
UNIVERSITÀ DEGLI STUDI ROMA TRE
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Introduction

In the course of the last two decades, neutrino oscillations have been firmly established,
and their studies are now entering the era of precision. Neutrino experiments are based on
the observation of neutrino-nucleus interactions, but neutrino event rates strongly depend,
in a non trivial way, on the largely unknown neutrino energy. Because neutrinos are
neutral particles, their energy needs to be reconstructed from the observation of the charged
final states produced during the interactions. Furthermore, neutrino cross sections are
very small, of the order of 10−38 cm2 for energies around 1 GeV. Therefore, to increase
neutrino event rate, huge detectors consisting of nuclear targets must be used, and the
problem arises of understanding the nuclear response to weak interactions. The study of
neutrino interactions has always been an important topic [1], however in modern oscillation
experiments a high level of accuracy is required, and cross section uncertainty is widely
acknowledged as one of the major sources of systematic errors. For this reason, there
have been many efforts over the years to understand neutrino-nucleus interactions, see for
instance Refs. [2, 3] as recent reviews.
In this Thesis we analyze charged-current neutrino-nucleus interactions in all three inter-
action channels which are relevant for neutrino energies between few hundreds MeV and
few GeV: quasi-elastic scattering, resonance production and deep inelastic scattering. The
unified treatment of the nuclear response that we have used is based on the Impulse Ap-
proximation. This scheme can be applied when the momentum transferred q is such that
the spatial resolution of the probe, λ ∼ 1/|q|, is smaller than the average distance between
nucleons. Under these conditions, it is possible to consider the interaction of the probe with
a single nucleon, while the residual system acts as a "spectator". The neutrino-nucleus
cross section can then be expressed as the incoherent sum of the elementary processes off
bound and moving nucleons. The main advantage of this approximation is the possibility
to consider the particles produced at the interaction vertex and the residual system as two
systems evolving independently of one another. In such formalism, the nuclear dynamics
is incorporated in the spectral function, trivially related to the imaginary part of the two-
point Green’s function. It describes the probability of removing a nucleon from the nuclear
target, leaving the residual system with a given excitation energy.
The use of a realistic description of nuclear dynamics is a fundamental ingredient of mod-
ern neutrino event generators. To have most sensitive results, neutrino experiments rely
on Monte Carlo event generators to compare the observed signal to the predicted one.
However, generators are dependent on the underlying nuclear physics. For example, the
charged-current quasi-elastic interaction was considered theoretically well understood in
terms of single-nucleon knock-out, but very recent results have shown that processes in-
volving more than one nucleon excited to the continuum play a non-negligible role, at the
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required level of accuracy.

At energies where quasi-elastic scattering dominates, the energy distribution of charged-
current events can be experimentally determined from the kinematics of the outgoing
charged lepton, as measured by large Cherenkov detectors filled with water or mineral
oil. This kinematic reconstruction applies to quasi-elastic events, identified by the absence
of pions in the final state. However, if a pion is produced and absorbed in the nuclear
medium, or if it escapes detection, the event is erroneously reconstructed as quasi-elastic.

Assuming that the physics model in the event generator provides an accurate description
of the underlying physics, the reconstruction of the neutrino flux is also subject to the
assumed detector capabilities. Their correct estimation represents another source of sys-
tematic uncertainty that needs to be kept under control. Furthermore, in order to provide
a more precise reconstruction, calorimeters measuring the energy deposited by the final-
state particles have been proposed, as an alternative to Cherenkov detectors for ongoing
and future experiments. The calorimetric technique thus rests on the ability of fully recon-
structing the final state, which largely depends on the detector design and performance.
Nuclear effects also play a role, as they may lead to a sizable amount of missing energy,
hindering the reconstruction of neutrino energy.

The Thesis deals with the above issues in the following way.

Chapter 1 briefly outlines the physics of neutrino masses and mixings. Non vanishing neu-
trino masses entail a description of flavor eigenstates as a linear combination of mass eigen-
states. This misalignment implies neutrino oscillations between different flavors, unam-
biguously and extensively confirmed by experiments. We review the current mass-mixing
phenomenology and the prospects for both precision and discovery physics, including e.g.
CP violation in the neutrino sector.

To achieve accurate measurements in neutrino oscillation searches, it is important to reduce
systematic uncertainties, related to neutrino interactions. In this light, Chapter 2 is devoted
to the discussion of the elementary neutrino-nucleon cross section in the quasi-elastic,
resonance production and deep inelastic sectors, which is a prerequisite for the study of
the neutrino-nucleus interactions.

In Chapter 3 we derive the cross section for scattering processes off nuclei within the
impulse approximation scheme, which is based on the Spectral Function formalism. We
report the results obtained for the double differential cross section, the Q2-distribution
and total cross section of νµ-carbon scattering computed within this approach. The main
achievement consists in the evaluation of the cross section in the regions of resonance
production and deep inelastic scattering, carried out for a wide range of neutrino energies
(up to 20 GeV)1.

The second half of the Thesis (Chapters 4 and 5) contains original work that has led to

1O. Benhar, D. Meloni and E. Vagnoni. Inelastic Neutrino-Nucleus Scattering within the Spectral
Function Formalism. In preparation.
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publications2,3,4. Besides neutrino cross section systematics, we analyze the problem of
neutrino energy reconstruction from the produced final state with high accuracy, which is
a formidable experimental task. In Chapter 4, we consider two different approaches for
the energy reconstruction, one based on the calorimetric method and the other on the
reconstruction of the lepton kinematics. The simulated energy reconstruction of neutrino
events, which are generated with a state-of-the-art Monte Carlo, allowed us to produce
migration matrices, describing the probability that the reconstructed energy is different
from the true one.

Chapter 5 is devoted to three phenomenological studies of the extraction of the oscillation
parameters in long-baseline experiments. In the first analysis, we discuss the effects of
neutrino energy reconstruction techniques on the evaluation of the mass-mixing parameters
in the νµ → νµ disappearance channel2. In the second analysis, we investigate the level of
accuracy required in the evaluation of the so-called missing energy, to avoid sizable bias
in the determination of the CP -violating phase3. Finally, we analyze the impact of the
model used to describe multi-nucleon mechanisms in a disappearance experiment4.

We conclude the Thesis by summarizing the main findings and the prospects for future
work.

2A. Ankowski, O. Benhar, P. Coloma, P. Huber, C.-M. Jen, C. Mariani, D. Meloni and E. Vagnoni.
Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance
experiments. Phys. Rev. D 92, 073014 (2015).

3A. Ankowski, P. Coloma, P. Huber, C. Mariani and E. Vagnoni. Missing energy and the measurement
of the CP-violating phase in neutrino oscillations. Phys. Rev. D 92, 091301 (2015).

4A. Ankowski, O. Benhar, C. Mariani and E. Vagnoni. Effect of the 2p2h cross-section uncertainties
on an analysis of neutrino oscillations. Phys. Rev. D 93, 113004 (2016).

3

https://arxiv.org/abs/1507.08560
https://arxiv.org/abs/1507.08561
https://arxiv.org/abs/1603.01072
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Chapter 1

Neutrino physics

In this Chapter we will introduce general aspects of neutrino physics, summarizing what
is known from experiments.
In the Standard Model (SM) of particle physics, electroweak interactions are described
by the local symmetry group SU(2)L × U(1)Y , where L and Y denote the left-handed
chirality and the hypercharge, respectively. The considered gauge group uniquely defines
the interactions and the number of vector gauge bosons. The gauge group is broken down
to U(1)em through a non-zero vacuum-expectation-value of the Higgs doublet. After the
electroweak symmetry breaking there are three massive gauge bosons (W± and Z) and a
massless gauge boson (γ), see e.g. the textbooks [4, 5, 6, 7].
In the SM, fermions can be accommodated in appropriate representations of the symmetry
group and they are divided in two different categories, quarks and leptons. The leptonic
sector is defined by three neutrinos existing in three different flavors νe, νµ and ντ , be-
longing to the isospin doublet with defined chirality (left-handed, LH) together with the
corresponding charged leptons e, µ and τ . The six quarks are accommodated in the three
generations as (u, d), (c, s) and (t, b), with their left-handed chiral components as well. The
right-handed (RH) components of the fermions are assumed to be singlets under the weak
isospin group.
The Lagrangian describing electroweak interactions in the SM is (see, e.g., Ref. [4])

Lint = eJµemAµ −
g

2
√

2
(JµCCW

†
µ + h.c.)− g

2 cos θW
JµNCZµ , (1.1)

and it is defined in terms of three different kinds of currents: the electromagnetic current
Jµem, the weak charged current JµCC and the weak neutral current JµNC, respectively coupled
to the photon field Aµ, to the charged bosons fields W and to the neutral boson field Z.
The currents for the first generation of leptons and quarks are given by

Jµem =− eγµe+
2

3
uγµu− 1

3
dγµd , (1.2)

JµCC =νeγ
µ(1− γ5)e+ uγµ(1− γ5)d , (1.3)

JµNC =νeγ
µ(1− γ5)νe − eγµ(1− γ5)e+ uγµ(1− γ5)u− dγµ(1− γ5)d− 2 sin θWJ

µ
em .

(1.4)

In the SM neutrinos are supposed to be massless, but experimental evidence from oscillation
experiments tells us that neutrinos have a mass, orders of magnitude smaller than the
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6 1. Neutrino physics

electron mass. The most stringent upper bounds on neutrino masses are set by 3H β-decay
experiments, at the level of ∼2 eV [8].

1.1 Neutrino mass and mixing

Massive neutrino can be accommodated in the SM, considering neutrino as a Dirac or
Majorana particle, but we limit ourselves to the first case only; see e.g. Refs. [9, 10].
Dirac neutrino masses can be generated by the same Higgs mechanism that gives masses
to quarks and charged leptons in the SM. A minimal extension of the SM is needed, by
introducing right-handed neutrino components, νR. Right-handed neutrinos are also called
sterile, because they do not participate in weak interactions, being singlets.
The introduction of three right-handed neutrinos and of Yukawa couplings between neu-
trinos and the Higgs field leads to a Lagrangian mass term in the leptonic sector which,
after spontaneous symmetry breaking, is

Lmass = − v√
2

∑
α,β=e,µ,τ

(ναLY
ν
αβνβR + h.c.)− v√

2

∑
α,β=e,µ,τ

(`αLY
`
αβ`βR + h.c.) , (1.5)

where `α represents the charged lepton fields, v is the vacuum expectation value of the
Higgs field and Y ν and Y ` are the Yukawa couplings for neutrinos and charged leptons,
respectively accommodated in 3 × 3 matrices. Chiral states are introduced via chiral
projectors PL,R as

νL = PLν =
1− γ5

2
ν , νR = PRν =

1 + γ5

2
ν . (1.6)

In general, the Y ν,` matrices need to be diagonalized to find the mass eigenstates. The
diagonalization can be performed with a biunitary transformation, namely

UνL
†Y νUνR = Y ′ν with Y ′νij = y′νi δij , (1.7)

U `L
†
Y `U `R = Y ′` with Y ′`αβ = y′`αδαβ . (1.8)

This allows to define the LH and RH components of the fields with definite mass as

νkL =
∑

β=e,µ,τ

(UνL
†)kβνβL , νkR =

∑
β=e,µ,τ

(UνR
†)kβνβR , (1.9)

`′αL =
∑

β=e,µ,τ

(U `L
†
)αβ`βL , `′αR =

∑
β=e,µ,τ

(U `R
†
)αβ`βR , (1.10)

leading to the mass term

Lmass = −
∑

k=1,2,3

vy′νk√
2

(νkLνkR + h.c.)−
∑

α=e,µ,τ

vy′`α√
2

(`
′
αL`
′
αR + h.c.) = (1.11)

= −
∑

k=1,2,3

vy′νk√
2
νkνk −

∑
α=e,µ,τ

vy′`α√
2
`
′
α`
′
α , (1.12)
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with

νk = νkL + νkR , (1.13)

`′α = `′αL + `′αR . (1.14)

The mixing has important consequences in neutrino interactions. From Eq. (1.3), the
leptonic charged current interaction can be written in terms of mass eigenstates

JµCC =
∑

k=1,2,3

∑
α=e,µ,τ

νkLγ
µ(UνL

†U `L)kα`
′
αL , (1.15)

where the matrix

U = U `L
†
UνL , (1.16)

is also known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. It is conventional to
define the left-handed neutrino fields in flavor space as

ναL =
∑
k

UαkνkL , (1.17)

expressing the mixing between neutrino flavor and mass fields.
The unitary mixing matrix U, can be parametrized in terms of three mixing angles and
one phase1. A useful and generally adopted parametrization, similar to that used for the
CKM (Cabibbo-Kobayashi-Maskawa) matrix, is given by [9, 10]

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.18)

where cij = cos(θij) and sij = sin(θij), with θij the mixing angles (0 ≤ θij ≤ π/2). δ is the
Dirac CP -violating phase (0 ≤ δ < 2π).

As a final remark, it is important to mention that it is possible to introduce also Majorana
neutrino mass terms [11]. In this case the right-handed neutrino state is identified with
the left-handed antineutrino state, and the mixing is realized with the same matrix as in
Eq. (1.18), multiplied by an additional diagonal matrix on the right hand side, UM , given
by

UM =

 1 0 0

0 eiλ21 0

0 0 eiλ31

 (1.19)

where λ21 and λ31 are the so-called Majorana CP -violating phases [9, 10].

1In the general case of unitary matrix N ×N , the number of independent parameters are

1

2
N(N − 1) angles ,

1

2
(N − 1)(N − 2) phases .
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1.2 Neutrino oscillations

The phenomenon of neutrino flavor oscillations appears because of the misalignment of
the flavor and mass eigenstates. The field operator νkL, appearing in the leptonic charged
current in Eq. (1.15), contains the creation operators of neutrino states with definite
masses mk, with weights given by U∗αk. Thus, the relation between mass and interaction
eigenstates is realized by [9]

|να〉 =
3∑

k=1

U∗αk|νk〉 , α = e, µ, τ . (1.20)

Massive neutrinos are the eigenstates of the free Hamiltonian

H |νk〉 = Ek|νk〉 , (1.21)

where the energy eigenvalues are given by Ek =
√
|p|2 +m2

k. From the Schrödinger
equation

i
d

dt
|νk(t)〉 = H |νk(t)〉 , (1.22)

we can consider the evolution of the state as a plane wave, according to

|νk(t)〉 = e−iEkt|νk〉 , (1.23)

that applied to Eq. (1.20), gives the relation for the time evolution of flavor states

|να(t)〉 =
∑
k

U∗αke
−iEkt|νk〉 , (1.24)

where Ek is the energy of the massive neutrino and |να〉 is such that |να(t = 0)〉 = |να〉.
Using Eq. (1.20) to express the mass eigenstate as a combination of flavor eigenstates,
Eq. (1.24) becomes

|να(t)〉 =
∑

β=e,µ,τ

∑
k

U∗αke
−iEktUβk|νβ〉 . (1.25)

From the previous equation we can see that the state with defined flavor at t = 0, becomes
a superposition of different flavor states at a time t, due to the neutrino mixing described
by the non diagonal matrix U.
The amplitude of the transition process, from a state να to a state νβ , is given by

Aνα→νβ (t) ≡ 〈νβ|να(t)〉 =
∑
k

U∗αkUβke
−iEkt , (1.26)

from which we can evaluate the transition probability

Pνα→νβ (t) =
∣∣∣Aνα→νβ (t)

∣∣∣2 =
∑
k,j

U∗αkUβkUαjU∗βje
−i(Ek−Ej)t . (1.27)
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For ultra-relativistic neutrinos, the energy eigenvalues Ek can be written as2

Ek ' |p|+
m2
k

2|p| . (1.28)

In such a limit we have

Ek − Ej '
∆m2

kj

2E
, (1.29)

where we used E ' |p| and ∆m2
kj ≡ m2

k −m2
j is the squared mass difference.

Thus the oscillation probability can be written as

Pνα→νβ (t, E) =
∑
k,j

U∗αkUβkUαjU∗βj exp

(
− i

∆m2
kjt

2E

)
. (1.30)

In neutrino oscillation experiments, the known quantity is the distance, L, travelled by
neutrinos from the source to the interaction point. For ultra-relativistic neutrinos we can
consider the approximation t = L, thus

Pνα→νβ (L,E) =
∑
k,j

U∗αkUβkUαjU∗βj exp

(
− i

∆m2
kjL

2E

)
. (1.31)

The oscillation probabilities for α 6= β (flavor appearance channel) are usually called
transition probabilities, whereas the oscillation probabilities for α = β (flavor disappearance
channel) are usually called survival probabilities. In the disappearance channel we have

Pνα→να(L,E) = 1− 4
∑
k>j

|Uαk|2|Uαj |2 sin2

(
∆m2

kjL

4E

)
. (1.32)

For antineutrinos, the oscillation probability has the same structure, but with the replace-
ment U→ U∗.
From Eq. (1.31) it is possible to notice that the oscillation phase depends on the neutrino
energy, on the distance travelled by the neutrino, and on the squared mass difference. Fur-
thermore, the oscillation depends on the parameters defining the mixing matrix, through
the product

U∗αkUβkUαjU∗βj , (1.33)

which is invariant for phase transformations, such as

Uαk −→ eiψαUαke
iφk . (1.34)

In the case of Majorana neutrinos

Uαk = UDαke
iλk , (1.35)

2It is possible to write the neutrino energy as

Ek =
√
|p|2 +m2

k = |p|

√(
1 +

m2
k

|p|2

)
' |p|

(
1 +

m2
k

2|p|2

)
,

having considered the first order expansion in the small ratio (mk/|p|)2.
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and Eq. (1.33) shows that oscillation probabilities are independent on the Majorana phases,
which can thus be neglected.
From the unitarity of U, the oscillation probabilities satisfy the following relations

∑
β

Pνα→νβ (L,E) = 1 , (1.36)

∑
α

Pνα→νβ (L,E) = 1 . (1.37)

It is useful to rewrite the oscillation probability in Eq. (1.31) splitting the real and the
imaginary part, such as [9]

Pνα→νβ (L,E) =δαβ − 4
∑
k>j

Re[U∗αkUβkUαjU∗βj ] sin2

(
∆m2

kjL

4E

)
+

+ 2
∑
k>j

Im[U∗αkUβkUαjU∗βj ] sin

(
∆m2

kjL

2E

)
, (1.38)

and for antineutrinos

Pνα→νβ (L,E) =δαβ − 4
∑
k>j

Re[U∗αkUβkUαjU∗βj ] sin2

(
∆m2

kjL

4E

)
+

− 2
∑
k>j

Im[U∗αkUβkUαjU∗βj ] sin

(
∆m2

kjL

2E

)
, (1.39)

thus Eqs. (1.38) and (1.39) differ for the sign of the imaginary (CP -violating) part. The
CP -conserving part, PCPνα→νβ (L,E), is then given by

PCPνα→νβ (L,E) = PCPνα→νβ (L,E) = δαβ−4
∑
k>j

Re[U∗αkUβkUαjU∗βj ] sin2

(
∆m2

kjL

4E

)
, (1.40)

whereas the CP -violating terms, P��CPνα→νβ (L,E), are

P�
�CP

να→νβ (L,E) = −P��CPνα→νβ (L,E) = 2
∑
k>j

Im[U∗αkUβkUαjU∗βj ] sin

(
∆m2

kjL

2E

)
. (1.41)

In principle, CP violation in neutrino oscillations can be studied by looking at neutrino-
antineutrino asymmetries

ACPαβ ≡ Pνα→νβ (L,E)− Pνα→νβ (L,E) = 4
∑
k>j

Im[U∗αkUβkUαjU∗βj ] sin

(
∆m2

kjL

2E

)
,

(1.42)
which are nonzero only for α 6= β (appearance channels).
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The CP -violating term introduced above is proportional to the Jarlskog invariant J [12]
which, in the standard parameterization of Eq. (1.18), is given by

J =
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ . (1.43)

Thus the general conditions for non-vanishing CP violation are: θij 6= 0, π/2 and δ 6= 0, π

(and obviously ∆m2
kj 6= 0).

