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Introduction

When a neutron star is perturbed by some external or internal event, it can be
set into non-radial oscillations, emitting gravitational waves at the charateristic
frequencies of its quasi-normal (i.e. damped) modes. This may happen, for instance,
as a consequence of a glitch (a sudden increase in the rotation rate of a pulsar), of
a close interaction with an orbital companion, of a phase transition occurring in
the neutron star inner core or in the aftermath of a gravitational collapse. The
frequencies and the damping times of the quasi-normal modes carry information on
the structure of the star and on the properties of matter in its interior.

As Chandrasekhar first pointed out [1], emission of gravitational radiation (GR)
following the excitation of non-radial oscillation modes may lead to the instability
of rotating stars. Chandrasekhar’s result was subsequently put on a more rigorous
footing by Friedman and Schutz [2], who also proved that the instability, known as
CFS instability, is such that all rotating perfect fluid stars are unstable.

The mechanism is easy to understand: consider a neutron star, rotating with
angular velocity Ω, and a perturbation of this star with angular dependence eimφ;
the perturbation creates time-dependent mass-multipoles, which cause the star to
emit GR. If the perturbation propagates in the direction opposite the star rotation,
the GR reduces the perturbation amplitude in such a way as to conserve angular
momentum. In sufficiently rapidly rotating stars, however, these perturbations are
forced to move in the same direction of the star rotation, as the waves are dragged
along by the fluid in the star; in this case, conservation of angular momentum
requires that the perturbation amplitude grow. Thus, any counter-rotating per-
turbation will become unstable when the star rotates rapidly enough to force it to
corotate with the star. Of particular relevance is the instability driven by so called
r-modes, oscillations of rotating stars whose restoring force is the Coriolis force [3].

The observation of stable rotating stars shows that some other mechanism must
be active to prevent GR from driving these perturbations unstable. One such mech-
anism is internal dissipation in stellar matter: viscosity (and thermal conduction)
quickly damps out any large gradient in velocity (or thermal) perturbations. These
mechanisms, however, are poorly understood and therefore difficult to model in a
realistic fashion.
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Introduction

At relatively low temperatures (below a few times 109 K) the main viscous dis-
sipation mechanism arises from momentum transport due to particle scattering. In
the standard approach these scattering events are modelled in terms of a macroscopic
shear viscosity. In a normal fluid star, neutron-neutron scattering provides the most
important contribution to shear viscosity, while in a superfluid electron-electron
scattering dominates. In order to determine which stars are stable, a detailed ana-
lysis of their perturbations must be carried out including the influence of both GR
and viscosity [4].

Early estimates of the shear viscosity coefficients of neutron star matter were
obtained in the 70s by Flowers and Itoh, who used the measured scattering phase
shifts to estimate the neutron-neutron scattering probability [5, 6]. Based on these
results, Cutler and Lindblom carried out a systematic study of the effect of the
viscosity on neutron-star oscillations, using a variety of different equations of state
of neutron star matter [4].

The procedure followed by Cutler and Lindblom [4], while allowing for the first
quantitative analysis of the damping of neutron-star oscillations, cannot be regarded
as fully consistent. Ideally, the calculation of transport properties of neutron star
matter and the determination of its equation of state should be carried out using
the same dynamical model. The work discussed in this Thesis is aimed at making
a first step towards this goal.

Realistic models of the neutron star matter equation of state are obtained from ei-
ther nonrelativistic nuclear many-body theory [7, 8] or relativistic approaches based
on the mean-field approximation [9]. The extension of these microscopic approaches
to the description of transport properties, needed to calculate the viscosity coeffi-
cients, involves serious difficulties that cannot be handled with the available compu-
tational techniques. Transport properties are most effectively described within the
more phenomenological approach proposed by Landau in 1956 [10].

In this Thesis we combine the results of Landau theory and nuclear many-body
theory to obtain the shear viscosity coefficient of pure neutron matter, η, using the
same model of the microscopic dynamics employed to model the equation of state.

