchange operator, satisfying

Pσ|S MS� = (−)S+1|S MS� . (B.16)

A similar exchange operator can be defined for isospin, Pτ ≡ Π3 − Π1, with

Pτ |T MT � = (−)T +1|T MT � . (B.17)

Combining the above results we find

Pστ ≡ PσPτ = 1
4

�
1 + (σ1 · σ2)

��
1 + (τ1 · τ2)

�
, (B.18)

with
Pστ |S MS , T MT � = (−)S+T |S MS , T MT � . (B.19)



B.2 Kinetic energy 68

B.2 Kinetic energy
Let us now discuss the kinetic contribution to the energy, given by

1

2

�
f12, [ t1 + t2, f12]

�
= − 1

2m

�
f12,

�
∇2, f12

� �
. (B.25)

We consider spin-zero and spin-one channels separately.

Spin-zero channels In these channels, the relevant part of the correlation function
is given by

f12 =
�

T

fT 0(r) P1Π2T +1 . (B.26)

Making use of the results of Appendix ??, as well as of
�
fT 0, ∇2fT 0

�
= 0 ,

�
fT 0,

�
∇fT 0

�
∇

�
= −

�
∇fT 0

�2
, (B.27)

we find
�
f12,

�
∇2, f12

� �
=

�

T T �

�
fT 0 P1 Π2T +1,

�
∇2, fT 0

�
P1 Π2T �+1

�

=
�

T T �

�
fT 0,

�
∇2, fT 0

� �
P 2

1 Π2T +1Π2T �+1

=
�

T

�
fT 0,

�
∇2fT 0

�
+ 2

�
∇fT 0

�
∇

�
P1 Π2T +1

= 2
�

T

�
fT 0,

�
∇fT 0

�
∇

�
P1 Π2T +1

= −2
�

T

�
∇fT 0

�2
P1 Π2T +1 . (B.28)

Finally,

− 1

2m

�
f12,

�
∇2, f12

� �
=

1

m

�

T

�
∇fT 0

�2
P1 Π2T +1 . (B.29)

Spin-one channels In these channels, the correlation function is given by

f12 =
�

T

�
fT 1(r) + ftT (r)S12

�
P3 Π2T +1 . (B.30)

Relying once more on Appendix ??, we calculate
�

T �

�
∇2,

�
fT �1 + ftT �S12

�
P3 Π2T �+1

�
=

�

T �

��
∇2, fT �1

�
+

�
∇2, ftT �S12

��
P3 Π2T �+1

=
�

T �

��
∇2fT �1

�
+ 2

�
∇ftT �

�
∇ +

�
∇2ftT �S12

�
+ 2

�
∇ftT �S12

�
∇

�
P3 Π2T �+1

=
�

T �

��
∇2fT �1

�
+ 2

�
∇ftT �

�
∇ +

�
∇2ftT �

�
S12 +

�
∇2S12

�
ftT �
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+ 2
�
∇ftT �

��
∇S12

�
+ 2S12

�
∇ftT �

�
∇ + 2ftT �

�
∇S12

�
∇

�
P3 Π2T �+1 . (B.31)

Hence, the commutator in Eq.(B.25) can be rewritten as
�
f12,

�
∇2, f12

� �
=

�

T T �

��
fT 1 + ftT S12

�
P3 Π2T +1, {. . .} P3 Π2T �+1

�

=
�

T

�
fT 1 + ftT S12, {. . .}

�
P3 Π2T +1

=
�

T

�
F (1)

T + F (2)
T

�
P3 Π2T +1 , (B.32)

with
F (1)

T =

�
fT 1, {. . .}

�
, F (2)

T =

�
ftT S12, {. . .}

�
, (B.33)

and
�

. . .
�

=

��
∇2fT �1

�
+ 2

�
∇ftT �

�
∇ +

�
∇2ftT �

�
S12 +

�
∇2S12

�
ftT �

+ 2
�
∇ftT �

��
∇S12

�
+ 2S12

�
∇ftT �

�
∇ + 2ftT �

�
∇S12

�
∇

�
. (B.34)

We find
F (1)

T = −2
�
∇fT 1

�2 − 2
�
∇fT 1

��
∇ftT

�
S12 , (B.35)

and

F (2)
T =

�
ftT S12, 2

�
∇fT 1

�
∇

�
+

�
ftT S12, 2S12

�
∇fT 1

�
∇

�
+

+

�
ftT S12, 2fT 1

�
∇S12

�
∇

�
=

= −2
�
∇fT 1

��
∇ftT

�
S12 − 2

�
∇ftT

�2
S2

12 +

+2f2
tT

�
S12,

�
∇S12

�
∇

�

= −2
�
∇fT 1

��
∇ftT

�
S12 − 2

�
∇ftT

�2�
8 − 2S12

�
+

− 2f2
tT
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. (B.36)

Collecting all pieces togheter, we find for the spin-one channels
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with

tT 0 =
1
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B.3 Final expression for (∆E)
2

We can rewrite
(∆E)2 =

�

i<j

�ij|W12|ij − ji� , (B.38)

with
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Making use of the expression for the expectation values given in Appendix ??,
we finally obtain (compare to Eq.(B.23))

(∆E)2
N

=
ρ
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. (B.39)
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