So far we have only considered oscillations in vacuum. In order to introduce matter effects,
we briefly consider a simpler scenario with only two flavor states να and νβ , mixed with
two massive fields ν1 and ν2 via a matrix

U =

(
cos θ sin θ

− sin θ cos θ

)
. (1.44)

The oscillation probability assumes then a simple form

Pνα→νβ (L,E) = sin2(2θ) sin2
(∆m2L

4E

)
. (1.45)

The previous picture is modified if neutrinos propagate in matter due to coherent forward
scattering on electrons and nucleons [13, 14]. In fact only electron neutrinos interact with
electrons in the medium in the charged current (CC) channel, and they feel an interaction
potential given by

VCC =
√

2GFne , (1.46)

where GF is the Fermi constant, and ne is the electron number density. Muon and tau
neutrinos do not experience such CC forward scattering effect, since charged muons and
taus are not present in ordinary matter. On the other hand, neutrinos of all flavors can
interact in the neutral current (NC) channel with neutrons, protons, and electrons. The
net NC contribution is due to neutrons, since the electron and proton contributions cancel
each other. The total NC effective potential is

VNC =

√
2

2
GFnn , (1.47)

where nn is the number density of neutrons. The signs of Eqs. (1.46) and (1.47) are the
opposite if antineutrinos are considered. Thus, the effective matter potential to be added
to the vacuum hamiltonian, can be written as [9]

Vα = VCCδαe + VNC . (1.48)

Notice that the common term due to NC interactions appears as a diagonal entry propor-
tional to the identity in the hamiltonian, and therefore it does not contribute to the flavor
state evolution.
In the simplest case of the two-neutrino mixing traveling through matter with constant
density, the presence of the effective potential leads to an effective mixing angle given by
[13, 14]

tan 2θM =
tan 2θ

1− 2EVCC
∆m2 cos 2θ

, (1.49)
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and to an effective squared mass difference

∆m2
M =

√
(∆m2 cos 2θ − 2EVCC)2 + (∆m2 sin 2θ)2 . (1.50)

Equation (1.49) shows a resonant behavior when ∆m2 cos 2θ = 2
√

2GFEne, called "reso-
nance condition", leading to θM = π/4 irrespective to the value of the mixing angle θ in
the vacuum. The two-flavor probability for the oscillation in matter has the form [13]

PMνα→νβ (L,E) = sin2 2θM sin2 ∆m2
M

4E
L . (1.51)

In the most general case of three neutrinos, the νe → νµ and νe → νµ oscillations differ for
the sign of δ (δ → −δ) and for the sign of the potential (ne → −ne), see for instance Ref.
[15]. Thus neutrino-antineutrino asymmetry is induced both by genuine CP violation and
by matter effects, and this can induce a fake CP -violating effect even if the CP phase δ
is 0 or π. This requires an accurate control of matter effects in order to disentangle the
genuine CP -violating effect due to a possible Dirac phase δ 6= 0, π.

It is beyond the scope of this thesis to discuss all the transition probabilities in the different
channels, but we present only those which are useful for the studies presented in Chapter
5, characterized by experimental setups with the ratios L/E . 103 km/GeV and by nearly
constant matter density (in the Earth’s crust).
We consider the appearance channels νµ → νe and νµ → νe, whose oscillation probabilities
in matter with constant density can be obtained by expanding to second order in the small
parameters sin θ13 and α = ∆m2

21/∆m
2
31 [15, 16]

Pνµ→νe(L,E, δ, VCC) =α2 sin2 2θ12 cos2 θ23
sin2A∆

A2
+ 4 sin2 θ13 sin2 θ23

sin2(A− 1)∆

(A− 1)2
+

(1.52)

+ 2α sin θ13 sin 2θ12 sin 2θ23 cos(∆ + δ)
sinA∆

A

sin(A− 1)∆

A− 1

Pνµ→νe(L,E, δ, VCC) =Pνµ→νe(L,E,−δ,−VCC) , (1.53)

where

∆ ≡∆m2
31L

4E
, (1.54)

A ≡VCCL
2∆

. (1.55)

In the disappearance channel, oscillation probabilities of νµ → νµ and νµ → νµ can be
approximated as
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Pνµ→νµ(L,E, δ, VCC) =1− sin2 2θ23 sin2 ∆ + α cos2 θ12 sin2 2θ23∆ sin 2∆+ (1.56)

− α2 sin2 2θ12 cos2 θ23
sin2A∆

A2
− α2 cos4 θ12 sin2 2θ23∆2 cos 2∆+

+
α2

2A
sin2 2θ12 sin2 2θ23

(
sin ∆

sinA∆

A
cos(A− 1)∆− ∆

2
sin 2∆

)
+

− 4 sin2 θ13 sin2 θ23
sin2(A− 1)∆

(A− 1)2
+

− 2

A− 1
sin2 θ13 sin2 2θ23

(
sin ∆ cosA∆

sin(A− 1)∆

A− 1
− A

2
∆ sin 2∆

)
+

− 2α sin θ13 sin 2θ12 sin 2θ23 cos δ cos ∆
sinA∆

A

sin(A− 1)∆

A− 1
+

+
2α

A− 1
sin θ13 sin 2θ12 sin 2θ23 cos 2θ23 cos δ sin ∆×

×
(
A sin ∆− sinA∆

A
cos(A− 1)∆

)
,

Pνµ→νµ(L,E, δ, VCC) =Pνµ→νµ(L,E,−δ,−VCC) . (1.57)

Notice that in the limit A→ 0 (vanishing electron density ne) it is possible to recover the
oscillation probabilities in vacuum. For a comprehensive discussion of neutrino oscillations
in vacuum and in matter see, for instance, Ref. [9].

1.3 Experimental status

As we saw in the previous section, the oscillation probability in Eq. (1.31) depends on the
oscillation phase

φkj =
∆m2

kjL

2E
, (1.58)

whose value (ideally of order unity) can be useful to classify neutrino experiments sensitive
to different values of the squared mass differences, depending on their typical L/E ratio
[7, 9, 10]. We can thus distinguish:

• Long-Baseline accelerator experiments, which use neutrinos produced by the decay
of pions and kaons initially produced by a proton beam hitting a target. These
experiments, using neutrino beams over large distances of hundred of km (L =

O(100−1000) km), are characterized by the ratio L/E . 103 km/GeV, thus sensitive
to ∆m2 & 10−3 eV2.

• Short-Baseline accelerator experiments, which are similar to the long-baseline ex-
periments except for the fact that their baselines are much shorter, L = O(100) m.
This class of experiments is sensitive to ∆m2 & 1 eV2.

• Short-Baseline & Long-Baseline reactor experiments, which use fluxes of electron
antineutrinos produced in nuclear reactors by β− decays. In this case the ratios are
L/E . 10 m/MeV and L/E . 103 m/MeV, respectively.
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• Atmospheric neutrino experiments which mainly measure the flux of νµ and νe
that result from cosmic rays colliding with the upper layers of the atmosphere. In
this case L/E . 104 km/GeV, thus sensitive to ∆m2 & 10−4 eV2.

• Solar neutrino experiments which detect neutrinos generated in the core of the Sun
by the thermonuclear reactions. In this case L/E . 1012 m/MeV, thus sensitive to
∆m2 & 10−12 eV2.

Over the past 40 years many efforts have been performed in order to search for mass-mixing
properties of neutrinos [7, 9, 10]. The pioneering results obtained by the radiochemical
Homestake experiment with Cl [17], showing a deficit of electron neutrinos coming from
the Sun (solar neutrino problem) compared to the number predicted by the Standard Solar
Model, provided a first evidence of oscillations. The same deficit was confirmed by other
experiments like SAGE [18], GALLEX [19], GNO [20], with radiochemical measurements
on 71Ge. The Kamiokande experiment in Japan [21], using neutrino-electron scattering
in a water-Cherenkov detector, gave the first direct evidence that neutrinos come from
the direction of the Sun. The long-baseline reactor experiment KamLAND [22] observed a
reduction around 40% compared to the predicted flux for electron anti-neutrinos, consistent
with solar results. More recently, the SNO experiment [23] using heavy-water detector,
measured the 8B solar neutrino flux via charged- and neutral-current interactions and
found a direct evidence for solar νe disappearance. In the last few years important results
have been obtained by the Borexino detector in the Gran Sasso laboratory [24], providing
a measurement of the energy profile of the survival probability for solar neutrinos. All
the solar neutrino and KamLAND disappearance data can be accommodated in a simple
scenario of two-neutrino mixing with ∆m2

sol ≡ ∆m2
21 = 7.6 × 10−5eV 2 and sin2 θsol ≡

sin2 θ12 = 0.32.
Many important results were independently achieved in the study of atmospheric neutrinos,
generated by the interaction of cosmic rays with the upper atmosphere in a wide range of
energies.
Super-Kamiokande [25], tracking events with Cherenkov light emitted by charged leptons
produced by neutrino interactions, was able to distinguish muon and electron neutrino
events and observed a deficit of νµ. Muon neutrino disappearance was also strongly con-
firmed by the long-baseline accelerator experiments K2K [26], MINOS [27] and T2K [28].
The results obtained from atmospheric neutrinos allowed to evaluate the so-called at-
mospheric oscillations parameters, that is |∆m2

atm| = 2.4 × 10−3eV 2 and sin2 2θatm ≡
sin2 2θ23 = 1.
For appearance experiments, evidence of ντ from νµ → ντ was established by OPERA [29],
while νµ → νe was observed by T2K [30] and MINOS [31].
In 2012, experimental results on νe from Daya Bay [32], Double Chooz [33] and RENO
[34], gave a strong evidence of a non-zero value for θ13: sin2 θ13 ' 0.02.
The current best-fit values and allowed ranges for the oscillation parameters are summa-
rized in Tab. 1.1, and they are reported with errors at 1σ and also the values at 3σ for both
orderings, as explained below. The reported values are obtained from the global analysis
of Ref. [35].
Notice that in oscillation experiments it is possible to evaluate three different squared mass
differences, but only two are independent, and the experimental results are compatible with
two possible orderings:
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• Normal Ordering (NO), in which the pattern assumed is m1 < m2 < m3, and is such
that

∆m2
atm ≡ ∆m2

31 > 0 ,

• Inverted Ordering (IO), such that m3 < m1 < m2, which means

∆m2
atm ≡ ∆m2

32 < 0 .

Even if neutrino masses and mixing have been largely established, there are still several
unknowns that need to be addressed by current and future experiments:

• the nature of neutrinos (Dirac vs Majorana),

• the absolute mass scale,

• the value of the Dirac CP-violating phase,

• the sign of ∆m2
atm,

• high precision determinations of the oscillation parameters.

Normal Ordering Inverted Ordering

Parameter Best Fit 3σ Range Best Fit 3σ Range

sin2 θ12/10−1 3.08+0.13
−0.12 2.73 ÷ 3.48 3.08+0.13

−0.12 2.73 ÷ 3.48
sin2 θ13/10−2 2.163+0.074

−0.074 1.938 ÷ 2.388 2.175+0.075
−0.074 1.950 ÷ 2.396

sin2 θ23/10−1 4.40+0.23
−0.19 3.88 ÷ 6.30 5.84+0.18

−0.22 3.98 ÷ 6.32
δ 5.04+0.66

−0.89 0 ÷ 2π 4.69+0.68
−0.79 0 ÷ 2π

∆m2
21/10−5 [eV2] 7.49+0.19

−0.17 7.02 ÷ 8.08 7.49+0.19
−0.17 7.02 ÷ 8.09

∆m2
3`/10−3 [eV2] +2.526+0.039

−0.037 +2.413 ÷ +2.645 -2.518+0.038
−0.037 -2.643 ÷ -2.406

Table 1.1: Value of the oscillation parameters obtained from a global analysis
from Ref. [35]. For the squared mass difference in the last line, ` = 1 in the Normal
Ordering and ` = 2 in the Inverted Ordering.

Information on the absolute neutrino mass scale can be obtained by β-decay experiments
and by cosmological data. The neutrino nature can be probed by experiments searching
for neutrino-less double-β decay (for a recent review see, for instance, Ref. [36]), whereas
the Dirac phase δ is currently being tested by the T2K [37] and NOνA [38] experiments,
although with limited sensitivity which can be improved by future long-baseline accelerator
experiments.
The interpretation of such a large amount of neutrino oscillation data led to a growing
interest in the study of neutrino cross sections, that represent one of the most important
ingredients, as well as a source of systematic uncertainties in neutrino experiments. In the
past decade, several experimental programs have studied neutrino scattering off different
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nuclei. Different experiments have measured the total or differential cross section for neu-
trino and anti-neutrino scattering. At neutrino energies where the quasi-elastic interaction
gives the major contribution, the double differential cross section on carbon has been re-
ported for the first time by MiniBooNE [39, 40, 41, 42], and most recently by T2K [43]
and MINERνA [44].
The MINERνA experiment provided measurements of neutrino cross section on different
nuclear targets such as Carbon, Iron and Lead [44, 45, 46, 47, 48]. At higher energies, the
inclusive cross section is dominated by inelastic scattering, and data have been reported
for example by NOMAD [49], SciBooNE [50] and MINOS [51].
Since future experiments like DUNE [52] will use liquid-argon detectors in order to achieve
great sensitivity for the study of the oscillation parameters, Argon has been recently studied
as nuclear target using the ArgoNeuT detector [53], which reported the measurements of
the flux-averaged cross section for muon neutrino and antineutrino.
For a review of current and ongoing measurements of neutrino cross section, see for instance
Ref. [10].



Chapter 2

Neutrino-nucleon interactions

In this Chapter we describe the general formalism for the elementary cross section of
charged-current (CC) neutrino-nucleon interaction. The cross section is basically deter-
mined by the contraction of the leptonic tensor, which is completely defined by the lepton
kinematics, and the hadronic tensor, which contains information on strong interaction dy-
namics and describes the nucleon response. In particular, we focus on the determination
of the structure functions, used for the parameterization of the hadronic tensor, in three
different channels: quasi-elastic scattering (QE), resonance production (also beyond the
∆ region) and deep inelastic scattering (DIS). We also derive an explicit expression of the
leptonic tensor.

2.1 Cross Section formalism

Consider the neutrino-nucleon scattering process via charged current

ν(k) +N(p)→ `(k′) +X(p′) , (2.1)

where the four-momenta are defined as1

k = (Eν ,k) , (2.2)

k′ = (E`,k
′) , (2.3)

p = (Ep,p) , (2.4)

p′ = (Ep′ ,p
′) . (2.5)

First, we introduce the normalization used for one-fermion states

〈p|p′〉 = 2E(2π)3δ(3)(p− p′) . (2.6)

Using Dirac’s spinors (plane-wave solutions of the Dirac equation describing a single par-
ticle state with positive energy E) the normalization conditions are

u†(p, r)u(p, s) = 2Eδrs , (2.7)

u(p, r)u(p, s) = 2mδrs , (2.8)
1See Appendix A for the notation.

17
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and the completeness relation reads

∑
s

u(p, s)u(p, s) = /p+m . (2.9)

The general formula for the cross section is

dσ =
1

vrel

1

2Ep

1

2Eν

1

2E`

d3k′

(2π)3

1

2Ep′

d3p′

(2π)3
(2π)4δ(4)(p′ + k′ − p− k) × (2.10)

× C 2
∑
si sf

[u`(k
′)γµ(1− γ5)uν(k)][uν(k)γν(1− γ5)u`(k

′)] ×

×
∑
σi σf

〈N(p)|Jµ|X(p′)〉〈X(p′)|Jν |N(p)〉 ,

where we used explicitly the normalization of the states involved in the reaction mechanism.
The coefficient C depends on the reaction mechanism taken into account, and for neutrino
CC interaction is given by

C =
GF |Vud|√

2
(2.11)

where GF is the Fermi constant and |Vud| is the absolute value of the CKM matrix element
for the coupling of the quarks u and d. The general expression for vrel is

vrel =
[(k · p)2 −m2

νM
2]1/2

EνEp
' [(k · p)2]1/2

EνEp
' 1 , (2.12)

where we have neglected the neutrino mass mν and considered the nucleon at rest with
mass M . The next step is to consider that

d3k′ = |k′|2dk′dΩ` = |k′|E`dE`dΩ` , (2.13)

where Ω` is the solid angle of the outgoing lepton. The sums in Eq. (2.10) include an
averaging and a sum over the spins of the particles in the initial and final state, respectively.
Thus, the double differential cross section for neutrino-nucleon scattering is

d2σνN
dE`dΩ`

=
1

16π2

|k′|
|k|

G2
F |Vud|2

2
× (2.14)

×
∑
si sf

[u`(k
′)γµ(1− γ5)uν(k)][uν(k)γν(1− γ5)u`(k

′)] ×

×
∑
σi σf

1

2Ep

1

2Ep′

∫
d3p′〈N(p)|Jµ|X(p′)〉〈X(p′)|Jν |N(p)〉δ(4)(p′ + k′ − p− k) .

We define the leptonic tensor as
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Lµν =
∑
sisf

[u`(k
′)γµ(1− γ5)uν(k)][uν(k)γν(1− γ5)u`(k

′)] = (2.15)

= Tr[ /k′γµ(1− γ5)/kγν(1− γ5)] =

= 8[kµk
′
ν + k′µkν − gµνk · k′ − iεµναβk′βkα] ,

where all lepton masses are neglected, gµν is the metric tensor and εµναβ is the fully
antisymmetric Levi-Civita tensor2. The hadronic tensor is instead defined by

Wµν =
∑
σi σf

1

2Ep

∫
d3p′

2Ep′
〈N(p)|Jµ|X(p′)〉〈X(p′)|Jν |N(p)〉δ(4)(p′ + k′ − p− k) . (2.16)

Thus the double differential cross section reads [54, 55, 56, 57]

d2σνN
dE`dΩ`

=
1

16π2

|k′|
|k|

G2
F |Vud|2

2
LµνW

µν , (2.17)

and the amplitude squared of the process can be written as

|Mfi|2 =
G2
F |Vud|2

2
LµνW

µν . (2.18)

Furthermore, we can consider that

d3p′

2E′p
= d4p′ δ(p′

2 −M ′2) , (2.19)

where M ′ is the mass of the final state. Thus integrating over d4p′ the δ(4) function, the
hadronic tensor reads

Wµν =
∑
σi σf

1

2Ep
〈N(p)|Jµ|X(p′)〉〈X(p′)|Jν |N(p)〉δ((p+ q)2 −M ′2) . (2.20)

where q is the four-momentum transferred, q = p′ − p. In the most general case the above
formula can be expressed as a function of six independent structure functions Wi

Wµν =− gµνW1 +
W2

M2
pµpν − iεµναβpαqβ

W3

2M2
+ qµqν

W4

M2
+ (2.21)

+ (pµqν + qµpν)
W5

M2
+ i(pµqν − qµpν)

W6

2M2
,

however the term in W6 does not contribute to the cross section, thus the final expression
for Wµν is

Wµν = −gµνW1 +
W2

M2
pµpν − iεµναβpαqβ

W3

2M2
+ qµqν

W4

M2
+ (pµqν + qµpν)

W5

M2
. (2.22)

The averaging over the initial spin σi of the target brings a factor 1/2. The above hadronic
tensor has different parametrizations for each interaction channel. In the next sections we
will consider the quasi-elastic interaction, the resonances production and the deep inelastic
scattering.

2The antisymmetric term of the leptonic tensor changes sign for antineutrino scattering.
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The leptonic tensor

The contraction between the two tensors in Eqs. (2.15) and (2.22) leads to

LµνWµν =16W1(k · k′) + 8
W2

M2

(
2(k · p)(k′ · p)− p2(k · k′)

)
+ (2.23)

− 16
W3

2M2

(
(k′ · p)(k · q)− (k · p)(k′ · q)

)
+

+ 8
W4

M2

(
2(k · q)(k′ · q)− q2(k · k′)

)
+

+ 16
W5

M2

(
(k′ · p)(k · q) + (k · p)(k′ · q)− (k · k′)(p · q)

)
,

thus, it is possible to rewrite [54]

LµνW
µν =

16

M2

∑
i

LiWi , (2.24)

where the Wi will be derived in next sections, and the Li are

L1 =M2(k · k′) , (2.25)

L2 =(k · p)(k′ · p)− p2

2
(k · k′) , (2.26)

L3 =− 1

2

(
(k′ · p)(k · q)− (k · p)(k′ · q)

)
, (2.27)

L4 =(k · q)(k′ · q)− q2

2
(k · k′) , (2.28)

L5 =(k′ · p)(k · q) + (k · p)(k′ · q)− (k · k′)(p · q) , (2.29)

with

q2 = (k − k′)2 = k2 + k′2 − 2k · k′ = m2
` − 2k · k′ = m2

` − 2EνE` + 2k · k′ , (2.30)

p2 = M2 . (2.31)

To proceed with the calculation of the cross section, we choose q̂ along the ẑ direction and
ŷ perpendicular to the scattering plane, as in Fig. 2.1.
Thus, being q = (0, 0, qz), k = (kx, 0, kz) and k′ = (k′x, 0, k

′
z) with kx = k′x, we have the

following expansion of the scalar products of Eqs. (2.25)-(2.29)

k · k′ = EνE` − k · k′ = 1

2
(m2

` − q2) , (2.32)

k · p = EνEp − kxpx − kzpz , (2.33)

k′ · p = E`Ep − k′xpx − k′zpz , (2.34)

k · q = Eνω − kz|q| , (2.35)

k′ · q = E`ω − k′z|q| , (2.36)

p · q = Epω − pz|q| , (2.37)
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Figure 2.1: Schematic representation of the scattering plane.

and it is possible to rewrite

m2
ν = 0 = E2

ν − k2
x − k2

z ⇒ kz =
√
E2
ν − k2

x , (2.38)

kx = k′x = |k| sinα =
|k||k′|
|q| sin θ` =

Eν |k′|
|q| sin θ` , (2.39)

|q| = qz = kz − k′z , (2.40)

where α is the angle between the incoming neutrino and q̂, and θ` is the emission angle of
the outgoing lepton. The explicit form obtained for the Li are reported in Appendix B.