The main difficulty associated with our approach is the calculation of the neutron-
neutron scattering cross section in the nuclear medium. This calculation has been
carried out using an effective interaction derived from a highly realistic nucleon-
nucleon potential, and including the effect of many-nucleon forces. This is to be
regarded as the most important feature of our work, as most previous studies of
the viscosity were based on the assumption that the scattering probability in not
affected by medium effects [11].

In Chapter 1 we review the main feautures of Landau theory of normal Fermi
liquids, as well as its extensions, mainly due to Abrikosov and Khalatnikov [12],
needed to express transport coefficients in terms of the scattering probability.

In Chapter 2, after recalling the available empirical information on nuclear matter
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and nuclear forces, we analyze the structure of the nuclear hamiltonian used in
nonrelativistic many-body theories.

Chapter 3 is devoted to a description of the formalism based on correlated many-
body wave functions and cluster expansion techniques, known as Correlated Basis
Function (CBF) perturbation theory. The effective interaction obtained from this
approach has been tested by computing different nuclear matter properties, and
comparing to the results of highly advanced calculations available in the literature.

In Chapter 4 we discuss the results of our calculations of the shear viscosity
of pure neutron matter, showing that the inclusion of medium modifications of the
scattering cross section leads to large differences, with respect to previously available
estimates.

Finally, we summarize the main features of our work and point out the potential
of our approach for further studies of different nuclear matter properties, as well as
its limits of applicability.

Unless otherwise specified, throughout this Thesis we always use a system of
units in which ~ = h/2π = c = KB = 1, where h is Plank’s constant, c is the speed
of light and KB denotes Boltzmann’s constant.
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Chapter 1

Transport properties of normal

Fermi liquids

In this Chapter we introduce the concept of viscosity at both macroscopic and
microscopic level. After a short discussion based on classical fluid mechanics, in
Sections 1.3 and 1.4 we outline the main ideas underlying Landau theory of normal
Fermi liquids, and its application to the study of their transport properties. Finally
we discuss the derivation of the shear viscosity coefficient, whose calculation is the
main aim of this Thesis.

1.1 Macroscopic theory

It is an every-day-life observation that “thicker” liquids (like honey) move less easily
than others (like water): viscosity measures the ease with which a fluid yields to an
external stress [13].

In hydrostatic equilibrium, and in all cases for a non-viscous fluid, stresses are
always normal to any surface inside the fluid: the normal force per unit area is just
the pressure. When a velocity gradient exists in a fluid, a shearing stress is developed
between two layers of fluid with differential velocities. The shear viscosity is given
by the ratio of the shearing stress to the transverse velocity gradient. Perfect fluids
cannot sustain a shear stress, while, in general, in real liquids the sort of internal
friction we call viscosity cannot be neglected [13, 14].

First of all, we recall an important experimental fact: in all circumstances, the
velocity of a fluid is exactly zero at the surface of a solid, even if we take into account
the possibility that there might be a shear force between the liquid and the solid.

As we said, there are no shear stresses in static conditions. However, if we exert
a force on a fluid, as long as we push on it, and before equilibrium is reached, there
can be shear forces. To get an estimate, consider the classical experiment of viscous
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1 – Transport properties of normal Fermi liquids

drag between two parallel planes, schematically illustrated in Fig. 1.1. Suppose we
have two solid surfaces with a fluid between them; we keep one stationary while
moving the other, parallel to it, at the low speed v0.

Figure 1.1. Schematic representation of viscous drag.