2.2 Quasi-elastic channel

In the quasi-elastic interaction the hadron produced at the interaction vertex is a nucleon,
and the hadronic tensor in Eq. (2.20) can be written as3 [58]

Wµν ∝
∑
σiσf

u(p)Γ̃QEµ u(p′)u(p′)ΓQEν u(p) . (2.41)

The hadronic current of the process has a vector – axial (V -A) structure, and it is possible
to write

JQEµ = 〈N ′,p′|Jµ(0)|N,p〉 = u(p′)ΓQEµ u(p) , (2.42)

with

ΓQEµ = JVµ − JAµ , (2.43)

3The proportionality symbol is used to remind that the normalization of spinors must be included in
the evaluation of the cross section.
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and

JVµ =F1γµ + iσµνq
ν F2

2M
+
qµ
M
FS , (2.44)

−JAµ =γµγ5FA + qµγ5
FP
M

, (2.45)

where F1,2 are the Dirac and Pauli form factors, respectively, FS is the scalar form factor
and FA and FP are the axial and pseudo-scalar form factors, respectively.
The CVC (Conserved Vector Current) hypothesis [4, 5, 6] allows to set FS = 0 and to
relate the Dirac and Pauli form factors to the electromagnetic proton and neutron form
factors, extracted from electron scattering off hydrogen and deuterium

F1 = F p1 − Fn1 , (2.46)

F2 = F p2 − Fn2 . (2.47)

It is also possible to relate the vector form factors to the electric and magnetic form factors,
GE and GM

GE(q2) = F1(q2)− τF2(q2) , (2.48)

GM (q2) = F1(q2) + F2(q2) , (2.49)

with τ = q2/4M2. The most popular parameterization is the dipole form

GE(q2) =

(
1− q2

M2
V

)−2

, (2.50)

GM (q2) = (µn − µp)
(

1− q2

M2
V

)−2

, (2.51)

with µn = −1.91 and µp = 2.79 the magnetic moment of the neutron and of the proton
respectively, and MV = 0.71 GeV is the vector mass. The vector form factors are then

F1(q2) =
1

1− τ [GE(q2)− τGM (q2)] , (2.52)

F2(q2) =
1

1− τ [−GE(q2) +GM (q2)] . (2.53)

More refined parameterizations are available [59, 60], accurately derived from electron
scattering data. To evaluate the cross section in the QE channel we used the vector form
factors from Ref. [59].
For the axial part, with the PCAC (Partially Conserved Axial Current) hypothesis [4, 5, 6]
it is possible to relate FP and FA

FP =
2M2

(m2
π − q2)

FA , (2.54)
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and FA can be expressed in the standard dipole form as

FA(q2) = gA

(
1− q2

M2
A

)−2

, (2.55)

where gA = −1.26 is the axial coupling constant obtained from β-decay, and MA = 1.03

GeV is the nucleon axial mass.
Finally, the hadronic tensor for the quasi elastic scattering reads

WQE
µν ∝

1

2
Tr[(/p+M)Γ̃QEµ (/p′ +M ′)ΓQEν ] , (2.56)

with Γ̃QEµ = γ0ΓQEµ
†
γ0. The factor 1/2 represents the averaging over the initial nucleon

spin. From Eqs. (2.56) and (2.22) we obtain

W1 = 4M2
[
(F1 + F2)2 Q2

4M2
+ F 2

A

(
1 +

Q2

4M2

)]
, (2.57)

W2 = 4M2
(
F 2

1 +
Q2

4M2
F 2

2 + F 2
A

)
, (2.58)

W3 = −8M2FA(F1 + F2) , (2.59)

W4 = −2M2
[
F1F2 +

F2

4M2

(
2M2 − Q2

2

)
− F 2

P

Q2

2M2
+ 2FAFP

]
, (2.60)

W5 =
W2

2
. (2.61)

2.3 Resonance production

The most important contribution to the cross section, beyond the QE peak, is given by
the excitation of nuclear resonances, such as the ∆(1232). The state of the ∆, or more
generally of any spin 3/2 particle, can be described using the Rarita-Schwinger formalism
[61], yielding

∑
s

ψ∆
α (p′, s)ψ

∆
β (p′, s) = Λαβ(p′) = −(/p

′−M ′)
(
gαβ−

2

3

p′αp
′
β

M ′2
+
p′αγβ − p′βγα

3M ′
− 1

3
γαγβ

)
,

(2.62)
where M ′ is the mass of the resonance. As for the CC QE interaction, the production
of a spin 3/2-resonance has a V-A structure, and we can write the hadronic current in a
similar way

JCCµ = 〈R,p′|Jµ(0)|N,p〉 = ψ
∆
λ (p′)Γλνu(p) , (2.63)

where

Γλν = ΓλνV − ΓλνA . (2.64)

Following Refs. [58, 62, 63, 64], the axial and vector parts can be parametrized in terms
of form factors as
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ΓλνV =gλν
[C3

M
/q +

C4

M2
(p′ · q) +

C5

M2
(p · q) + C6

]
γ5 − qλ

[C3

M
γν +

C4

M2
p′ν +

C5

M2
pν
]
γ5 ,

(2.65)

−ΓλνA =gλν
[A3

M
/q +

A4

M2
(p′ · q)

]
− qλ

[A3

M
γν +

A4

M2
p′ν
]

+ gλνA5 + qλqν
A6

M2
, (2.66)

where the Ci and the Ai stand for the vector and axial form factors, respectively.
Isospin relations allow to relate the matrix elements of CC interaction for resonance pro-
duction for the scattering off proton and neutron

〈∆++|Jµ|p〉 =
√

3〈∆+|Jµ|n〉 , (2.67)

thus

〈∆++|Jν |p〉 =
√

3ψ
∆
λ (p′)Γλνu(p) . (2.68)

Exploiting the usual spinors projectors of Eq. (2.9), and the one for resonance production
of Eq. (2.62), the hadronic tensor for neutrino scattering can be written as

Wµν ∝ 3

2
Tr[Γ̃µσΛσλΓλν(/p+M)] (2.69)

where Λσλ is given in Eq. (2.62) and Γ̃µσ = γ0(d†)µσγ0 is given by

Γ̃µσ =gµσ
[C3

M
/q −

C4

M2
(p′ · q)− C5

M2
(p · q)− C6

]
γ5 −

[C3

M
γµ − C4

M2
p′µ − C5

M2
pµ
]
qσγ5+

(2.70)

+ gµσ
[A3

M
/q +

A4

M2
(p′ · q)

]
−
[A3

M
γµ +

A4

M2
p′µ
]
qσ + gµσA5 + qµqσ

A6

M2
.

At this point, even if the structure of cross section and current has been set, the main
problem is the determination of the form factors.
The vector form factors can be extrapolated from helicity amplitudes of electro-production
data [58, 62, 63, 64]. In the electromagnetic interaction the current can be expressed in a
similar way as in Eq. (2.64), but setting the axial components equal to zero. Thus only the
terms of Eq. (2.65) will contribute, with vector form factors replaced by the electromagnetic
form factors. Experimental data of electro-production are obtained for the cross sections
at the peak of each resonance, and they are a function of the amplitudes, related to the
electromagnetic matrix elements [65, 66, 67, 68]

A1/2 ∝〈R,+
1

2
|Jem · εR|N,−

1

2
〉 , (2.71)

A3/2 ∝〈R,+
3

2
|Jem · εR|N,+

1

2
〉 , (2.72)

S1/2 ∝〈R,+
1

2
|Jem · εS |N,+

1

2
〉 , (2.73)

where |R〉 represents the resonant state and |N〉 the nucleon state, and the third component
of the spin is indicated as well. These amplitudes also depend on the polarization of the
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photon, with εµR,L = ±1/2(0; 1,±i, 0) and εµS = ±1/
√
Q2(qz; 0, 0, q0). The above matrix

elements can then be parametrized as a function of the electromagnetic form factors. The
comparison between electromagnetic and weak amplitudes, also using isospin relations,
allows to relate the form factors as

Ci = Cni − Cpi for isospin
1

2
resonances, (2.74)

Ci = Cni = Cpi for isospin
3

2
resonances, (2.75)

where Ci and C
n,p
i are the vector and electromagnetic form factors, respectively.

For the ∆-resonance, as reported in [63], the extracted vector form factors are parametrized
as

C3(Q2) =
2.13

1 +Q2/M2
V

1

1 +Q2/(4M2
V )

, (2.76)

C4(Q2) =
−1.51

1 +Q2/M2
V

1

1 +Q2/(4M2
V )

, (2.77)

C5(Q2) =
0.48

1 +Q2/M2
V

1

1 +Q2/(0.776M2
V )

, (2.78)

C6(Q2) = 0 for CVC , (2.79)

and the fit to the proton helicity amplitudes is shown in Fig. 2.2, from Ref. [63].
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Figure 2.2: Helicity amplitudes for ∆(1232) from Ref. [63], calculated using Eqs.
(2.76)-(2.79). Data are from Ref. [67].

The evaluation of the axial form factors follows a different procedure. According to Ref.
[63], an effective Lagrangian for the decay R → Nπ can be used to evaluate the decay
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widths. The PCAC and decay widths for each resonance allow to determine the axial form
factors. For ∆(1232) they are [63]

A3(Q2) = 0 , (2.80)

A4(Q2) = − A5

4
, (2.81)

A5(Q2) =
1.2

(1 +Q2/M2
A)2

1

1 +Q2/(3MA)2
, (2.82)

A6(Q2) = A5
M2

Q2 +m2
π

, (2.83)

with MA the axial mass, MV the vector mass and mπ the pion mass. Computing the trace
in Eq. (2.69), and using the usual parametrization of the hadronic tensor in terms of the
structure functions in Eq. (2.22), it is possible to obtain the Wi, reported in Appendix C.
As a final remark we recall that the energy conserving δ-function in Eq. (2.20), can be
replaced by a Breit-Wigner function

δ(p′
2 −M ′2)⇒

√
p′2

π

Γ(p′)

(p′2 −M ′2)2 + p′2Γ2(p′)
. (2.84)

The resonance width Γ can be written as4

Γ(W ) = Γ0

( pπ(W )

pπ(M ′)

)3
, (2.85)

with W the invariant hadronic mass of the final state, Γ0 = 0.114 GeV, and the pion
momentum pπ given by

pπ =
1

2M ′

√
(M ′2 −M2 −m2

π)2 − 4M2m2
π . (2.86)

The second resonances region

In the region of resonant pion production the contribution of the ∆-resonance to the neu-
trino cross section is the most prominent one. However the contribution coming from the
second resonance region is not negligible. It includes three isospin 1/2 states: D13(1520),
P11(1440) and S11(1535). In the next Chapter we will evaluate the neutrino-nucleus cross
section including also these resonances, and the procedure followed for their parametriza-
tion is the one used in Refs. [62] and [63].

2.4 Deep inelastic scattering

In the kinematical region in which the neutrino energy is much bigger than the mass of
the nucleon, the dominant process is the deep inelastic scattering (DIS) [69, 70, 71].
The contraction of the hadronic tensor with the leptonic one can be simplified if terms
proportional to the lepton mass are neglected. In this case the hadronic tensor will be

4Notice that the third power dependency on the pion momentum is valid only for spin 3/2-particles.
For spin 1/2-particles the dependence is linear.
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a function of W1, W2 and W3 dependent on the energy transferred ω and on the four
momentum q

Wµν = −gµνW1 +
W2

M2
pµpν − iεµναβpαqβ

W3

2M2
. (2.87)

A widely used parametrization, similar to that used in electron scattering, is

Wµν = −
(
gµν +

qµqν
Q2

)
W1 +

W2

M2

(
pµ+

p · q
Q2

qµ

)(
pν +

p · q
Q2

qν

)
− iεµναβpαqβ

W3

2M2
. (2.88)

Even if the two expressions look different, they lead to the same result if terms proportional
to the lepton mass are neglected. The contraction of the leptonic tensor with Wµν of Eq.
(2.88) gives

LµνWµν =16W1(k · k′) + 8
W2

M2

(
2(k · p)(k′ · p)− p2(k · k′)

)
+ (2.89)

− 16
W3

2M2

(
(k′ · p)(k · q)− (k · p)(k′ · q)

)
.

To describe the process

ν`(k) +N(p)→ `−(k′) +X(p′) , (2.90)

it is useful to introduce Lorentz – invariant quantities

s =(p+ k)2 , (2.91)

x =
Q2

p · q , (2.92)

y =
p · q
p · p′ , (2.93)

where s is the squared center-of-mass energy, x is the Björken scaling variable, and y is
the scaling variable that defines the fraction of the energy transferred in the interaction
process related to the scattering angle in the center-of-mass system.
The evaluation of the double differential cross section in terms of these invariant quantities
leads to

d2σνN,νN
dxdy

=
G2
F |Vud|2(s−M2)

2π

[
xy2MW1(x, y) +

(
1− y − xyM2

(s−M2)

)
ωW2(x, y)+

(2.94)

±
(

1− y

2

)
ωW3(x, y)

]
,

where the upper (lower) sign is referred to neutrino (anti-neutrino) charged current inter-
action. In the limit of Q2 → ∞ and ω → ∞, at fixed x, Björken scaling tells us that the
structure functions Wi become functions of a single variable x
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MW1(x, y)→ F1(x) , (2.95)

ωW2(x, y)→ F2(x) , (2.96)

ωW3(x, y)→ F3(x) . (2.97)

Furthermore, from the Callan – Gross relation [71]

ωW2 = 2xMW1 , (2.98)

it follows that

F2 = 2xF1 . (2.99)

The double differential cross section can be written in terms of the Fi, as

d2σνN,νN
dxdy

=
G2
F |Vud|2s

2π

{
1

2
[F2(x)± xF3(x)] +

1

2
[F2(x)∓ xF3(x)](1− y2)

}
. (2.100)

From the above equation it is possible to extract F2(x) and F3(x) from the differential
neutrino and antineutrino cross sections

F2 =
1

σ0

(
d2σνN
dxdy

+
d2σνN
dxdy

)
[1 + (1 + y)2]−1 , (2.101)

xF3 =
1

σ0

(
d2σνN
dxdy

− d2σνN
dxdy

)
[1− (1 + y)2]−1 , (2.102)

where

σ0 =
G2
F |Vud|2s

2π
. (2.103)

The DIS for neutrino-nucleon interaction can be described in the light of the Quark –
Parton Model (QPM) of hadrons, that allows us to rewrite the structure functions in terms
of the partonic distributions. In this model, the nucleon is seen as a composite object, that
is a system of three valence quarks and a sea of quark – antiquark pairs of all flavors.
Then, the virtual gauge bosons (W± and Z for charged and neutral current interaction,
respectively) interact with these elementary constituents of the nucleon (quarks).
Within the QPM, the structure functions can be written in the form

F1(x) =
∑
i

e2
i qi(x) , (2.104)

F2(x) =
∑
i

xe2
i qi(x) ,

where qi(x) can be interpreted as the probability of finding a quark of flavor i, whose charge
is ei, with a fraction x of the of the nucleon momentum in the infinite momentum frame.
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To proceed in the treatment of the DIS, we consider the neutrino scattering off a quark

ν`(k) + d(p)→ `−(k′) + u(p′) , (2.105)

described by the weak current

Jµ =u(x)γµ(1− γ5)[d(x) cos θc + s(x) sin θc]+ (2.106)

c(x)γµ(1− γ5)[s(x) cos θc − d(x) sin θc] , (2.107)

with θc the Cabibbo angle.
Thus, the cross section for the neutrino and antineutrino scattering is given by

dσ

dy
(ν` + d→ `− + u) =

G2
F |Vud|2xs

π
, (2.108)

dσ

dy
(ν` + u→ `+ + d) =

G2
F |Vud|2xs

π
(1− y)2 . (2.109)

Within the QPM the neutrino–nucleon cross section can be expressed as the weighted sum
of cross–sections on the quarks

d2σ

dxdy
=
∑
i

xqi(x)

(
dσi
dy

)
ŝ=xs

, (2.110)

with ŝ the energy in the center-of-mass of the process at the parton level, and s is referred
instead to the process off the nucleon.
Thus, using Eqs. (2.108)-(2.110), the neutrino and antineutrino cross sections are

d2σνN
dxdy

=
G2
F |Vud|2xs

2π

{
[u(x) + d(x)] + [ū(x) + d̄(x)](1− y)2

}
, (2.111)

d2σν̄N
dxdy

=
G2
F |Vud|2xs

2π

{
[ū(x) + d̄(x)] + [u(x) + d(x)](1− y)2

}
. (2.112)

Comparing Eq. (2.111) with Eq. (2.100) it is possible to evaluate the Fi as a function of
the parton distribution functions

2xF1(x) = F2(x) = x[q(x) + q̄(x)] , (2.113)

xF3(x) = x[q(x)− q̄(x)] , (2.114)

with

q(x) =u(x) + d(x) , (2.115)

neglecting the contribution of quark s.
Finally, the neutrino structure functions can be related to those of electron scattering.
Performing the same analysis for electron – nucleon scattering we would have obtained for
F2
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F eN2 (x) =
5

18
x[q(x) + q̄(x)] , (2.116)

that compared to Eq. (2.113), gives

F νN2 (x) =
18

5
F eN2 (x) . (2.117)

The parametrization of the structure functions for the DIS can be performed following
two different procedures. It is possible to extrapolate the structure functions from fits
on electron–proton and electron–deuteron scattering. In this case resonances and DIS are
modeled from data and, even if it does not distinguish the two processes, this procedure
avoids the problem of double counting of these effects in the kinematical region where both
interaction mechanisms are active.
Alternatively, parton distribution functions can be used directly in the parametrization of
the structure functions. The main feature of this approach is the possibility to account for
DIS on its own. However, it suffers from the problem linked to the extrapolation of the
distributions at low Q2.
Many different parameterizations are available, and in the following we will briefly discuss
two particular cases: the Bodek and Ritchie model [72] which describes, beside the DIS, also
the resonance production, and in the second case we consider quark distribution functions,
from Glück–Reya–Vogt parametrization [73], used to parametrize the structure functions.

Bodek and Ritchie parameterization

The parametrization of the proton and neutron structure functions of Bodek and Ritchie
[72, 74, 75, 76] has the advantage of describing the resonance production and the DIS
together.
This parametrization includes effects of scaling violation in terms of a new modified scaling
variable ωω. In this approach W2, extrapolated from fits to the SLAC e− p and e− d data
[72], is given by

ωW2(ω,Q2) = B(W,Q2)g

(
1

ωω

)
ωω
ω0

, (2.118)

g

(
1

ωω

)
=

n=7∑
n=3

Cn

(
1− 1

ωω

)n
, (2.119)

ωω =
2Mω + a2

Q2 + b2
. (2.120)

with ω0 = 1/x. The modulating function B(W,Q2) is close to the unity in the region of
the DIS (W > 2 GeV), and contains 12 parameters representing the masses, the widths
and the amplitudes of the cross sections for the electro-production of the most important
resonances, and eight parameters representing the dependence on the invariant hadronic
mass W for the low-W contribution and single pion production threshold. All these pa-
rameters are extrapolated from the fit to electron scattering data.
Through the link between the electron and neutrino structure functions in Eq. (2.117), it
is possible to evaluate W2 for neutrino scattering.
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Given the expressions of the structure functions in terms of the parton distribution func-
tions in Eqs. (2.113) and (2.114), we can use the relation

xωW3 = ωW2 − 2Q̄ν . (2.121)

and the parametrization for the anti-quark distribution, used in Ref. [74], is

Q̄ν(xω, Q
2) =

18

5

1

2

(
1− xω

)7

B(W,Q2)g(0)
ωω
ω

, (2.122)

with xω = 1/ωω.
The structure functions obtained with the parametrization introduced above are reported in
Fig. 2.3, showing ωW2 for the electron scattering off an isoscalar nucleus. For comparison,
the behavior of xωW3 rescaled of a factor 5/18 is also shown. Notice that the contribution
coming from the resonances is visible at low Q2, while they start to disappear as the value
of Q2 increases.