We observe that, as we go from the upper plate to the lower one, the fluid velocity
decreases from the value v0 to zero on the surface of the stationary plate. Measuring
the force F required to keep the upper plate moving, we find that it is proportional
to the area A of the plate and to the velocity v0, while being inversely proportional
to the distance d between the plates. Hence, the shear stress F/A is proportional to
v0/d,

F

A
= η

v0

d
. (1.1)

The above equation defines the coefficient of shear viscosity η.
In common language, the word “dense” is often used in place of “viscous”. How-

ever, although denser fluids are usually more viscous, it is sometimes more con-
venient, for macroscopic considerations, to use the specific viscosity, defined as η
divided by the mass density. Moreover, and as it will become clear after the next
section, viscosity usually depends strongly on temperature.

1.2 Microscopic description

As we saw, shear viscosity is related to the variation (spatial gradient) of the velocity
flow of a fluid in the transverse direction.

The microscopic description of the state of a moving fluid [14] requires the knowl-
edge of the velocity field

v = v(r, t) , (1.2)

and any two termodynamic parameters, e.g. density and pressure, respectively given
by

ρ = ρ(r, t) , p = p(r, t) . (1.3)
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1.2 – Microscopic description

Note that the coordinate r specifies a fixed point in space and not the position of a
moving particle of the fluid.

Mass conservation is expressed through the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 . (1.4)

For an ideal fluid, the equation of motion is obtained by taking into account that
the force exerted by the surrounding fluid on a fluid element of unit volume is just
minus the pressure gradient, i.e. F = −∇p. This leads to the Euler equation

∂v

∂t
+ (v · ∇) = −1

ρ
∇p . (1.5)

Euler equation describes the motion of a fluid in the absence of processes leading
to energy dissipation, occuring due to viscosity (i.e. internal friction) and heat
exchange between different fluid elements.

For an incompressible fluid, i.e. a fluid whose density does not depends on either
r or t, Euler equation (1.5) does not change, while the continuity equation (1.4)
simplifies to

∇ · v = 0 . (1.6)

Let us consider the rate of change of momentum (per unit volume) during the
fluid motion, given by ∂ (ρv) /∂t. Making use of the continuity equation (1.4) and
Euler equation (1.5), we obtain

∂

∂t
(ρvi) = ρvk

∂vi

∂xk
− ∂p

∂xi
− ∂

∂xk
(ρvk) vi

= − ∂p

∂xi
− ∂

∂xk
(ρvivk)

≡ −∂Πik

∂xk
, (1.7)

where we introduced the momentum-flux tensor

Πik = pδik + ρvivk . (1.8)

The component Πik of the momentum flux tensor is the i-th component of the
momentum flowing through a surface of unit area, perpendicular to the xk axis, per
unit time.

Consider now the effect of energy dissipation on the fluid motion; this requires
the inclusion of an additional term to the equation of motion describing an ideal
fluid.
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1 – Transport properties of normal Fermi liquids

The continuity equation (1.4), expressing conservation of matter, is not affected
by energy dissipation. On the other hand, the Euler equation needs to be modified.
The momentum flux tensor (1.8) describes a reversible transfer of momentum, re-
sulting from motion of fluid particles and the pressure force acting in the fluid. In
the presence of viscosity there is an additional, irreversible transfer of momentum
from points of higher velocity to points of lower velocity [14].

The equation of motion of a viscous fluid can be obtained by adding to the ideal
momentum flux tensor (1.8) a term −σ′

ik describing the irreversible flux. We write

Πik = pδik + ρvivk − σ′
ik

= −σik + ρvivk , (1.9)

where

σik = −pδik + σ′
ik (1.10)

is called the stress tensor, while σ′
ik is the viscous stress tensor.

Conservation laws and symmetry considerations require σ′
ik to be of the form

[14]

σ′
ik = η

(
∂vi

∂xk
+
∂vk

∂xi
− 2

3
δik
∂vℓ

∂xℓ

)
+ ξδik

∂vℓ

∂xℓ
, (1.11)

where the coefficients η and ξ are called first (or shear) and second (or bulk) viscosity,
respectively. They are both positive [14] and independent of velocity, while they may,
in general, depend on pressure and temperature, thus being not costant throughout
the fluid. In most cases, however, η and ξ depend weakly on r and can be treated
as constants.

The equation of motion in the presence of viscosity can be simply obtained by
adding ∂σ′

ik/∂xk to the rhs of Eq. (1.5) [14].

Note that for an incompressible fluid ∇·v = 0 and the stress tensor of Eq. (1.10)
reduces to

σik = −pδik + η

(
∂vi

∂xk
+
∂vk

∂xi

)
, (1.12)

i.e. it only depends on the shear viscosity coefficient η.

The shear viscosity is the transport coefficient that characterizes the diffusion of
momentum transverse to the direction of propagation, due to the collisions of fluid
particles in the medium. It is proportional to the mean free path of the excitations
in the medium, and inversely proportional to the scattering cross section between
particles constituing the fluid. These two quantities are strongly temperature de-
pendent, and so is the viscosity.
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1.3 – Landau theory of normal Fermi liquids

1.3 Landau theory of normal Fermi liquids

Landau theory of normal Fermi liquids (FL), developed by its author in 1956 [10], is a
phenomenological theory, allowing for a description of static and trasport properties
of (strongly) interacting systems of Fermi (i.e. spin one-half) particles in the normal
(i.e. non superconducting) state [15, 16]. The analysis of transport properties of
FL was further developed by Abrikosov and Khalatnikov, who gave an approximate
solution of the equation for the transport coefficients back in 1959 [12]; the exact
solution was finally obtained by Brooker and Sykes in 1970 [17, 18].

Landau theory (LT) provides a way of parametrizing low temperature properties
of FL - thus enablying one to relate experimentally measurable quantities to each
other - in terms of a rather small number of parameters; the results of LT mainly
follow from general arguments, conservation laws and symmetry principles, and do
not depend on the microscopic details of the interparticle forces. Finally, LT has
been shown to be correct from microscopic first-principles calculations, based on
the Green function formalism and diagrammatic techniques, confirming Landau’s
intuitions [19].

1.3.1 Basic assumptions

Landau theory deals with systems of interacting s = 1/2 particles in the normal
state. Examples of normal FL are liquid 3He and 3He-4He mixtures, nuclear matter
- relevant to the description of heavy nuclei and the neutron star core - and the
electron liquid, that can be found in metals and white dwarfs.

Experimental analyses of liquid 3He, that became feasible in the early 50s, pro-
vided the first strong evidence that the ideal gas model fails to reproduce the ob-
served low temperature properties.

The calculation of thermodynamic properties of an ideal (non interacting) Fermi
system is a standard textbook exercise in statistical mechanics. Consider a system
of N particles enclosed in a volume V , with N,V → ∞ and the number density
ρ = N/V kept fixed at a finite value (termodynamic limit); the key ingredient to
calculate all quantities of interest is the partition function

Z =
∑

s

e−β(ǫs−µ) , (1.13)

where β = 1/T , T being the temperature. In the above equation, µ is the chemi-
cal potential, s specifies the set of relevant quantum numbers (momentum p, spin
projection σ, . . . ) and ǫs denotes the energy of the single-particle states.

Once the partition function is known, termodynamic properties (like pressure,
internal energy, . . . ) can be simply calculated as derivatives of Z.

9



1 – Transport properties of normal Fermi liquids

The fermionic nature of the particles is embedded in the properties of the dis-
tribution function n(ǫs), yielding the mean occupation number of the state with
energy ǫs. At zero temperature, the system is in its ground state; due to the Pauli
principle, every single-particle state is filled with two particles (one for each spin
projection), up to the maximum energy ǫF , called Fermi energy, while the states
with energies larger than ǫF are all empty. A particle added to the system will have
at least an energy ǫF , so that, at T = 0, the Fermi energy is the chemical potential.
The distribution function at zero temperature is then given by the step function

n(ǫs,T = 0) = θ(ǫF − ǫs) . (1.14)

From now on, we will only consider the case s ≡ p, thus suppressing spin and
other indices. The single-particle energy is then written as ǫ(p) or ǫp and the
distribution function of the system is indicated as n(ǫ) or np.