Glück–Reya–Vogt parametrization

The Glück–Reya–Vogt parametrization (GRV98) [73] can be used to pin down the contribu-
tions of DIS to the cross section. The parton distribution functions (PDFs) are extracted
from global fits to different sets of DIS data at high energies and high Q2, where non-
perturbative QCD effects are negligible. This allows to determine the PDFs over a wide
range of x and Q2. The GRV98 parametrization is performed fitting the data collected at
HERA [77, 78], obtaining the parton densities and also the proton structure function F p2 .
In GRV98 the structure functions are evolved to extend the kinematical region in x and
Q2, where they can be used. The minimum value of Q2 was set around 0.8 GeV2 and for
x the minimum value reached is around 10−8.
To study neutrino interactions in the inelastic region we used this parametrization to
obtain the structure functions expressed by PDFs, to include DIS processes without the
contribution of resonances. To use the PDFs also for Q2 . 0.8 GeV2, we used the parton
densities keeping Q2 fixed at the lowest value available.
For comparison we show the behavior of the structure functions obtained using the GRV98
parametrization and the Bodek and Ritchie model. To compare the behavior in a kinemat-
ical region where the contribution of the resonances is negligible, in Figs. 2.4 and 2.5, we
show the two results obtained for F ep2 extrapolated from electron-proton scattering data
with fixed Q2 at 20 GeV2 and 100 GeV2, respectively.
The results obtained for the structure functions within the two different approaches used
are clearly different, mostly for x . 0.2. The differences in the small x region is due to the
fact that in the Bodek and Ritchie parametrization the fits from electron on fixed-target
scattering data are performed up to x ∼ 0.1. For x . 0.1 the behavior is obtained after
extrapolation.
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Figure 2.3: Structure functions ωW em
2 (x) = ω(W ep

2 (x) + W en
2 (x)) and

5/18xωW3 = 5/18xω(W νp
3 (x) + W νn

3 (x)), at different Q2, obtained from the
parametrization reported in Eqs. (2.118)–(2.120). In the y-axis, F (x) is referred
to the two functions shown.
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Figure 2.4: Behavior of the proton structure function F ep2 at Q2 = 20 GeV2,
obtained using the Bodek and Ritchie parametrization (solid line) and the GRV98
parametrization (dot-dashed line). In the second case the structure function is
computed using PDFs.

Figure 2.5: As in Fig. 2.4, but at Q2 = 100 GeV2.
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Chapter 3

Neutrino-nucleus interactions

In this Chapter we discuss the charged-current scattering of neutrinos off a nucleus of mass
number A, and we report the results obtained for νµ-Carbon scattering [79], in the quasi-
elastic, resonance production and deep inelastic sectors. The interaction process under
study is

ν`(k) +A→ `−(k′) +X , (3.1)

where a neutrino with four momentum k = (Eν ,k) scatters off a nuclear target of mass
number A leading to a final state with a lepton, of four momentum k′ = (E`,k

′), and an
hadronic state X1.
The double differential cross section of the process can be written in Born approximation,
in a form similar to Eq. (2.17)

d2σνA
dΩ`dE`

=
G2
F |Vud|2
16π2

|k′|
|k| LµνW

µν
A , (3.2)

with GF the Fermi constant and Vud the CKM matrix element for the u−d coupling. The
leptonic tensor Lµν is completely defined by the leptonic kinetic variables and is given in
Eq. (2.15). The hadronic tensor Wµν

A can be written in a form similar to Eq. (2.16),
indicating with |0〉 the nuclear ground state with four-momentum P0 = (E0,p0)

Wµν
A =

∑
X

∫
d3pX 〈0|JµA|X〉〈X|JνA|0〉δ(4)(PX + k′ − P0 − k) , (3.3)

the summation being carried over all possible final states |X〉, with four-momentum PX =

(EX ,pX), including eventually the spinors’ normalizations. The above definition also
involves the nuclear current JµA. The evaluation of the nuclear response tensor Wµν

A will
be derived in the next section within the Impulse Approximation (IA).

3.1 The Impulse Approximation

The definition of the hadronic tensor involves initial and final hadronic states and the
nuclear hadronic current. The nuclear ground state can be described in the non-relativistic
many-body theory (NMBT).

1See Appendix A for a brief discussion of the notation used.

35
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In this approach the nucleons are described as point-like particles and the nuclear dynamics
is described by the non-relativistic Hamiltonian

H =
A∑
i=1

pi
2M

+
A∑

j>i=1

vij +
A∑

k>j>i=1

Vijk , (3.4)

where pi is the momentum of the i-th nucleon, vij is the potential describing two-nucleons
interactions (first described by Yukawa [80]), and Vijk is the interaction potential for three-
nucleon states. NMBT allows to describe the tensor of Eq. (3.3) of light nuclei in the region
of low momentum transfer, where the non relativistic approximation is justified.
The IA approach can be used for the evaluation of the nuclear cross section when the
transferred momentum |q| exceeds ∼ 400 MeV. It is based on the hypothesis that, when
the momentum q is large enough, the nuclear target can be treated as a collection of
individual nucleons. Furthermore, the particle produced in the final state and the residual
system of (A− 1) nucleons are assumed to evolve independently. In the IA regime we can
thus describe the scattering off a nucleus as the incoherent sum of the elementary processes
that involve a single nucleon, as schematically illustrated in Fig. 3.1.

Figure 3.1: Schematic representation of lepton-nucleus scattering within the IA.
The nuclear cross section is described as the incoherent sum of the elementary
processes off the nucleons, and the residual system of (A − 1)-nucleons acts as
spectator.

The nuclear current can be written then as the sum of one-body currents

Jµ →
∑
i

jiµ , (3.5)

and the generic hadronic final state can be written as the direct product of the hadronic
state produced with momentum p′ and the recoil system of (A− 1)-nucleons with momen-
tum pR

|X〉 → |x,p′〉 ⊗ |R,pR〉 . (3.6)

It follows that
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∑
X

∫
d3 pX |X〉〈X| →

∑
x

∫
d3 p′|x,p′〉〈x,p′|

∑
R

∫
d3 pR|R,pR〉〈R,pR| . (3.7)

By inserting a completeness relation

∑
N

∫
d3p|N,p〉〈N,p| = 1 , (3.8)

the matrix element of Eq. (3.3) becomes

〈0|JAµ |X〉 =
∑
i

〈0|jiµ|x,p′〉|R,pR〉 = (3.9)

=
∑
i

∑
N

∫
d3p

(
M√

|p|2 +M2

) 1
2

〈0|R,pR〉|N,p〉〈N,p|jiµ|x,p′〉 =

=
∑
i

∑
N

(
M√

|pR|2 +M2

) 1
2

〈0|R,pR〉|N,−pR〉〈N,−pR|jiµ|x,p′〉 .

Thus, the hadronic tensor in Eq. (3.3) can be rewritten as

WA
µν ∝

∑
i

∑
x,R

∑
N

∫
d3p′d3pR

M√
|pR|2 +M2

|〈0|R,pR〉|N,−pR〉|2× (3.10)

× 〈N,−pR|jiµ|x,p′〉〈x,p′|jiν |N,−pR〉×
× δ(3)(q− pR − p′)δ(ω + E0 − ER − Ep′) ,

where we split the δ-function of the quadri-momenta conservation, having considered the
nucleus at rest. Moreover ER =

√
|pR|2 +M2

R, beingMR the mass of the recoiling system.
The energy conservation δ can be rewritten as

δ(ω + E0 − ER − Ep′) =

∫
dE δ(E −M + E0 − ER)δ(ω +M − E − Ep′) , (3.11)

and we can define the spectral function

P (p, E) =
∑
R

|〈0|R,−p〉|N,p〉|2δ(E −M + E0 − ER) , (3.12)

which expresses the probability that, by removing a nucleon with momentum p from the
nucleus, the residual system is left with an excitation energy E. Finally, we can rewrite
the hadronic tensor as

WA
µν ∝

∑
i

∑
x,N

∫
dE d3p′ d3p

M

Ep
P (p, E)〈N,p|jiµ|x,p′〉〈x,p′|jiν |N,p〉× (3.13)

× δ(3)(q− p− p′)δ(ω +M − E − Ep′) .
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The above hadronic tensor can be written in terms of the elementary one for neutrino-
nucleon scattering given by

W i
µν =

∑
σi

∑
x

∫
d3p′

2Ep′2Ep
〈N,p|jiµ|x,p′〉〈x,p′|jiν |N,p〉× (3.14)

× δ(3)(q− p− p′)δ(ω +M − E − Ep′) =

=
∑
σi

∑
x

1

2Ep′2Ep
〈N,p|jiµ|x,p + q〉〈x,p + q|jiν |N,p〉δ(ω + E0 − ER − Ep′) =

=
∑
σi

∑
x

1

2Ep′2Ep
〈N,p|jiµ|x,p + q〉〈x,p + q|jiν |N,p〉δ(ω̃ + Ep − Ep′) ,

where we replacedM−E = E0−ER in the second equality, while the quantity ω̃, appearing
in the third equality, is defined as

ω̃ = ω + E0 − ER − Ep . (3.15)

Replacing ω → ω̃ is equivalent to consider a rescaled momentum transfer, q → q̃ = (ω̃,q),
which takes into account the fraction of the transferred energy going into excitation energy
E of the spectator system. Finally, we can rewrite

δ(ω̃ + Ep − Ep′)
2Ep′

= δ((p+ q̃)2 −M ′2) , (3.16)

obtaining for the elementary hadronic tensor in Eq. (3.14)

W i
µν =

∑
σi

∑
x

1

2Ep
〈N,p|jiµ|x,p + q〉〈x,p + q|jiν |N,p〉δ((p+ q̃)2 −M ′2) , (3.17)

that is an expression equivalent to the one obtained for the scattering off a nucleon in
Eq. (2.20), but dependent on the rescaled momentum transferred q̃ and on the momentum
p = (Ep,p). The above equation will then be parametrized as a function of five independent
structure functions, as seen in the previous chapter, characteristic for each interaction
channel.
The hadronic tensor, within the IA, finally becomes

Wµν
A = A

∫
d3p dE

M

Ep
P (p, E) Wµν

i (q̃, p) , (3.18)

where A is the number of nucleons in the considered nucleus, and derives from the sum-
mation over N . Notice that the above expression is restricted to the special case of an
isoscalar target. In the most general case we have

Wµν
A =

∫
d3p dE

M

Ep
[ZPp(p, E) Wµν

p (q̃, p) + (A− Z)Pn(p, E) Wµν
n (q̃, p)] , (3.19)

with Z the number of the protons. In the isoscalar case it is possible to assume Pp(p, E) =

Pn(p, E) = P (p, E), with Wµν
i = (Wµν

p +Wµν
n )/2, obtaining Eq. (3.18) from Eq. (3.19).
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Finally the cross section for the scattering off a nucleus reads

d2σνA
dE`dΩ`

=
∑
i

∫
dE d3p P (E,p)

M

Ep

1

16π2

k′

k
C 2LµνW

µν
i = (3.20)

=
∑
i

∫
dE d3p P (E,p)

M

Ep

d2σiνN
dE`dΩ`

which is the convolution of the elementary cross section with the spectral function.

3.2 The Spectral Function

The spectral function, introduced in the previous section in Eq. (3.12), is proportional
to the imaginary part of the two-point Green’s function, describing the propagation of a
nucleon in nuclear ground state [81, 82]. The two-point Green’s function is defined as

G(p, E) = 〈0| 1

H − E0 − E − iη
|0〉 − 〈0| 1

H − E0 + E − iη |0〉 (3.21)

= Gh(p, E) +Gp(p, E)

where H is the nuclear hamiltonian, |0〉 is its true ground state with energy E0, such that

H|0〉 = E0|0〉 . (3.22)

The two components of the Green’s function, Gp and Gh, describe the propagation of a
nucleon sitting in a particle state, defined for −E > εF , and a hole state, defined for
−E < εF , respectively, with εF the Fermi energy. The imaginary part of the Green’s
function is proportional to the spectral functions [83]

Ph(p, E) =
∑
N

|〈0|a†p|NA−1〉|2δ(E + E0 − EA−1
N ) , (3.23)

Pp(p, E) =
∑
N

|〈0|ap|NA+1〉|2δ(E − E0 + EA+1
N ) , (3.24)

where |NA∓1〉 denotes the intermediate state of A∓ 1 particles with energy EA∓1
N and a†p

is the creation operator of a particle with momentum p. Eqs. (3.23) and (3.24) give the
probability of leaving the nuclear system with an excitation energy E removing/adding a
nucleon with momentum p.
The spectral function defined in Eq. (3.12) is proportional to Gh(p, E), so we have

P (p, E) = Ph(p, E) . (3.25)

Studies on the use of a realistic spectral function have been performed for different kind
of systems: three nucleon systems [84, 85, 86], oxygen [87], and symmetric nuclear matter
[83, 88].
From the Källen–Lehman representation, one can rewrite the two-point Green’s function as
the sum of two different components, according to their energy dependence. The first part,
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called single–particle spectral function, or mean–field component, includes the contribution
of one–hole intermediate states, which exhibits a pole at E = −ep, being ep the energy
of a nucleon in the hole state with momentum p. The width of the peak gives a measure
of the lifetime of the hole state, and goes to zero as ep → εF . The integration of the
single–particle spectral function, P1h(p, E), over the energy, gives the normalization of
the hole state, Z(p), which is reduced with respect of the unity, due to nucleon–nucleon
correlations.
The second part, called correlated spectral function, Pcorr(p, E), takes into account the
contribution coming from dynamical nucleon–nucleon correlations, that is from n-hole–
(n− 1)-particle states. The leading contribution comes from two-hole–one-particle states.
The energy dependence of the correlation part is such that it smoothly extends to large
values of energy and momentum.
The spectral function can be described within the Local Density Approximation (LDA).
In this framework, the spectral function is given by the combination of the mean-field
contribution and the correlation part extracted from the nuclear-matter calculation and
then adapted to the case of nuclei. The LDA can be used to evaluate a generic two-body
function, when the dependence on the center mass coordinate is weak, which is the case of
short-range correlations terms, being the relative distance small compared to the surface
thickness.
When correlation effects are negligible, the spectral function is given by the mean field
contribution, written in the form

PMF (p, E) =
∑
α

|φα(p)|2δ(E − eα) , (3.26)

where φα is the momentum space wave function for the particle state α, and eα is its
energy. To account for NN short range correlations, Eq. (3.26) becomes

PMF (p, E) =
∑
α

Zα
∣∣φα(p)

∣∣2Fα(E − eα) , (3.27)

where Zα is a normalization constant which includes interactions not taken into account by
the mean field approximation; Fα(E− eα) describes the energy dependence of the α-state,
which will be broader than a δ-function due to finite lifetime of the single particle state.
The correlation part is given by

Pcorr(p, E) =

∫
d3r ρA(r)PMN

corr (p, E; ρ = ρA(r)) , (3.28)

where ρA(r) is the nuclear density distribution, PMN
corr (p, E; ρA(r)) is the correlation part

of the spectral function for infinite nuclear matter at density ρ.
Thus, in the LDA approach the spectral function is

PLDA(p, E) = PMF (p, E) + Pcorr(p, E) (3.29)

with the normalization condition given by∫
d3p dE PLDA(p, E) = 1 . (3.30)
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As a final remark, we mention that, since the correlation component arises from short-
range dynamics, it gives rise to the occurrence of strongly correlated nucleons pairs, not
expected to be affected by finite size and shell effects. This assumption is supported by
theoretical results of the nucleon momentum distribution, defined as

n(p) =

∫
dE P (p, E) (3.31)

and, in Fig. 3.2, it is shown the quantity n(p)/A that becomes independent from A

in the kinematical region where |p| & 350 MeV, which is most sensitive to short-range
correlations.
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Figure 3.2: Behavior of the nucleon momentum distribution normalized to the
number of nucleons for oxygen (solid line) and for gold (dashed line), from Ref.
[54]. The step function corresponds to the Fermi distribution with momentum
pF = 225 MeV and binding energy E = 25 MeV.

It is also important to mention that a widely used model of the spectral function is based
on the Relativistic Fermi Gas Model (RFGM), which considers the nucleus as a degenerate
gas of fermions

PRFGM (p, E) =
6π2

p3
F

θ(pF − p)δ(Ep − EB − E) , (3.32)

where pF is the Fermi momentum and EB is the binding energy.
However, the Fermi gas model does not describe particles which populate states with
momentum above the Fermi sphere, originating from nucleon-nucleon correlations. Due
to correlations, the number of nucleons with E < EF and |p| < pF decreases, and the
contribution coming from correlated nucleon pairs with E > EF and |p| > pF becomes
non vanishing.
To evaluate the typical energy scale of nuclear correlations, consider a pair of nucleons
with momenta k1 and k2 much larger than the Fermi momentum (pF ∼ 250 MeV). In
the rest-frame of the nucleus, assuming the residual system of (A − 2)-nucleons with low
momentum, we have k1 ∼ −k2 = k. Thus, the emission of a nucleon with high momentum
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k will leave the residual system with a nucleon in the continuum, and it requires an energy
(O(100) MeV) given by

E ∼ Eth +
k2

2m
, (3.33)

where Eth is the two-nucleon emission threshold.

Figure 3.3: Nucleon spectral function for isospin-symmetric nuclear matter, from
Refs. [83, 89].

This is also visible in Fig. 3.3, where the spectral function for isospin-symmetric nuclear
matter is shown [83, 89]. The peaks correspond to the single particle states, and the broad
background is due to n-hole–(n− 1)-particle, characterized by having a nucleon excited to
the continuum.
The use of a realistic Spectral Function obtained from the formalism of NMBT for the
description of the nuclear response has been validated through the comparison with data
from electron scattering experiment off nuclear targets, such as Carbon and Oxygen. The
results obtained for the description of the kinematical region dominated by QE interactions,
reproduce the experimental data with an accuracy of few percent [55, 56]. The results,
taken from Ref. [90], are shown in Fig. 3.4, for different electron kinematics and Carbon
as nuclear target.
The cross sections obtained in the IA formalism are shown with the solid line, where effects
due to Final State Interactions (FSI) between the struck particle and the spectators have
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Figure 3.4: Double differential cross section as a function of the energy transferred
ω, for electron-carbon scattering, taken from Ref. [90]. The solid lines and the
short-dashed lines are obtained using the IA formalism including the FSI. They
differ in the implementation of the Pauli Blocking. The dotted lines are the results
for the RFMG and the long dashed lines are obtained using the IA alone. The
data are taken from Refs. [91, 92, 93]. The labels indicate the beam energy, the
incident scattering angle, and the values of |q| and Q2 at the QE peak.

been included through the following prescription

d2σFSI

dΩdω
=

∫
dω′fq(ω − ω′)

d2σIA

dΩdω′
, (3.34)

where the folding function fq, depends on the in medium NN scattering cross section, as
well as on the one- and two-nucleon density distributions [90, 94]. In the absence of FSI,
the folding function reduces to a δ-function and the pure IA is recovered.
For comparison also the behavior of the cross section obtained within the FGM is shown
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with the dotted line, while the use of the pure IA is represented by the long-dashed line.
The short-dashed and solid lines show both the cross section in the IA scheme including
the FSI, but using two different approaches for the treatment of the Pauli Blocking [90],
which specifies the phase space available to the knocked-out particle. It clearly appears
that the description of the nuclear dynamics within the spectral function approach, al-
lows to reproduce quasi elastic electron scattering data with good accuracy over a broad
kinematical region.

3.3 Neutrino-Carbon cross section

In this section we present the results obtained for the muon neutrino cross section on 12C
[79]. The calculations have been performed using the formalism described in the previous
sections and the spectral function of Ref. [95], including the different interaction channels
discussed in Chapter 2.
The double differential cross section has been computed according to Eq. (3.20), and we
report in Figs. 3.5 and 3.6 the results obtained for the neutrino energy at Eν = 1 GeV and
Eν = 1.5 GeV, with θµ = 30◦, being the angle of the outgoing charged lepton.

Figure 3.5: Double differential cross section for νµ on 12C for Eν = 1 GeV and
θµ = 30◦. The blue circles represent the total cross section given by the sum of
QE interaction (solid line), resonance production (dashed line) and DIS (dotted
line). Note that in this kinematics only the ∆ resonance plays a significant role.

At the kinematics reported in Fig. 3.6 it is also visible the contribution coming from the
second resonance region and it is represented by the dashed line.
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Figure 3.6: The same as Fig. 3.5, but for Eν = 1.5 GeV. At this kinematics is
visible also the contribution coming from the second resonance region represented
by the dashed line, while the ∆ is represented by the dot-dashed line.

To obtain the total cross section we also consider the distribution in the four-momentum
transferred Q2, given by

Q2 = 2EνEµ

(
1− |kµ|

Eµ
cos θµ

)
−m2

µ , (3.35)

where Eµ, kµ and mµ are the energy, the three-momentum and the mass of the outgoing
muon, respectively. Thus the differential cross section in Q2 is given by

dσ

dQ2
= 2π

∫
d cos θµ

d2σ

dΩµdEµ
δ

(
Q2 − 2EνEµ

(
1− |kµ|

Eµ
cos θµ

)
+m2

µ

)
. (3.36)

The results obtained for the differential cross section of Eq. (3.36), for the same neutrino
energies used before, are reported in Figs. 3.7 and 3.8. All Q2 distributions are peaked at
low Q2 (∼ 0.2 GeV2). As pointed out in Section 2.4, the PDFs used to describe the DIS in
this Q2 region are not available, thus we used distributions keeping Q2 fixed at the lowest
value available.
Finally, the total cross section as a function of the neutrino energy Eν is reported in Fig.
3.9. The two panels show the total cross section for νµ on 12C divided by the neutrino
energy (upper panel), and the cross sections in the different interaction channels considered
(lower panel). For comparison, in the upper panel, the experimental points obtained by the
NOMAD Collaboration [49] are also shown with black diamonds: they are in reasonable
agreement with our theoretical results for the DIS channel. However, the total cross sec-
tion overestimates the data and exhibits a decreasing behavior when the energy increases.
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Figure 3.7: Q2 distribution of the differential cross section, for Eν = 1 GeV. The
total differential cross section is represented by the blue circles and is given by
the sum of QE channel (solid line), resonances production (dashed line) and DIS
(dot-dashed line).

Figure 3.8: The same as Fig. 3.7, but for Eν = 1.5 GeV.
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This feature is likely to be ascribed to a double counting between DIS and resonances
contribution.

Figure 3.9: Total νµ cross section on 12C. The upper panel represents the total
cross section divided by the neutrino energy. The lower panel shows the cross
sections in the different interaction channels considered. The blue circles represent
the total cross section, the solid line the contribution of QE interactions, the dot-
dashed line the ∆-resonance production, the dashed line the contribution of the
resonances from the second region plus the ∆, and the dotted line is the DIS. For
comparison in the upper panel are also shown the experimental data, with black
diamonds, obtained by the NOMAD experiment [49].

Unfortunately, a truly model independent separation of these two reaction mechanisms
does not appear to be achievable, and the problem of double counting clearly manifests
itself at proton level. In fact, the electron-proton cross section obtained using the struc-
ture functions of Refs. [63, 73], employed in our study, turns out to by sizably larger than
the Jefferson Lab data, collected in a kinematical region extending from the ∆-production
threshold up to W 2 . 4 GeV2 [96]. The authors of Ref. [74] circumvented the prob-



48 3. Neutrino-nucleus interactions

lem of double counting carrying out a global fit, in which the data were modeled by the
product—rather than the sum—of a smooth universal background and a modulating func-
tion, describing the resonance peaks.



Chapter 4

Neutrino energy reconstruction

Long-baseline experimental searches of neutrino oscillations largely rely on the capability
of pinning down the energy profile of the oscillation probability. Thus, the reconstruction
technique employed for the study of the incoming neutrino energy is a key element of the
oscillation analysis.
The kinematic method of energy reconstruction is based on the assumption that the beam
particle interacts with a single nucleon at rest, bound with constant energy, and that no
other nucleons are knocked out from the nucleus. This reconstruction scheme is largely
used by experiments with beam flux peaked around 600− 800 MeV, such as T2K [97] and
MiniBooNE [98]. The kinematic reconstruction is mostly applied to QE events, identified
by the absence of pions in the final state, that provide the dominant contribution to the
total cross section at these energies. However, it necessarily involves hypotheses on the
reaction mechanism. For instance, processes involving two-nucleon currents, final-state
interactions, and nucleon-nucleon correlations give rise to the appearance of more complex
final states, featuring more than one nucleon excited to the continuum. These events can
be misidentified to be QE, thus more complex methods, involving realistic models of nu-
clear dynamics, are needed.
As alternative to Cherenkov detectors, calorimeters measuring the visible energy associated
with each event – i.e., the energy deposited by the final-state particles – have been proposed
as effective devices, allowing for an accurate neutrino-energy reconstruction. Calorimeters
are presently being used in the MINOS [99] and NOνA [100] experiments. The calorimet-
ric technique obviously rests on the ability of fully reconstructing the final state, which
largely depends on the detector design and performance. Nuclear effects also play a role,
as they may lead to a sizable amount of missing energy, hindering the reconstruction of
Eν . For example, if a pion produced at the elementary interaction vertex is absorbed in
the spectator system, in general its energy is not deposited in the calorimeter.
In this Chapter we describe two reconstruction techniques, the calorimetric and the kine-
matic one. We will describe how they have been implemented to analyze neutrino events
produced with the Monte Carlo event generator GENIE [101]. We considered two differ-
ent approaches for energy reconstruction: a perfect reconstruction, in which all produced
particles are detected and their true energies are measured, and a realistic reconstruction,
where we assumed detection efficiencies, thresholds and finite detector resolution. Notice
that the assumed detector capabilities can be currently considered optimistic, compared to
those achieved in existing experiments; however, they might be reached in future detectors.

49
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The analysis of neutrino events within the calorimetric and kinematic reconstruction al-
lowed us to generate Migration Matrices (MM), Mij , that define the probability that an
event with a true neutrino energy Ej in the jth bin ends up being reconstructed as Ei in
an energy bin i. Such matrices will be described in the last section of this chapter.

4.1 Reconstruction methods

Consider charged-current neutrino scattering off a nuclear target

ν`(k) +A→ `−(k′) +X , (4.1)

where the neutrino, with four momentum k = (Eν ,k), scatter off the target A leading to a
final state with a lepton of four momentum k′ = (E`,k′). The general hadronic final state
X can be described by n nucleons, knocked out from the nucleus, and m mesons produced
by the interaction, with four-momentum p′ = (Ep′i ,p

′
i) and h′ = (Eh′j ,h

′
j) being 1 ≤ i ≤ n

and 1 ≤ j ≤ m, respectively1.
Applying energy and momentum conservation, one gets

Eν +MA = E` + EA−n +
n∑
i

Ep′i +
m∑
j

Eh′j , (4.2)

k = k′ − p +

n∑
i

p′i +

m∑
j

h′j , (4.3)

where MA is the mass of the nuclear target, −p is the recoil momentum of the system
and EA−n represents the energy of the residual system of (A − n)-nucleons, that can be
expressed as

EA−n = MA − nM + E + TA−n , (4.4)

where M is the nucleon mass, E the excitation energy of the system and TA−n the recoil
energy. Using Eqs. (4.2) and (4.4), it follows that

Eν = E` −MA +MA − nM + E + TA−n +
n∑
i

Ep′i +
m∑
j

Eh′j ,

Eν = E` + E + TA−n +
n∑
i

(Ep′i −M) +

m∑
j

Eh′j . (4.5)

Since the nucleons are knocked out from the nucleus, they participate in the energy con-
servation through their kinetic energy, while mesons are produced by neutrino-nucleus
interaction and their total energy enters the formula. Given that multi-nucleon processes
exhibit a rather weak energy dependence, the quantity εn = E + TA−n is usually approxi-
mated by a constant, obtained replacing E and TA−n with the average values

< E > =

∫
E P (p, E) d3p dE , (4.6)

< TA−n > =
1

2MR

∫
|p|2 P (p, E) d3p dE , (4.7)

1See Appendix A for details on the notation.
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whereMR is the mass of the residual system and P (p, E) is the spectral function introduced
in Section 3.2. These considerations can be cast together in order to obtain the neutrino
energy in the so called calorimetric method

Ecal
ν = εn + E` +

n∑
i

(Ep′i −M) +

m∑
j

Eh′j . (4.8)

In principle this reconstruction scheme can be used for any type of charged current inter-
action. However, the ability to reconstruct the hadronic final state in the most accurate
way is a huge experimental challenge; neutrons, for instance, typically escape detection
and any undetected meson will result as an energy underestimation equal, at least, to the
pion mass.
Through the knowledge of the invariant hadronic mass squared, given by

W 2 =

( n∑
i

Ep′i +
m∑
j

Eh′j

)2

−
( n∑

i

p′i +
m∑
j

h′j

)2

(4.9)

by replacing Eq. (4.9) in Eqs. (4.2-4.3), we can obtain2 the neutrino energy given by

Eν =
W 2 −m2

` + 2EpE` − (E2
p − p2)− 2p · k′

2(Ep − E` + |k′| cos θ` − |p| cos θp)
, (4.10)

with Ep = MA − EA−n, m` is the lepton mass, |p| cos θp = p · k/Eν and |k′| cos θ` =

k′ · k/Eν .
In the following, the application of the above formula is linked to some assumptions: to
neglect the recoil momentum |p| and to approximate the energy of the residual system with
a constant, that is setting Ep = nM − εn. Under these assumptions, the reconstruction
formula can be expressed as

Ekin
ν =

W 2 −m2
` + 2(nM − εn)E` − (nM − εn)− 2p · k′

2(nM − εn − E` + |k′| cos θ`)
, (4.11)

where Ekin
ν represents the neutrino energy reconstructed via the kinematic method, mostly

applied to processes with single nucleon knocked-out without pions3, where the invariant
mass assumes the value of the nucleon massW 2 = M2. This reconstruction method suffers
from the lack of knowledge of the undetected hadrons in the final state. For example,
when a produced pion is absorbed or undetected the reconstructed neutrino energy is
underestimated at least by ∼ 300− 350 MeV (see Figs. 6 and 7 of Ref. [102]).
In this Thesis, the reconstruction via the lepton kinematic variables has been performed
using Eq. (4.11), assuming single nucleon knocked out events regardless of the actual
number of nucleons in the final state. Furthermore, we assumed the invariant squared
mass W 2 to be equal to the nucleon squared mass for meson-less events and to M2

∆ for
events with at least a meson detected in the final state, beingM∆ = 1.232 GeV the mass of
the ∆-resonance, and the average single-nucleon separation energy εn is fixed to 34 MeV.
For the sake of completeness, the neutrino energy can also be reconstructed using the
momentum conservation, exploited in Eq. (4.3), multiplied by a factor k/Eν

2See Appendix D.
3This is due to the difficulties linked to the accuracy in the determination of the invariant hadronic

mass.
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Eν = |k′| cos θ − |p| cos θp +
n∑
i

|p′i| cos θi +
m∑
j

|h′j | cos θj , (4.12)

with |p′i| cos θi = p′ ·k/Eν and |h′j | cos θj = h′j ·k/Eν . Eq. (4.12) can be further simplified
with the same assumption used before, that is neglecting the recoil momentum

Eν = |k′| cos θ +
n∑
i

|p′i| cos θi +
m∑
j

|h′j | cos θj , (4.13)

which has been employed by the NOMAD Collaboration [103] for events with single nucleon
knockout.

4.2 Event generation

Neutrino events have been produced using the Monte Carlo event generator GENIE [101].
It is a platform for neutrino events simulation that includes the most relevant scattering
processes from several MeV to hundred GeV.
GENIE is employed in data analysis by a number of neutrino experiments [104], as well
as in phenomenological estimates of the impact of nuclear effects on the determination
of oscillation parameters, following the pioneering studies carried out by the authors of
Ref. [105].
The default nuclear model employed for all kind of processes is the RFGM. The oscilla-
tion analysis, described in the next chapter, has been done considering the additional νT
package used to generate neutrino events [106]. This allowed us to replace the RFGM by
the Spectral Function approach for the description of quasi-elastic interactions.
In our analysis we considered quasi-elastic interaction, two-particle two-hole (2p2h) pro-
cesses, which describe multinucleon mechanisms involving more than one nucleon excited
to the continuum, and resonant and non-resonant pion production. In the QE sector the
default model is the RFG model of Bodek and Ritchie [74], with a modified version which
incorporates short range nucleon-nucleon correlations.
The resonant pion production is considered for W ≤ 1.7 GeV within the Rein and Sehgal
model [107], considering 16 resonances but neglecting the interference between them.
The contribution of non-resonant processes, classified in GENIE as DIS, is calculated fol-
lowing the method of Bodek and Yang [108]. Two-nucleon knockout (2p2h) events are
simulated in GENIE using the procedure of Dytman4 [109], obtained modifying and ex-
tending the one of Ref. [110], derived for electron scattering. For completeness, in Figs.
4.1 and 4.2, we show the cross sections used in these works, for νµ and νµ respectively, in
charged current on 12C.

4In this model the 2p2h process is modeled using a gaussian distribution to fill the dip region of electron
scattering inclusive cross section data between the QE peak and the peak of the ∆-resonance.
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Figure 4.1: Inclusive νµ cross section in CC per nucleon, divided by the neutrino
energy. The cross section is obtained using GENIE 2.8.0 +νT. Panel (a): Com-
parison of the total cross section using SF approach and the RFGM with solid
and dashed lines, respectively. The data points shown for comparison are taken
from NOMAD [49] (using carbon target), SciBooNE [50] and T2K [43, 111] (using
hydrocarbon target). Panel (b): Breakup into the different interaction channels
considered: QE (purple line), 2p2h (orange line), resonance production (green line)
and DIS (blue line).
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Figure 4.2: Same as Fig. 4.2, but for νµ cross section.

In the figures the panels indicated with (a) show the comparison between the total cross
sections obtained using the SF and the RFGM for the description of QE interactions. In
the case of the neutrino cross section the results are compared to the experimental data
for carbon extracted from NOMAD [49], and for hydrocarbon from SciBooNE [50] and
T2K [43, 111]. In the panels indicated with (b) it is shown the breakup into the different
interaction channels considered.
To conclude, we show in Fig. 4.3 the energy contribution to the (anti-)neutrino energy
coming from the different particles produced in the final state.
We can see that in the QE range, most of the contribution comes from nucleons, protons in
the case of neutrino interaction and neutrons for anti-neutrino interaction. In the region of
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Figure 4.3: Energy contribution coming from the different particles produced in
the final state for muon anti-neutrino (panel (a)) and muon neutrino (panel (b))
interaction. The solid red line is for neutrons, the blue dotted line for protons, the
green dashed line for charged pions and the long dashed line for neutral pions.

resonant and non-resonant pion production most of the contribution comes from charged
pions. Finally, for (anti-)neutrino energies such that Eν & 1.4 GeV, neutrons contribute
less than ∼ 15% to the total (anti-)neutrino energy.

4.3 Considered detector effects

As pointed out in the introduction of this chapter, neutrino events produced with GENIE
have been analyzed within two different extreme scenarios, that is

• Perfect Scenario: all the produced particles are observed with their measured energies
equal to the true ones.

• Realistic Scenario: the measured energies and angles are smeared with respect to the
true ones by a finite detector resolution. The detection efficiencies and thresholds on
produced particles are taken into account.

In both configurations we assumed neutrons to escape detection.
The detection thresholds used correspond to the measured kinetic energy of 20 MeV for
mesons and 40 MeV for protons. For instance, for the comparison with the values used in
existing experiments, NOMAD and MiniBooNE collaborations were able to detect protons
of kinetic energy above ∼ 50 MeV [112], and for future experiment with liquid argon
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detectors ∼ 40 MeV is expected [113].
We assumed efficiencies to be energy independent for simplicity. The chosen values can be
considered optimistic compared to those achieved in existing detectors [112, 114, 115], and
we set 60% for π0’s, 80% for other mesons, and 50% for protons. We also assumed that
the charged lepton is always detected. Effects of the finite detector resolution have been
considered, using a gaussian smearing centered around the true value xtrue

f(xmeas) =
1√

2πσ(xtrue)
exp

[
− 1

2

(
xmeas − xtrue
σ(xtrue)

)2]
(4.14)

where xmeas is the observable under study. The leptonic variables for muons [116] and for
electrons [100, 117] are smeared using

σ(|k′µ|) = 0.02|k′µ|, σ(θµ) = 0.7◦, Muon (4.15)

σ(Ee) = 0.10Ee, σ(θe) = 2.8◦, Electron (4.16)

For other particles the only variable smeared is the energy. For neutral pions and other
hadrons the functions applied are

σ(Eπ0)

Eπ0

= max

{
aπ0√
Eπ0

,
bπ0

Eπ0

}
, with aπ0 = 0.107, bπ0 = 0.020 (4.17)

σ(Eh)

Eh
= max

{
ah√
Eh

, bh

}
, with ah = 0.145, bh = 0.067 . (4.18)

where the energies are in GeV, and the values of a and b are taken from Refs. [99, 116]. No-
tice that the hadron energy resolutions applied in our analysis can be considered optimistic,
as they are to be compared to

σ(Eπ0)

Eπ0

= 2

√
a2
π0

Eπ0

+
b2
π0

E2
π0

and
σ(Eh)

Eh
= 2

√
a2
h

Eh
+ b2h (4.19)

achieved in the MINOS [99] and MINERvA [116] experiments.

4.4 Migration matrices

The reconstruction of neutrino events within the calorimetric and the kinematic methods,
using two different assumptions for particles detection (perfect reconstruction and realistic
reconstruction), allowed us to produce Migration Matrices, Mij , whose columns are the
probability distribution functions (PDFs) for a neutrino interaction X at the true energy
in the ith bin to be reconstructed with an energy in the jth bin. The observed event
distribution, accounting for detector effects, can then be computed as

N tot
i =

∑
X

∑
j

MX
ij N

X
j (4.20)
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where X represents the interaction channel, i and j refer to the energy bins, and NX
j is the

number of events for the interaction channel X in the jth bin, computed without detector
effects. The migration matrices have been produced up to 8 GeV with an energy step of
100 MeV. The complete set of MM5 is available in Refs. [118] and [119]. Some migration
matrices and the format in which they are produced are shown in Appendix E.
To see how realistic detector capabilities affect the muon neutrino and anti-neutrino en-
ergy distribution in Figs. 4.4 and 4.5 we show the PDFs for the calorimetric reconstruction
comparing the realistic and perfect reconstruction for the QE and DIS interactions, respec-
tively.
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Figure 4.4: Probability distribution function for a νµ event as a function of the
reconstructed energy. The PDFs are obtained applying the calorimetric recon-
struction, and the results, at a fixed true neutrino energy, are obtained for the
QE at Etrueν = 1.45 GeV (left panel) and for the DIS at Etrueν = 3.45 GeV (right
panel). The blue dashed line and the red solid line are obtained from the per-
fect and realistic reconstruction, respectively. The black dotted line represents a
standard gaussian smearing.
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Figure 4.5: Same as Fig. 4.4, but for a νµ event.

5The analysis performed to study the impact of 2p2h uncertainties, in Sec. 5.3, employes matrices up
to 2 GeV with a step of 50 MeV.
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The solid lines and the blue dashed lines are the distributions obtained in the case of
realistic and perfect reconstruction, respectively. These distributions are given as a func-
tion of the reconstructed energy and for a fixed value of the true neutrino energy, that is
Etrueν = 1.45 GeV for the QE interaction and Etrueν = 3.45 GeV for the DIS.
As a further comparison it is also shown a gaussian distribution (black dotted line) with
the standard deviation σ(Eν) = 0.15

√
Eν , usually used to account for detector effects in

phenomenological studies devoted to liquid-argon detectors [113, 120, 121, 122, 123].
The effects of energy resolutions, efficiencies, and thresholds affect the probability for a
neutrino event to be reconstructed in the correct energy bin. In particular, finite energy
resolution produces a smearing of the measured energy, while imperfect efficiencies and
finite thresholds produce a shift to lower energies, due to energy partially carried away by
undetected particles. As it can be noticed in Figs. 4.4 and 4.5, PDFs have finite widths,
they are asymmetric, with a broader tail toward the lower energies, and their mean values
are lowered with respect to the true neutrino energies.
Comparing Fig. 4.4 and Fig. 4.5, we can notice some discrepancies in the behavior of the
PDFs for a neutrino and anti-neutrino event. These differences can be traced back to the
different contributions of neutrons to the final-state energy (see, for instance, Fig. 4.3) and
to the fact that the typical energy transfer is lower in an anti-neutrino interaction.
Furthermore, a certain asymmetry can be seen also in the case of a perfect reconstruction.
This feature is a consequence of pion absorption in the nuclear medium and of energy car-
ried away by neutrons, assumed to escape detection. When the realistic detector effects are
accounted for, the PDFs clearly broaden due to the employed energy resolutions, and their
modes shift toward lower energies. The latter effect is particularly large for DIS events,
in which the muon contribution to the final-state energy is typically smaller than in QE
scattering, and the role of the efficiencies is larger.
The effective energy resolutions obtained from our distributions are presented as a function
of the true neutrino energy in Figs. 4.6 and 4.7, for neutrino and anti-neutrino, respectively.
To make contact with existing phenomenological studies of neutrino and antineutrino os-
cillations, we also add for comparison a few simple functions typically employed as an
effective energy resolution. The estimates for QE and DIS events are shown separately, as
the lower (darker) and upper (lighter) bands.
The results shown are obtained for the calorimetric reconstruction in the left panels and for
the kinematic one in the right panels. Our calculations of the PDF’s standard deviations
are presented as bands spanning the values between the results for the perfect reconstruc-
tion scenario (lower edge) and those for the realistic scenario (upper edge).
Because the energy resolutions widths in the realistic scenario are about twice as large as
those in existing experiments, they can be considered optimistic. On the other hand, an
effective energy resolution better than our result for the perfect reconstruction scenario
can be achieved only by means of neutron detection.
Finally, in Figs. 4.8 and 4.9, we show how the modes of the reconstructed-energy dis-
tributions depend on the true value of energy, comparing the calorimetric and kinematic
reconstruction methods, for neutrino and anti-neutrino respectively.
The bands represent our Monte Carlo results for QE and DIS events, the lower (upper)
edge of which corresponds to the realistic (perfect) scenario.
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Figure 4.6: Effective energy resolution as a function of the true energy for muon
neutrinos, using the calorimetric (left panel) and the kinematic (right panel) re-
construction. The results of our Monte Carlo simulations for QE (DIS) events are
shown as lower (upper) bands. For each band, the upper (lower) edge corresponds
to the realistic (perfect) detection capabilities, defined in Sec. 4.3. For comparison,
a few smearing functions frequently used in phenomenological oscillation studies
are also shown.
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Figure 4.7: Same as Fig. 4.4, but for νµ.

In the calorimetric method, the modes for QE scattering are in a good agreement with
the true energy, and the expected presence of neutrons in the final state of antineutrino
events introduces only a small effect. While for DIS, the agreement is somewhat reduced,
especially when detector effects are taken into account, the modes do not differ from the
true energy by more than 20%.
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Figure 4.8: Mode of the reconstructed-energy distributions as a function of the
true energy calculated for muon neutrinos. The bands show our Monte Carlo
results, with the lower (upper) edge obtained assuming the realistic (perfect) sce-
nario. The darker (lighter) bands present the results for QE (DIS) events. As a
further comparison, the lines corresponding to the true value and its underestima-
tion by 10 and 20% are also shown.

Calorimetric Rec., ΝΜ QE

DIS
0.8 EΝ

0.9 EΝ

EΝ

1 2 3 4 5 6

1

2

3

4

5

6

Etrue@GeVD

E
re

c,
m

o
d

e
@G

eV
D

Kinematic Rec., ΝΜ QE

DIS

0.8 EΝ

0.9 EΝ

EΝ

1 2 3 4 5 6

1

2

3

4

5

6

Etrue@GeVD

E
re

c,
m

o
d

e
@G

eV
D

Figure 4.9: Same as Fig. 4.8, but for νµ.

For the kinematic method, in QE interactions, both the neutrino and antineutrino modes
are in excellent agreement with the true energy. However, this is not the case for DIS events.
For antineutrinos, the discrepancy between the DIS mode and the true energy exceeds 10%

and is typically close to 20%. For neutrinos, the mode underestimates the true energy by
∼ 1 GeV. This behavior can be traced back to the simplicity of our kinematic analysis,
assuming that all events containing at least one pion are produced through excitation of a
resonance of invariant mass M∆ = 1.232 GeV.
In conclusion, the bands in Figs. 4.4 - 4.7 show the differences between the results for the
realistic and perfect scenarios. Their widths can be used as a measure of the sensitivity to
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detector effects, which turns out to be larger for the calorimetric migration matrices than
for the kinematic ones. However, they do not represent uncertainties entering any actual
experiment. In practical situations, detection capabilities and their uncertainties must be
estimated in test-beam exposures.



Chapter 5

Oscillation analysis

In this Chapter we describe three different oscillation analyses aimed at the estimation of
the impact of the systematic uncertainties on the extraction of the oscillation parameters
in long-baseline experiments.
In the first analysis, performed in the disappearance channel, we study the effect of the
incorrect estimation of the detector performances on the extraction of the atmospheric
parameters, using the two different reconstruction techniques introduced in this Thesis
[118].
In the second analysis we estimate, in the appearance channel, the effects of the missing
energy on the determination of the CP-violating phase using the calorimetric reconstruction
[124].
Finally, we consider the impact on the atmospheric parameters of two different approaches
that can be used to describe multi-nucleon mechanism [125]. The kinematic method of
energy reconstruction has been used to analyze events produced with GENIE according to
two different models for the description of interactions in the quasi-elastic range: in the
first case two-particle two-hole processes are taken into account using the GENIE model,
and in the second case multi-nucleon effects are included using an increased value of the
axial mass for the parametrization of QE interactions.
The study of the oscillation parameters, introduced in Chapter 1, is based on the analysis of
the event rates. A general expression of the event rates in the oscillation channel να → νβ
and in the energy bin [Eνi , E

ν
i + ∆Eν ], is given by

N i
β =

∫ Eνi +∆Eν

Eνi

dEν σνβ (Eν)Pνα→νβ (Eν , θi, δ)
dφνα(Eν)

dEν
εβ(Eν) , (5.1)

where σνβ is the neutrino cross section, Pνα→νβ is the oscillation probability for the con-
sidered channel dependent on the mixing angles θi, and on the CP violating phase δ, φνα
is the neutrino flux and εβ is the signal efficiency, eventually dependent on the neutrino
energy.
From the knowledge of the event rate it is possible to extract the oscillation parameters
that enter in the probability Pνα→νβ . But, as can be seen from (5.1), there is a strong
dependency on the neutrino energy Eν . Neutrino beams are produced as tertiary decay
products, coming from the decay of pions and kaons mostly, and their energy is not sharply
defined, but widely distributed. So the energy of the incoming neutrino has to be recon-
structed from the information that we can obtain from the final state produced by the

61
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neutrino-nucleus interaction.
The reconstruction of neutrino events leads to systematic uncertainties that depend on the
detector capabilities (that is on the detection efficiency of the particles in the final state)
and on the interaction channel.
Above the quasi-elastic (QE) peak, other interaction processes in charged current take
place: resonance production, deep inelastic scattering (DIS) and two-particle two-hole
(2p2h) processes.
The analysis of neutrino events has been done using the calorimetric and kinematic energy
reconstruction described in (4.8) and (4.11). These two reconstruction techniques have
been applied considering the experimental features for particles detection, as listed in Sec.
4.3.
We produced the Migration Matrices (MM), Mij ≡ N(Ereci , Etruej ), that define the proba-
bility that an event with a true neutrino energy in the bin j ends up being reconstructed
in the energy bin i, as explained in Section 4.4. The MM have been produced for all
interaction channels considered and for the four neutrino types (νe, ν̄e, νµ, ν̄µ).
The oscillation analysis has been performed using the software GLoBES [126, 127, 128].

5.1 Impact of detector effects in disappearance experiments

In the disappearance oscillation channel νµ → νµ, we perform an analysis for the determi-
nation of atmospheric parameters θ23 and ∆m2

31. The main contribution to the background
is given by neutral current (NC) events, misidentified as CC events. It is expected to be
low, compared to the signal, so we neglect it in our analysis.
Matter effects are included in the analysis, where the matter density profile has been cho-
sen according to the "Preliminary Reference Earth Model" (PREM) [129]. Systematic
uncertainties are used in order to accommodate possible differences in the shape of the
expected event distribution at the detectors, as in [130] and [105]. Their treatment and
the χ2 implementation1 follow Refs. [128, 130] where systematic errors have been largely
investigated, and we assumed a 20% bin-to-bin uncorrelated systematic uncertainty, as well
as a 20% overall normalization uncertainty, which is bin-to-bin correlated. This scheme is
simpler than the one used in actual experiments, therefore, the constraints we will obtain
just represent a lower limit. The true input values used for the analysis are listed in Table
5.1, from Ref. [35], and they have been kept fixed during the analysis.

∆m2
21 ∆m2

31 θ12 θ23 θ13 δ

7.50× 10−5eV2 2.457× 10−3eV2 33.48 deg 42.3 deg 8.5 deg 0.0

Table 5.1: Values of the oscillation parameters used for the analysis as true input
values.

The experimental setups used in our analysis belong to two different classes: a low-energy
setup (LE), with a narrow band off-axis neutrino beam and a high-energy setup (HE), with

1The χ2 analysis is also briefly discussed in Appendix F.
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a broad-band on-axis beam. These choices are motivated by the fact that we could be
able to study effects of neutrino energy reconstruction for a wider set of neutrino-nucleus
interactions, that goes beyond the quasi-elastic interaction.
In the LE configuration, the neutrino flux is peaked at ∼ 600 MeV, with a baseline of
295 km, while the HE setup has a flux peaked at ∼ 1− 2 GeV and a baseline of 1000 km.
These main features are summarized in Tab. 5.2, and the fluxes are shown in Fig. 5.1

Experimental Setup Type Baseline Energy Peak

Low Energy (LE) off-axis 295 km 600 MeV
High Energy (HE) on-axis 1000 km 1− 2 GeV

Table 5.2: Relevant features of the two experimental setups chosen for the dis-
appearance analysis, aimed at quantify the impact of the incorrect estimation of
detector effects.
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Figure 5.1: Muon neutrino fluxes in arbitrary units as a function of the neutrino
energy. The red line represents the low-energy setup flux, while the blue dashed
line the high-energy setup flux.

Both configurations have advantages and disadvantages. In an off-axis configuration, due
to pion-decay kinematics, the neutrino flux is more peaked around a given neutrino en-
ergy. It also allows a significant reduction of the background coming from neutral current
events, and guarantees that the range of the values of L/Eν is well localized around the
first oscillation maximum. However the beam intensity is highly reduced compared to an
on-axis configuration, thus the number of events at the far detector is also lower.
In an on-axis configuration the energy spread of the beam is larger. This allows to deter-
mine the shape of the oscillation probability performing measurements at different values
of L/Eν . Due to the high intensity of the neutrino beam it is also easier to collect a larger
statistics. However, the high energy tail produces a significant neutral-current background
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contamination.
The νµ-disappearance analysis within these two different experimental setups has been
done considering a normalization on the number of the un-oscillated events, in the energy
range relevant for the two analysis, around ∼ 5000 events, as reported in Tab. 5.3. Due to
the differences in the fluxes shape, the energy window considered would not be the same
for the two setups. We choose for the LE configuration the energy window [0.3, 2] GeV,
while for the HE [0.3, 4] GeV.

QE 2p-2h res DIS Total
LE [0.3,2] GeV 49% 28% 21% 2% 4891
HE [0.3,4] GeV 26% 11% 37% 26% 4456

Table 5.3: Number of un-oscillated events for the two experimental setups under
study, with the percentage of the number of events coming from the different
interaction channels.

As we can see from the Table, the event samples in the two experimental setups are very
different. In the HE setup we obtain a larger contribution from inelastic processes, com-
pared to the LE setup that privileges the QE-like sample.
In general the neutrino oscillation analysis is based on Monte Carlo simulations in order
to generate the event rate distribution. To be more predictive, these simulations needs to
include also detector capabilities. According to this, we generated our true event distribu-
tion using realistic MM, with the aim of reproducing an event distribution obtainable in a
"realistic" experiment

N true
i =

∑
X

∑
j

MX,real
ij NX

j , (5.2)

where X represents the interaction channel (QE, 2p2h, resonance production and DIS)
and i and j are the energy-bin indices. MX,real represents the matrices obtained from the
realistic scenario, and NX

j is the number of events in the energy bin j for the interaction
type X, computed without accounting for the detector effects.
To perform our analysis we generated the predicted (or fitted) event distribution including
the uncertainties related to the estimation of the detector performances. In practice, the
fitted event rate has been generated using a linear combination of the matrices obtained
for the realistic and perfect reconstruction scenarios (see Section 4.3), due to the fact
that the production of MM is computationally expensive. This approach, allowing for a
continuous transformation of the event-rate distribution from one scenario to the other, is
useful to quantify when the incorrect estimation of the detector performance starts to have
a significant impact on the fit. Thus, the event distributions used for the fit are given by

Nfit
i =

∑
X

∑
j

{(1− α)MX,real
ij + αMX,perf

ij }NX
j (5.3)

where MX,perf and MX,real represent the matrices obtained from the perfect and realistic
scenario, respectively. The parameter α in Eq. (5.3) is a phenomenological parameter
used in order to obtain an effective migration matrix as a linear deformation of the two
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extreme cases [105], that is the perfect and realistic scenarios. For example, if the value
of α is set equal to zero, this means that the fitted rates are obtained in the same way as
the true rates. Likewise, if we set α = 0.3, we will have the fitted rate obtained with an
overestimation of the detector performances of the 30%.
When the fitted rate is computed, it is simulated for every value of the oscillation parame-
ters in the plane (θ23,∆m

2
31). After the identification of the point with the minimum value

of the χ2, the confidence region is drawn with the requirement

Figure 5.2: Results for the analysis of the oscillation parameters when the calori-
metric method is applied to analyze neutrino events. On the left there are the
results for the LE setup, while on the right the ones obtained for the HE setup.
Upper panels: event rate distribution at the far detector as a function of the recon-
structed neutrino energy, using the oscillation parameters in Tab. 5.1. The shaded
histogram is obtained when realistic MM are applied, while the dashed and solid
lines are obtained when we consider a combination of realistic and perfect matri-
ces using α = 0.1 and α = 0.3, respectively. Lower panels: confidence regions in
the plane (θ23,∆m

2
31) at 1σ C.L. for 2 d.o.f. The shaded area corresponds to the

perfect estimate of the detector effects. The lines show the contours obtained for
the detector performance overestimated by 10%, 20%, and 30% in the fit. The
blue star is the true input value.

∆χ2(θ23,∆m
2
31) ≡ χ2(θ23,∆m

2
31)− χ2

bestf it
< 2.30 (5.4)
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that is at 1σ for two degrees of freedom (d.o.f). The results of our analysis are shown in
Figs. 5.2 - 5.3, for the calorimetric and kinematic reconstructions, respectively.

Figure 5.3: Same as Fig. 5.2, but applying the kinematic method of energy
reconstruction.

On the left we have the results for the LE setup and on the right those obtained for the
HE setup. In the upper panels there are the event rate distributions, where the shaded
areas are obtained using realistic MM, while the dashed and solid lines are obtained using
a combination of realistic and perfect matrices, for the values of α equal to 0.1 and 0.3.
Notice that the event rates shown using the linear combination of realistic and perfect
matrices, have been computed with the true input values of the oscillation parameters.
The lower panels show the confidence regions in the plane (θ23,∆m

2
31) at 1σ C.L. for 2

d.o.f. The shaded areas are obtained when the true and the fitted rates are computed using
the same set of MM, and correspond to a complete estimation of the detector capabilities.
The lines are instead obtained when the true rate is computed from realistic MM and for
the fit a combination of realistic and perfect matrices is used for α = 0.1 (dashed lines),
α = 0.2 (dot-dashed lines) and α = 0.3 (solid lines). These confidence regions represent the
regions allowed when the detector performances are overestimated of the 10%, 20% and
30%. In the case of the calorimetric reconstruction, the allowed confidence regions start to
drift away from the shaded areas when the detector capabilities are incorrectly estimated,
excluding the true input value for an overestimation more than 10%. In the case of the
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kinematic reconstruction, the result obtained is milder compared to the calorimetric one.
This is mostly due to the fact that it relies on the ability of reconstructing the track of the
outgoing lepton, and actually the muon reconstruction is very precise in modern detectors.
Finally, in the figures it is also shown the minimum value of the χ2 obtained for each value
of α, together with the effective number of d.o.f.2.

5.2 Impact of missing energy on the extraction of
the CP-violating phase

The aim of the analysis presented in this section is to describe the problem arising from
missing energy and to explore the level of accuracy required in estimating it to avoid a
deleterious effect on the measurement of the CP phase. We perform a phenomenological
study aimed at demonstrate and quantify how an underestimation of the missing energy
in neutrino events may affect the extraction of the value of CP-violating phase δ.
To analyze the effect of realistic detection capabilities on the energy reconstruction in a
fine-grained TPC (Time Projection Chamber), we take into account energy resolutions,
efficiencies, and thresholds for particle detection, as in the previous case (details in Sec.
4.3).
It should be stressed the fact that our results are inevitably subject to uncertainties coming
from nuclear effects. In order to minimize nuclear uncertainties, we consider the carbon
target, for which a number of extracted cross sections is available.
The considered experimental setup consists on a wide-band neutrino beam produced mainly
from pion and kaon decays, aimed at a 40 kton detector located at a distance of L =

1300 km from the source. The neutrino flux used for this analysis consists in a 80 GeV
beam configuration from Ref. [131], with an assumed beam power of 1.08 MW. The back-
ground implementation follows Ref. [131] as well, where the sensitivities for the neutral-
and charged current mis-identification rates are set at the 1%. No migration matrices are
used for the background events, which are always smeared according to a Gaussian with
σ(Eν) = 0.15

√
Eν , with Eν in GeV. Since the detection of neutrino and antineutrino CC

events depends on the ability to observe and tag only the associated charged lepton, we
use the same signal efficiencies as in Ref. [131] (80%). The energy of all particles produced
in the event (both the charged leptons and the hadrons) are then smeared according to a
Gaussian before reconstructing the neutrino energy. Detection thresholds and efficiencies
for all hadrons are implemented as well (see Chapter 4). The hadron thresholds and ef-
ficiencies will affect the smearing of the events in reconstructed neutrino energy, but not
the total event rates.
To perform this study we considered a combined measure of νµ → νe and νµ → νe with
a total of 6 years (3 in positive horn focusing/neutrino running mode, and 3 in negative
horn focusing/antineutrino running mode). Under these assumptions, the total number of
events in the neutrino and antineutrino running modes with reconstructed energies between
0.6 GeV and 6 GeV are reported in Tab. 5.4, including also the background contribution
coming from intrinsic contamination of the beam of νe and νe, misidentified νµ and νµ,
and neutral currents.

2The effective number of degrees of freedom is given by the number of energy bins used in the fit minus
the number of parameters determined from the fit.
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Signal Intrinsic νe-νe Mis νµ-νµ NC
νµ → νe 740 114 67 65
νµ → νe 286 67 33 38

Table 5.4: Expected event rate for the two oscillation channels at the far detector,
including the different background sources that we considered. The obtained values
are in agreement with those of Ref. [131].
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Figure 5.4: Reconstructed energy distributions obtained for νe deep-inelastic
scattering (DIS) events with true energy of 2.95 GeV. The distributions neglecting
the shift due to the missing energy (dot-dashed line), and accounting for its 50%
(dashed line) are compared to the full calculations (solid line).

It should be noted that in the antineutrino running mode we consider both ν̄µ → ν̄e and
νµ → νe as the signal events due to the large contribution to the signal from wrong-
sign events, which are also sensitive to CP violation. In the neutrino running mode,
however, only the νµ → νe events are considered as part of the signal, since the wrong-sign
contribution is negligible.
For this analysis we did not consider the near detector. However we made more aggres-
sive assumptions for the systematic uncertainties, and assume that thanks to a possible
near detector we will be able to achieve these goals. We considered the same systematic
uncertainties of the previous analysis but a prior at the 2% level is considered for both
normalization and shape uncertainty, following Refs. [120, 131]. As for the background,
only a global normalization uncertainty, at the 5% level, is considered.
Since the atmospheric parameters are fixed to their current best-fit values, and we are
only interested in the δ sensitivity, there is no need to include νµ and ν̄µ disappearance
channels in our analysis. It should be kept in mind, though, that the measurement of
the disappearance parameters may be significantly affected by either an incorrect estimate
of nuclear effects and/or by an inaccurate detector calibration, as it was pointed out in
Refs. [105, 118, 130], among others. This in turn unavoidably affect the extraction of the
value of the CP-violating phase from appearance measurements.
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Figure 5.5: Effect of an underestimation of the missing energy in the calorimetric
energy reconstruction on the confidence regions in the (θ13, δ) plane, see text for
details. The true values of the oscillation parameters are indicated by the dot, and
are the same for all contours shown.

The true event rates are obtained taking into account realistic detection capabilities which
are implemented using the migration matrices obtained from Monte Carlo events analysis,
as in the previous Section. Therefore, the neutrino energy is not reconstructed around
the true energy but around a lower value instead, owing to the energy carried away by
unobserved particles in the final state.
The fitted event rates are smeared using a different function. In the ideal case where no
particle escapes detection, the neutrino energy would be smeared according to a Gaussian
distribution centered around the true neutrino energy, with a width dependent on the
energy smearing of the different particles observed. As in the previous study, the event
rates used to fit the data are smeared using a linear combination of MM, but this time
using the two cases described above: migration matrices from the realistic scenario, and
the Gaussian smearing around the true neutrino energy. By varying the coefficients in this
linear combination, the effective smearing function obtained can be deformed smoothly
from one situation to the other. Using this approach, we introduce a way to manually
tune the amount of missing energy in the oscillation analysis, while at the same time we
account for the effect of realistic energy resolutions of the detector. In summary we have

N true
i =

∑
X

∑
j

MX,real
ij NX

j (5.5)

Nfit
i =

∑
X

∑
j

{
(1− α)MX,real

ij + αMX,gauss
ij

}
NX
j , (5.6)

where MX,real
ij and MX,gauss

ij are the realistic matrices and the gaussian distributions,
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respectively. To illustrate how the energy reconstruction is affected by the missing energy,
in Fig. 5.4 we show an example for deep-inelastic νe scattering at the true energy Eν =

2.95 GeV. The solid line represents the reconstructed energy distribution calculated from
the Monte Carlo simulations with all detector effects. Should no energy be missing, the
distribution would be centered at the true value of the neutrino energy, as the dot-dashed
curve. A common way used in the literature to parametrize the resolution in neutrino
energy in oscillation experiments is by using a Gaussian function with a simple function
for its standard deviation

σ(Eν) = α+ β
√
Eν + γEν , (5.7)

where Eν is the true neutrino energy in GeV. Typical values used in phenomenological
studies of liquid argon detector experiments are σ(Eν) = 0.15

√
Eν , see e.g. Refs. [120,

121, 132, 133]. In our case, we use the migration matrices which have been obtained from
the neutrino events analysis, and fit the result to a Gaussian with a width as in Eq. (5.7).
In the case of νe DIS events in the Fig. 5.4, the gaussian smearing is represented by the
dot-dashed line. For further details on the gaussian distributions used see Appendix G.
Finally, the dashed curve, obtained from linear interpolation between the dot-dashed and
solid lines, represents an intermediate situation in which 50% of the missing energy is ac-
counted for: the two distributions used in the linear interpolation do have the same width,
while their central value differs due to the impact of missing energy in the events. It should
also be noted that, for each type of neutrino interaction considered in this work, the width
of the distribution obtained when computing the migration matrices is generally different.
The allowed confidence regions in the (θ13, δ) plane are shown in Fig. 5.5. The different
contours have been obtained under different assumptions regarding the ability of the exper-
iment to determine the missing energy involved in the events. The shaded area corresponds
to the correct result, where all the missing energy in the events is perfectly estimated in
the fit. The solid, dashed, and dot-dashed lines represent the results obtained when 90%,
80%, and 70% of the missing energy is correctly accounted for, respectively. Our results
show that even a 20% underestimation of the missing energy introduces a sizable bias in
the extracted δ value. Should an experimental analysis suffer from a 30% underestimation
of the missing energy, it would incorrectly exclude the true value of δ at a confidence level
between 2 and 3σ.
The legend in Fig. 5.5 also shows the values of the χ2 for the best fit (θ13, δ) points divided
by the effective number of degrees of freedom. In an actual experiment, this ratio would
give an additional contribution to the goodness of fit. A large enough contribution would
indicate that the model used to fit the data is not correct. Our results indicate that such
contribution would be small enough that, from a fit to the far detector data alone, it would
be virtually impossible to realize that the energy carried away by undetected particles is
being underestimated in the fit.

5.3 Impact of 2p2h uncertainties

The T2K Collaboration has recently reported two measurements of the inclusive cross
section for charged-current muon-neutrino scattering off the hydrocarbon target, CH [43,
111]. Being flux-averaged at different mean-energy values, the T2K results show the cross
section as a function of neutrino energy with minimal dependence on nuclear models.
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While the T2K data are lower by ∼20% than the flux-averaged hydrocarbon result pre-
viously obtained by the SciBooNE Collaboration [50], with the difference exceeding the
experimental uncertainties, they appear to be in good agreement with the expectations
based on the 12

6 C(νµ, µ
−)X cross section measured at higher energies by the NOMAD

experiment [49].
At the kinematics of the T2K and SciBooNE experiments, momentum transfers q are
typically large enough for neutrinos, probing the nuclear interior with the spatial resolution
∼ 1/|q|, to scatter off individual (bound) nucleons. On the other hand, the dominant
contribution to the cross section comes from low energy transfers ω, insufficient to produce
pions, and the quasi-elastic mechanisms of interaction,

ν` + n→ `− + p,

ν̄` + p→ `+ + n,
(5.8)

play the most important role.
In the past, CCQE processes were considered well understood theoretically and used to
determine the flux normalization [134]. Recently, however, it has become apparent that this
is not the case to the extent required by precise oscillation experiments [135]. For example,
while the CC QE cross sections of carbon reported by the MiniBooNE Collaboration [40, 41]
turn out to be higher than those of free nucleons, the corresponding NOMAD data [103]
show the cross-sections’ reduction arising from nuclear effects. Although those puzzling
discrepancies have received a great deal of theoretical interest, their interpretation is not
fully established so far.
In particular, while a non-negligible role of CCQE reaction mechanisms involving more
than one nucleon is now generally acknowledged, and important theoretical progress has
been achieved [136], an ab initio estimate of the corresponding cross sections is not yet
available. As those multinucleon mechanisms involve predominantly two nucleons, we refer
to them as 2p2h processes.
For nuclear targets ranging from carbon to iron, a growing body of experimental evi-
dence [39, 40, 51, 137, 138, 139] shows that 2p2h effects on the differential QE cross sections
can be effectively accounted for by increasing the value of the axial mass MA, typically
to ∼1.2 GeV, with respect to MA = 1.03 GeV extracted predominantly from deuterium
measurements [140]. Note that as the axial mass is the cutoff parameter driving the axial
form factor’s dependence on Q2 = |q|2 − ω2, its changes affect both the differential and
total cross sections.
In this section, we study uncertainties of the 2p2h cross sections for carbon and quantify
their effect on the oscillation analysis for an experimental setup similar to the Low Energy
Setup discussed in Sec. 5.1. We consider a disappearance experiment running in both neu-
trino and antineutrino mode with the same flux [141], peaked at ∼600 MeV. To describe
the ground-state properties of the target nucleus, we use the realistic Spectral Function
of Ref. [95]. To account for an increase of the CCQE cross sections due to 2p2h pro-
cesses, we used two data-driven phenomenological methods: (i) an increased value of the
axial mass, yielding results consistent with the T2K [43, 111], NOMAD [49, 103], and MIN-
ERvA [44, 142] data, and (ii) the 2p2h estimate in the GENIE Monte Carlo generator [109],
determined from the MiniBooNE data [40] and in agreement with the experimental cross
sections extracted from SciBooNE [50].
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Figure 5.6: CCQE (a) νµ and (b) ν̄µ cross sections. The results for carbon
obtained using GENIE + νT (dashed lines) and the Spectral Function approach
with MA = 1.2 GeV (solid line) are compared with the carbon data reported by
the MiniBooNE [40, 41] and NOMAD [103] Collaborations and the hydrocarbon
data extracted from the MINERvA [44, 142] and T2K [139, 143] experiments. For
comparison, the MiniBooNE data divided by 1.2 are also shown.

We emphasize that although our study is performed for a setup similar—not identical—to
that of T2K, it does not follow the analysis of that experiment. For example, applying a
generalization of the kinematic method of energy reconstruction [118], we include in the
oscillation analysis events of all types, instead of the CCQE event sample alone. The ra-
tionale for considering the T2K-like kinematics is its importance for the next generation
of oscillation experiments [52, 144].

Consequences of 2p2h effects for the CCQE cross sections have been analyzed within a
few effective approaches. The calculations of Martini et al. [145, 146, 147, 148], based
on the local Fermi gas model and the random-phase approximation (RPA), extend the
treatment of multinucleon contributions to the electromagnetic responses of iron developed
by Alberico et al. [149] to the case of neutrino interactions with carbon and to a broader
kinematic region.
While employing the local Fermi gas model and the RPA scheme, the approach of Nieves et
al. [150, 151, 152, 153] differs from that of Martini et al. by using effective interactions, the
parameters of which were fixed in earlier studies of photon, electron, and pion scattering
off nuclei. At the MiniBooNE kinematics, the CCQE νµ (ν̄µ) cross sections obtained by
Nieves et al. are lower by ∼10% (∼15%) with respect to those calculated by Martini et al.
To extend their superscaling approach and include the contributions of processes involving
two-nucleon currents, Amaro et al. [154, 155] and Megias et al. [156, 157] have estimated
the 2p2h cross sections within the relativistic Fermi gas model accounting for the vector
meson-exchange currents.
In the Giessen Boltzmann-Uehling-Uhlenbeck transport model, the 2p2h contribution to
the CCQE cross sections is obtained from a fit to the MiniBooNE data performed by
Lalakulich et al. [158].

As pointed out in Sec. 4.2, GENIE [101] simulates 2p2h events following the empirical
procedure developed by Dytman [109], based on the one derived for electron scattering in
Ref. [110]. The 2p2h strength is set to decrease linearly for neutrino energy larger than 1
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Figure 5.7: Per-nucleon CC inclusive (a) νµ and (b) ν̄µ cross sections divided
by neutrino energy, obtained using the QE contributions of Fig. 5.6. The calcu-
lations for the carbon target (and for the hydrocarbon target in the inset) are
compared with the carbon data extracted from the NOMAD [49] experiment and
the hydrocarbon flux-averaged measurements reported by the SciBooNE [50] and
T2K [43, 111] Collaborations (the central energy values correspond to the mean
energy in the detector). Note that antineutrino data are currently unavailable.

GeV and to vanish at 5 GeV, consistently with both the MiniBooNE [40] and NOMAD [103]
data.
We analyze how the oscillation analysis may be affected by uncertainties in the description
of 2p2h contributions to the CCQE cross sections, comparing two estimates obtained from
different approaches:

• In the first case, we apply an effective value of the axial mass MA = 1.2 GeV to ac-
count for the modifications of the QE cross sections due to 2p2h reaction mechanisms
in a purely phenomenological manner (“effective” calculations).

• In the second case, we add the 2p2h results obtained using GENIE 2.8.0 [109] to the
QE calculations performed using the Spectral Function approach with MA = 1.03

GeV, as implemented in the νT package [106] (“GENIE + νT ” calculations).

The obtained total CCQE cross sections are compared to the experimental data in Fig. 5.6.
It clearly appears that the effective calculations are in good agreement with the NO-
MAD [103] and MINERvA [44, 142] results for both neutrinos and antineutrinos. They
also reproduce the energy dependence of the MiniBooNE data [40, 41], but not their abso-
lute normalization. To better illustrate this feature, we have divided the MiniBooNE cross
sections by a factor of 1.2, consistent with the ratio of the detected to predicted events of
1.21± 0.24 reported from the first MiniBooNE analysis [39].
For neutrinos the 2p2h contribution from GENIE is in very good agreement with the Mini-
BooNE data, while for antineutrinos it overestimates the experimental points, in spite of
being added to the Spectral Function results obtained usingMA = 1.03 GeV, which are too
low to reproduce the cross sections from NOMAD [159]. Owing to their large uncertainties,
the T2K CCQE data [139, 143] cannot discriminate between the two calculations.
Adding the considered CCQE estimates to the cross sections for resonant, non-resonant,
and coherent pion production from GENIE, we have calculated the inclusive CC cross
sections for carbon shown in Fig. 5.7. The two considered approaches turn out to be in



74 5. Oscillation analysis

good agreement with the NOMAD data [49], collected in the region dominated by pion
production.
To compare to the T2K [43, 111] and SciBooNE [50] data, extracted for the hydrocarbon
target, we have accounted for the contribution of free protons using the cross sections
from GENIE + νT . While the on-axis T2K data point [111] does not distinguish the two
approaches, the SciBooNE point [50] clearly favors the GENIE + νT calculations and the
off-axis T2K point [43] shows a distinct preference for the effective calculations.

Figure 5.8: Distribution of CC (a) νµ and (b) ν̄µ events in the far detector
as a function of the reconstructed energy, obtained within the GENIE + νT and
effective calculations. For comparison, we also show the GENIE + νT results with
the unoscillated QE event rates rescaled to those of the effective calculations.
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Figure 5.9: Reconstructed energy distributions of CC QE (a) νµ and (b) ν̄µ
events with any number of nucleons calculated at Eν = 0.6 GeV. The dashed (solid)
lines represent the results obtained using the GENIE + νT (effective) approach.

The puzzling difference between the T2K and SciBooNE data—interesting in its own
right—has important consequences for neutrino-oscillation studies.
Neutrino events have been reconstructed using the kinematic method, applying it to all
event types. As neutral-current background is expected not to play an important role, we
do not take it into account. Our analysis, done with GLoBES [126, 127, 128], is based on
∼6000 un-oscillated events with reconstructed energies between 0.3 and 1.7 GeV, in both
the neutrino and antineutrino modes. The oscillation parameters values assumed as the
true ones are detailed in Table 5.1. The χ2 analysis is similar to that explained in Sec. 5.1.
In our analysis, the true event rates are simulated using the GENIE + νT calculations, and
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Figure 5.10: Confidence regions in the (θ23,∆m
2
31) plane for the true (a) νµ

and (b) ν̄µ event rates from GENIE + νT at the 1, 2 and 3σ C.L. The shaded
areas (solid lines) correspond to the fitted rates from the GENIE + νT (effective)
calculations.

the fitted rates are obtained for both considered approaches over a range of atmospheric
oscillation parameters, θ23 and ∆m2

31. Having determined the minimal χ2 value, χ2
best-fit,

the confidence regions are found as in Eq. (5.4), but at 1, 2, and 3σ confidence level.
Before discussing the oscillation results, it is illustrative to compare the reconstructed
energy distributions for muon neutrinos and antineutrinos obtained from the GENIE +
νT and effective calculations. As shown in Fig. 5.8, the differences between the two cross-
section estimates translate into differences between the oscillated event rates in the far
detector, with the discrepancies being particularly severe in the case of antineutrinos.
In addition to the total event numbers, the two approaches yield clearly different distribu-
tions of reconstructed energy, as shown in Fig. 5.9 for the true energy Eν = 0.6 GeV. In
the effective calculations, 2p2h processes enhance the low-energy tails of the distributions,
while in the GENIE + νT approach, they also produce additional bumps, corresponding to
the reconstructed energy ∼0.4 GeV at the kinematics of Fig. 5.9. In the antineutrino case,
for Eν . 1.4 GeV the strength of these 2p2h bumps turns out to be larger than that of
the QE ones, located at Erec

ν ' Eν . The observed differences in the reconstructed energy
distributions have important consequences for the oscillation analysis.
The obtained confidence regions are shown in Fig. 5.10. The shaded areas represent the
results for the GENIE + νT fitted rates, and the solid lines correspond to the fitted rates
from the effective calculations. The high values of χ2

best-fit per degree of freedom, given in
Fig. 5.10, clearly indicate that the differences between the two considered approaches are
too large to be neglected in a precise oscillation analysis. We have verified that this obser-
vation holds true even when the normalization of the QE event sample, with any number
of nucleons, is treated as arbitrary. The results obtained rescaling the QE contribution
are shown in Fig. 5.11. Therefore, the observed effect can be traced back to the shape
discrepancies displayed in Figs. 5.6 and 5.9, which appear to be especially large for an-
tineutrinos. In particular, as for antineutrinos in the relevant Eν region the reconstructed
energy distributions in the effective and GENIE + νT approaches are peaked at different
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Figure 5.11: Same as Fig. 5.10, but using GENIE + νT with the QE contribution
rescaled.

values, the extracted ∆m2
31 is subject to larger bias for antineutrinos than for neutrinos.

In summary, we have studied the impact of discrepancies between experimental cross sec-
tions on neutrino-oscillation analysis, adopting the kinematic method of energy recon-
struction. We have compared two data-driven approaches focusing on the 1 GeV energy
region and shown that the differences between them have a sizable effect on the resulting
oscillation parameters, especially in the antineutrino channel.
In view of these findings, improving the precision of the neutrino and antineutrino cross
sections will be of great importance for future oscillation studies. Such progress will require
new experimental data for neutrino energies ∼1 GeV, as well as an improvement in the
understanding of systematic uncertainties, which would allow the tensions between existing
measurements to be significantly alleviated.
Because the description of final-state hadrons involves larger uncertainties than those asso-
ciated with leptons, the conclusions of this analysis are expected to also apply to the calori-
metric method of energy reconstruction and are, therefore, relevant to the next generation
of long-baseline oscillation measurements, such as the DUNE [52], aimed at determining
the charge-parity violating phase and at verification of the three-neutrino paradigm.



Conclusions

In this Thesis we have studied two of the most important sources of systematic uncer-
tainties in neutrino oscillation analysis. We evaluated the charged-current neutrino-carbon
cross section using a realistic spectral function—taking into account, for the first time, all
relevant interaction channels—to analyze nuclear effects, and studied the effects of neutrino
energy reconstruction in long-baseline oscillation experiments.
Charged-current neutrino-nucleus interactions have been computed in the quasi-elastic, res-
onance production and deep inelastic sectors. We described the nuclear response within the
Impulse Approximation, which is known to provide accurate results at momentum transfer
exceeding few hundreds MeV. This approach allows to express the neutrino-nucleus cross
section in any channels, as the convolution of the elementary cross section on individ-
ual nucleons and the Spectral Function, which describes the probability of removing from
the nucleus a nucleon with a given momentum, leaving the residual system with a given
excitation energy.
Being an intrinsic property of the target nucleus, the Spectral Function can be evaluated
within non relativistic many-body theory using realistic phenomenological hamiltonian. In
this way it is possible to account for nucleon-nucleon correlations, neglected in Fermi gas
model which is largely used in neutrino event generators.
In Chapter 3 we computed the cross section for a wide range of neutrino energies (up to 20

GeV), to cover the kinematical region relevant to many ongoing and planned experiments.
The treatment of the quasi elastic cross section closely follows the procedure described
in Refs. [54, 160], while the calculation of the cross section in the resonance production
and deep inelastic channels using the spectral function formalism is one of the original
contributions of this work.
While our model still needs to be validated through a detailed comparison between its
results and inelastic electron scattering data, the availability of a formalism allowing to
describe all relevant single nucleon knock out processes within a realistic description of
nuclear dynamics should be regarded as an important new achievement. In this context, it
has to be also mentioned that the spectral function formalism has been recently generalized
to describe electron scattering processes involving two-nucleon currents, which are long
known to provide a significant fraction of the quasi elastic cross section [136, 161].
The study of the impact of systematic uncertainties on the extraction of oscillation pa-
rameters has been performed analyzing neutrino events produced with the Monte Carlo
event generator GENIE [101]. These events have been produced up to 8 GeV, within four
different charged-current interaction channels: besides quasi elastic scattering, resonance
production and deep inelastic scattering, we have included processes in which interactions
involving two-nucleon currents lead to the appearance of final states with more than one
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nucleon excited to the continuum.
We have analyzed neutrino energy reconstruction by using the kinematic and the calori-
metric techniques. The first procedure, in which the energy distribution is determined from
the kinematics of the outgoing charged lepton, is mostly applied to analyze quasi elastic
events, identified by the absence of pions in the final state. Using the calorimetric recon-
struction, on the other hand, the neutrino energy is deduced from the energy deposited in
the calorimeters by all reaction products. A key element of our analysis are the migration
matrices, presented in Chapter 4, which enclose the probability that an event with a true
neutrino energy ends up to be reconstructed in a different energy bin.
In Chapter 5 we have shown the results obtained from three different phenomenological
studies, aimed at understanding the level of accuracy required for

• the estimation of detector capabilities,

• the estimation of the missing energy,

• the description of multi-nucleon effects in the QE region,

to avoid a large bias in the extraction of the oscillation parameters.
In the first analysis, we compared the two reconstruction techniques discussed above per-
forming an analysis in the disappearance channel for the evaluation of the atmospheric
parameters. We considered two approaches for neutrino event reconstruction: a perfect
scenario, in which all produced particles are detected and their true energies are mea-
sured, and a realistic scenario, where realistic detector capabilities are taken into account.
The observed event rates have been computed taking into account realistic detector capa-
bilities. To quantify when the incorrect estimation of the detector performance starts to
have a significant impact on the fit, we used a linear combination of perfect and realistic
matrices.
This analysis showed that detector capabilities have to be understood at a 10% level or
better, to avoid a significant bias in the measurement of ∆m2, using the calorimetric re-
construction. On the other hand, the kinematic reconstruction performs well even for
pion-production events, but it strongly relies on an accurate understanding of neutrino-
nucleus interactions.
The study of the impact of the correct estimation of the missing energy on the CP-violating
phase has been performed in the appearance channel. Neutrino events have been recon-
structed using the calorimetric method, and the analysis has been performed similarly to
the previous case. However, the fit was performed using a linear combination of realistic
matrices and gaussian distributions, centered around the true neutrino energy and with a
width dependent on the energy smearing of the different particles observed. The results
obtained suggest that an underestimation of missing energy by as little as 20% may result
in a bias of around 1σ in the extracted value of the CP-violating phase.
The final analysis that we performed was dedicated to estimate the impact of 2p2h un-
certainties on a disappearance experiment. To account for multi-nucleon mechanisms we
considered an effective approach which consists of using an increased value of the axial
mass, MA = 1.2 GeV. In the second case 2p2h are simulated according to the model im-
plemented in the event generator GENIE. The obtained results show that the differences
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between the two data-driven approaches have a sizable effect on the evaluation of the os-
cillation parameters, confirming the need of using more realistic and sophisticated model
to describe neutrino interactions.
As a final remark, it has to be pointed out that the ultimate goal of the project developed
for this Thesis is the construction of a fully consistent description of neutrino-nucleus
interactions, taking into account all reaction mechanisms relevant to ongoing and future
experiment. The spectral function formalism appears to be ideally suited to pursue this
goal, because it can be readily generalized to include contributions arising from two-nucleon
currents. The extension of the study of Refs. [136, 161] to the case of charged-current weak
interactions will make it possible a truly consistent treatment of all reaction mechanisms
contributing to the neutrino-nucleus cross section.
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Appendix A

Notation

In this Appendix we summarize the notation used in this Thesis to describe neutrino
scattering via charged current. The neutrino-nucleon interaction process is denoted as

ν`(k) +N(p)→ `−(k′) +X(p′) , (A.1)

where the neutrino with a defined flavor ` scatters off the nucleon N , leading to a final
state given by the produced associated charged lepton `− and a generic hadronic state
X. The schematic representation of the neutrino-nucleon scattering in charged-current is
shown in Fig. A.1.

Figure A.1: Schematic representation of neutrino interaction in charged current.

In the figure the four-momenta of the particles involved in the interaction process are also
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indicated, that is

k = (Eν ,k) , Incoming neutrino, (A.2)

k′ = (E`,k
′) , Outgoing charged lepton, (A.3)

p = (Ep,p) , Nucleon target, (A.4)

p′ = (Ep′ ,p
′) , Hadronic final state, (A.5)

q = (ω,q) , Four-momentum transferred. (A.6)

The four-momentum transferred is such that

q2 = (k − k′)2 = (p′ − p)2 = −Q2 . (A.7)

Similarly, the neutrino-nucleus scattering process

ν`(k) +A(P0)→ `−(k′) +X(PX) (A.8)

is described by the same four-momenta for the leptons, and the initial nuclear ground state
is given by

P0 = (MA,0) , (A.9)

being considered at rest. The hadronic final state X is instead described by

X ⇒ x(p′) +R(pR) , (A.10)

where x(p′) represents the hadrons produced in final state, and R(pR) the residual system,
with

pR = (ER,−p) . (A.11)

The recoil momentum of the system is denoted as −p, to allow the interpretation of p as
the vector sum of the initial momenta of the knocked-out nucleons.
A similar notation has been applied in Chapter 4 when we analyze neutrino interactions in
order to evaluate the neutrino energy. In particular, we decomposed the hadrons produced
in final state between nucleons and mesons

x ⇒ N(p′) +M(h′) , (A.12)

p′i =(Ep′i
,p′i) , (A.13)

h′i =(Eh′i
,h′i) , (A.14)

where N is the state describing the n nucleons knocked-out from the nucleus with four-
momenta p′i, and M represents the state of the produced m mesons with four-momenta
h′i. The energy ER of the residual system of (A− n)-nucleons, can be indicated also with
the explicit notation EA−n.



Appendix B

Leptonic Tensor

In this Appendix we report the general expression for the Li, components of the leptonic
tensor, introduced in Sec. 2.1. They are given by

L1 =
M2

2
(m2

` − q2) , (B.1)

L2 =(EνEp − kxpx − kzpz)(E`Ep − k′xpx − k′zpz)−
1

2

M2

2
(m2

` − q2) = (B.2)

=EνE`E
2
p − EνEpk′xpx − EνEpk′zpz − E`Epkxpx + kxk

′
xp

2
x + kxk

′
zpxpz+

− E`Epkzpz + kzpzk
′
xpx + kzk

′
zp

2
z −

1

2

M2

2
(m2

` − q2) ,

L3 =
1

2
[(EνEp − kxpx − kzpz)(E`ω − k′z|q|)− (E`Ep − k′xpx − k′zpz)(Eνω − kz|q|)] =

(B.3)

=
1

2
[EνEpE`ω − EνEpk′z|q| − kxpxE`ω + kxk

′
zpx|q| − kzpzE`ω + kzk

′
z|q|pz+

− EpE`Eνω + E`Epkz|q|+ k′xpxEνω − kzk′xpx|q|+ k′zpzEνω − k′zkzpz|q|] ,

L4 =(Eνω − kz|q|)(E`ω − k′z|q|)−
ω2 − |q|2

2

1

2
(m2

` − q2) = (B.4)

=EνE`ω
2 − Eνωk′z|q| − E`ωkz|q|+ kzk

′
z|q|2 −

ω2 − |q|2
2

1

2
(m2

` − q2) ,

L5 =(E`Ep − k′xpx − k′zpz)(Eνω − kz|q|) + (EνEp − kxpx − kzpz)(Eνω − kz|q|)+ (B.5)

− 1

2
(m2

` − q2)(Epω − pz|q|) =

=EpE`Eνω − EpE`kz|q| − kxpxEνω + kxpxkz|q| − k′zpzEνω + k′zpzkz|q|+ EνEpE`ω+

− EνEpk′z|q| − kxpxE`ω + kxpxk
′
z|q| − kzpzE`ω + kzk

′
zpz|q| −

1

2
(m2

` − q2)(Epω − pz|q|) .

Being W the invariant mass of the final state and γ the angle between p and q, it is
possible to rewrite px and pz as
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W 2 =p2 + q2 + 2p · q = (Ep + ω)2 − |p|2 − |q|2 − 2|p||q| cos γ , (B.6)

cos γ =
(Ep + ω)2 − |p|2 − |q|2 −W 2

2|p||q| ⇒ , (B.7)

p⊥ =|p| sin γ ⇒ px =
1√
2
|p| sin γ , (B.8)

pz =|p| cos γ . (B.9)

For the neutrino-nucleus scattering, the elementary cross section is weighted by the Spectral
Function (see Chapter 3). In this case the integration in Eq. (3.20) over linear terms in px
is zero, and q → q̃, thus the Li are simplified as

L1 =
M2

2
(m2

` − q2) , (B.10)

L2 =EνE`

[
E2
p − Eppz

(
kz
Eν

+
k′z
E`

)
+ p2

x

k2
x

EνE`
+ p2

z

kzk
′
z

EνE`

]
− 1

2

M2

2
(m2

` − q2) , (B.11)

L3 =EνE`(Ep(pz + qz)− Eppz)
(
kz
Eν
− k′z
E`

)
, (B.12)

L4 =EνE`

[
ω̃2 − ω̃|q|

(
kz
Eν

+
k′z
E`

)
+ |q|2 kz

Eν

k′z
E`
− q̃2

2

(
1− |k

′|
E`

cos θ`

)]
, (B.13)

L5 =EνE`

[
2Epω̃ + 2pzqz

kz
Eν

k′z
E`
− (Epqz + ω̃pz)

(
kz
Eν

+
k′z
E`

)
+ (B.14)

− (Epω̃ − pzqz)
(

1− |k
′|

E`
cos θ`

)]
,

where we can rewrite further the terms

kz
Eν

=
k · q
Eν |q|

=
ω

|q| −
k · q
Eν |q|

, k · q = k(k − k′) = −k · k′ , (B.15)

k′z
E`

=
ω

|q| −
k′ · q
E`|q|

, k′ · q = k(k − k′) = k · k′ −m2
` . (B.16)



Appendix C

Structure Functions for the
∆-resonance

In this Appendix we report the structure functions obtained for the ∆ excitation, following
the procedure shown in Sec. 2.3, taken from [62, 63]. The Wi have been computed using
the FeynCalc tool [162, 163] of the software Mathematica [164]. Terms proportional to A3

have been neglected, due to the fact that it has been set to be equal to zero.

W1 =
4A2

4

M4
(p · q −Q2)2(M2 +MM′ + p · q)+ (C.1)

+
8A4A5(p · q −Q2)(M2 +MM′ + p · q)

M2
+ 4A2

5(M2 +MM′ + p · q)

+
4C2

3

M2M′2
[M2M′2Q2 +M2(p · q)2 − 2M2(p · q)Q2 +M2Q4 +MM′3Q2 + M′2(p · q)2+

+ (p · q)3 − 2(p · q)2Q2 + (p · q)Q4] +
4C3C4

M3M′
(p · q −Q2)[M2(p · q)−M2Q2

− 2MM′(p · q) + 2MM′Q2 + M′2(p · q) + (p · q)2 − (p · q)Q2] +
4C3C5

M3M′
p · q

[M2p · q −M2Q2 − 2MM′p · q + 2MM′Q2 + M′2p · q + (p · q)2 − p · qQ2]+

+
4C2

4(p · q −Q2)2(M2 −MM′ + p · q)
M4

+
4C2

5p · q2(M2 −MM′ + p · q)
M4

+
8C4C5p · q(p · q −Q2)(M2 −MM′ + p · q)

M4
,

W2 =M2

[
4A2

4Q
2(M2 +MM′ + (p · q))

M4
+

4A2
5(M2 +MM′ + (p · q))

M′2
+ (C.2)

+
4C2

3Q
2(M2 + M′2 + (p · q))

M2M′2
+

4C3C4Q
2(M2 − 2MM′ + M′2 + (p · q))

M3M′
+

+
4C3C5Q

2(M2 − 2MM′ + M′2 + (p · q) +Q2)

M3M′
+

4C2
4Q

2(M2 −M′ + (p · q))
M4

+

+
8C4C5Q

2(M2 −MM′ + (p · q))
M4

+
4C2

5Q
2(M′2 +Q2)(M2 −MM′ + (p · q))

M4M′2

]
,
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W3 =− 8A4C3((p · q)−Q2)(−2MM′ − 2M′2 + (p · q)−Q2)

MM′
+ (C.3)

+
8A4C4((p · q)−Q2)2

M2
+

8A4C5(p · q)((p · q)−Q2)

M2
+

+
8A5C3M(2MM′ + 2M′2 − (p · q) +Q2)

M′
+ 8A5C4((p · q)−Q2) + 8A5C5(p · q) ,

W4 =
4A2

4(2(p · q)−Q2)(M2 +MM′ + (p · q))
M2

+ 8A4A5(M2 +MM′ + (p · q))+ (C.4)

− 8A4A6(p · q)(M2 +MM′ + (p · q))
M2

+
4A2

5M
2(M2 +MM′ + (p · q))

M′2
+

− 8A5A6(M2 +MM′ + (p · q))(M′2 − (p · q) +Q2)

M′2
+

+
4A2

6(M2 +MM′ + (p · q))(M′2Q2 + (p · q)2 − 2(p · q)Q2 +Q4)

M2M′2
+

− 4C2
3(M2M′2 − 2M2(p · q) +M2Q2 +MM′3 − 2(p · q)2 + (p · q)Q2)

M′2
+

4C3C4

MM′

(2M2(p · q)−M2Q2 − 4MM′(p · q) + 2MM′Q2 + M′2(p · q) + 2(p · q)2 − (p · q)Q2)+

+
4C3C5(p · q)(M2 − 2MM′ + 2(p · q))

MM′
+

4C2
4(2(p · q)−Q2)(M2 −MM′ + (p · q))

M2
+

+
8C4C5(p · q)(M2 −MM′ + (p · q))

M2
− 4C2

5(p · q)2(−M2 +MM′ − (p · q))
M2M′2

,

W5 =
8A2

4(p · q)(M2 +MM′ + (p · q))
M2

+ 8A4A5(M2 +MM′ + (p · q))− (C.5)

+
8A4A6Q

2(M2 +MM′ + (p · q))
M2

+
8A2

5M
2(M2 +MM′ + (p · q))

M′2
+

+
8A5A6((p · q)−Q2)(M2 +MM′ + (p · q))

M′2
+

8C2
3(p · q)(M2 + M′2 + (p · q))

M′2
+

+
8C3C4(p · q)(M2 − 2MM′ + M′2 + (p · q))

MM′
+

8C2
4(p · q)(M2 −MM′ + (p · q))

M2
+

+
8C3C5(p · q)(M2 − 2MM′ + M′2 + (p · q) +Q2)

MM′
+

+
8C2

5(p · q)(M′2 +Q2)(M2 −MM′ + (p · q))
M2M′2

+
16C4C5(p · q)(M2 −MM′ + (p · q))

M2
.



Appendix D

Kinematic formulas

The starting point is the reaction

ν`(k) +A(P0)→ `−(k′) +N(p′) +M(h′) +R(pR) ,

where N indicates a general final state of nucleons knocked out from the target A, whileM
denotes a generic state of mesons, and R is the residual nucleus (see Appendix A). Consid-
ering the production of n nucleons and m mesons, the energy and momentum conservation
leads to

k + PA = k′ + p′ + h′ + pR , (D.1)

Eν +MA = E` + ER +
n∑
i

Ep′i +
m∑
j

Eh′j , (D.2)

k = k′ +
n∑
i

p′i +
m∑
j

h′j − p . (D.3)

We can introduce the invariant hadronic mass of the hadrons produced in the final state,
as

W 2 = (p′ + h′)2 =

( n∑
i

Ep′i +

m∑
j

Eh′j

)2

−
( n∑

i

p′i +

m∑
j

h′j

)2

. (D.4)

These equations lead to

(MA − ER)2 − p2 + E2
` − k′2 + 2Eν(MA − ER)− 2k · p− 2E`(MA − ER)+ (D.5)

+ 2k′ · p− 2EνE` + 2k · k′ = W 2 ,

Eν(2(MA − ER)− 2E` + 2|k′| cos θ` − 2|p| cos θp) +m2
` + ((MA − ER)2 − p2)+

− 2E`(MA − ER) + 2k′ · p = W 2 .

Thus the neutrino energy is given by

Eν =
W 2 −m2

` + 2(MA − ER)E` − ((MA − ER)2 − p2)− 2p · k′
2((MA − ER)− E` + |k′| cos θ` − |p| cos θp)

, (D.6)
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with m` the lepton mass, |p| cos θp = p · k/Eν and |k′| cos θ` = k′ · k/Eν .
Notice that in the main text the more explicit notation ER = EA−n is used.



Appendix E

Migration Matrices

In this Appendix we show the migration matrices, discussed in Sec. 4.4. We include here
just the set of matrices obtained within the realistic scenario (see Sec. 4.3), comparing the
calorimetric and kinematic reconstruction results.
The reconstructed events are generated using GENIE (see Sec. 4.2), for the different
interaction channels taken into account, with carbon (12C) as nuclear target. In the Figs.
E.1 - E.4 we show the migration matrices obtained for quasi-elastic interaction, 2p2h

processes, resonance production and deep inelastic scattering, respectively. In the figures
the x-axis represents the true neutrino energy and the y-axis the reconstructed neutrino
energy. Notice that the color bars in the figures have their maximum chosen between the
maximal value among the two compared matrices.
Furthermore, Tab. E.1 represents the format of the migration matrices produced, and
available in Refs. [118, 119].

Mij

︸ ︷︷ ︸
Etrueνj


Erecνi

Table E.1: Format of the migration matrix. A migration matrix Mij defines the
probability for an event with true neutrino energy Etrueνj to be reconstructed with
an energy Erecνi
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Figure E.1: Migration matrices obtained with calorimetric (left panel) and kine-
matic (right panel) reconstruction. The events in the QE interaction channel,
produced with GENIE, are reconstructed using the realistic scenario.
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Figure E.2: The same as in Fig. E.1, but for 2p2h interactions.
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Figure E.3: The same as in Fig. E.1, but for resonance production.
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Figure E.4: The same as in Fig. E.1, but for deep inelastic scattering.
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Appendix F

χ2 analysis

The χ2 analysis is performed to extract the oscillation parameters and relative confidence
regions at 1, 2 and 3σ confidence level (CL). The study follows Refs. [130] and [128], where
the χ2 analysis is reported in their appendix and for completeness, it is also discussed here
below.

The χ2 values, in the energy bin i and for the detector D is calculated as

χ2
i,D = 2

(
Ti,D(θ, ξ)−Oi,D +Oi,D ln

Oi,D
Ti,D(θ, ξ)

)
. (F.1)

where D can be the near or the far detector.
The above formula depends on the effective observed event number Oi,D computed with
the assumed true oscillation parameters, and on the event number Ti,D expected at the
detector D and in the i−th energy bin, given by

Ti,D(θ, ξ) = (1 + ξφ,i + ξn)Ni,D(θ, ξ) , (F.2)

which depends on two different nuisance parameters ξ, and on the oscillation parameters θ
used as test values. The parameter ξφ,i is linked to the flux uncertainties in the energy bin i,
and it is bin to bin uncorrelated. The nuisance parameter ξn is associated to normalization
uncertainties, that are bin to bin correlated. Ni,D is the event number for a given energy
bin computed with the test values θ for the detector D.
The true event number Oi,D depends only on the oscillation values used as true input
values.
The χ2 is evaluated also including gaussian priors for each nuisance parameter included in
the analysis. The final expression of the χ2 is then obtained minimizing over the nuisance
parameters ξ

χ2 = min
ξ

{∑
i,D

χ2
i,D(θ, ξ) +

∑
i

(
ξφi
σφ

)2

+

(
ξn
σn

)2}
(F.3)

where σξ are the gaussian priors uncertainties assumed for each systematic error.
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Appendix G

Gaussian smearing

In this Appendix we explain the procedure used for the evaluation of the standard devia-
tions of the gaussian distributions used for the analysis in Sec. 5.2.
The behavior of the standard deviation, as a function of true neutrino energy, can be fitted
with a given function. The fitting function chosen is

σ(Eν) = a+ b
√
Eν + cEν , with a, b, c > 0 , (G.1)

and Eν in GeV. The above expression can be implemented in GLoBES in order to obtain
a gaussian smearing for the energy resolution R(Eν , E

′), in the form

R(Eν , E
′) =

1

σ(Eν)
√

2π
e
−
Eν − E′
2σ2(Eν) . (G.2)

The standard deviations of the distributions obtained from the realistic migration matrices
have been fitted using the function in Eq. (G.1) to obtain the parameters a, b and c. The
results obtained in the different interaction channels, for electron neutrino (σνe(Eν)) and
antineutrino (σν̄e(Eν)), and Eν in GeV, are

• Quasi-elastic interaction:

σνeQE(Eν) = 0.26
√
Eν + 0.015Eν ,

σν̄eQE(Eν) = 0.014 + 0.13
√
Eν + 0.060Eν .

• Resonance production:

σνeres(Eν) = 0.31
√
Eν + 0.0029Eν ,

σν̄eres(Eν) = 0.068 + 0.15
√
Eν + 0.043Eν .

• Deep inelastic scattering:

σνeDIS(Eν) = 0.16 + 0.18Eν ,

σν̄eDIS(Eν) = 0.17
√
Eν + 0.10Eν .
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• 2p2h:
σνe2p2h(Eν) = 0.15 + 0.086Eν ,

σν̄e2p2h(Eν) = 0.090 + 0.10Eν .

Figure G.1: Fit results for electron neutrino for the different interaction chan-
nels. The solid lines represent the standard deviation obtained from the realistic
migration matrices, as a function of the neutrino energy. The dashed lines are
obtained using Eq. (G.1) as fitting function.

The results of the different fits are shown in Figs. G.1 and G.2, for the different interaction
channels, and for electron neutrino and anti-neutrino, respectively. In Fig. G.3, we compare
the probability distribution functions for an event to be reconstructed with an energy
Erec, in the QE channel for νe at fixed true neutrino energy (Eν = 1.45 GeV). The two
distributions are obtained using the migration matrices and a gaussian distribution with
the same standard deviation of the matrices but centered around the true neutrino energy.
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Figure G.2: The same as in Fig. G.1, but for electron anti-neutrino.

Figure G.3: Probability distribution function for an event to be reconstructed
with an energy Erec, given the true neutrino energy Etrue.
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