According to the dispersion relation ǫ = ǫ(p), the Fermi energy ǫF defines a
surface in momentum space, known as the Fermi surface; for an isotropic system,
the Fermi surface is a sphere, with radius given by the Fermi momentum pF , whose
magnitude is simply related to the density ρ through |pF | = (6π2ρ/ν)1/3, where ν
specifies the degeneracy of the momentum eigenstates. For a system of non rela-
tivistic free particles, the dispersion relation is given by

ǫp =
p2

2m
. (1.15)

An excited state of the system is obtained by moving some particles to empty
states above the Fermi surface, giving rise to the so-called particle-type excitations,
while leaving some empty energy levels, or hole-type excitations, below the Fermi
surface. Due to particle number conservation, particle and hole excitations always
appear in equal numbers.

At finite temperature, equilibrium is characterized by the Fermi-Dirac distribu-
tion

np =
1

eβ(ǫp−µ) + 1
. (1.16)

Comparison with Eq.(1.14) shows that, due to thermal effects, the jump of np from
unity to zero takes place over an energy range ∼ T around µ.

For an interacting system, this picture is no longer consistent. Even if we knew
exactly the details of the interparticle interactions (and this is not our case, as we
shall discuss later in detail), we would not be able to determine the exact eigenstates
of the system and, as a consequence, to calculate the partition function. Due to
interactions, the very concept of single-particle level is no longer correct: the state
of a given particle depends on those of all the others and the excited states of the
system cannot be built up by simply moving particles to excited single-particle levels.

10



1.3 – Landau theory of normal Fermi liquids

However, at very low temperatures, we can resort to some reasonable assump-
tions that greatly simplifies the problem, and led Landau to the formulatation of
his theory.

Landau’s reasoning went as follows: consider an interacting system and imagine
to turn off interactions; the equilibrium state is characterized by a step distribution
function n0

p. If we now turn on the interaction adiabatically, as a consequence
of Pauli principle particles have no empty states to scatter to (they are said to
be Pauli blocked), and every non-interacting state will eventually give rise to a
specific state of the interacting system. Hence, we can assume that there is a one-
to-one correspondence between the states of the ideal gas and those of the real
liquid. Under these circumstances, the energy spectrum of the liquid is constructed
according to the very same principles as that of the perfect gas: levels are occupied
from below, taking into account spin degeneracy, up to the energy ǫF which, in
general, is different from that of the non interacting system.

In the low temperature limit, only the first energy levels really affect the partition
function; if we were able to develop a consistent description of these states, the
termodynamic properties of the system could be easily calculated. As shown by
Landau, the characteristics of the energy spectrum can be inferred by using very
general considerations and regardless of the strength and specific features of the
interaction.

1.3.2 Quasiparticles

Landau theory is based on the concept of elementary excitations of a many-particle
system.

Consider the system in its ground state, plus a particle with |p| > pF : such a
state has momentum p and energy ǫp (with ǫp 6= ǫ0p). Every excited state of the
whole system can be written as a rather complicated superposition of single-particle
excited states (the set of eigenstates of the non interacting system still being a basis
in Hilbert space), corresponding to a rather discontinuos distribution function np,
which can be made smooth by averaging over a set of neighbouring states, with
narrow energy spread. Landau calls this state a quasiparticle state.

Quasiparticles (QP) are the elementary excitations of the FL; being the result
of interactions between all particles, QP pertain to the system as a whole and not
to its separate constituents.

As they are not exact eigenstates of the system, quasiparticle states are unstable:
transitions via decay or scattering have nonzero probability, leading to a damping
of the excitations. Decay occurs for high energy excitations, while scattering is the
dominant damping mechanism when the number of excitations grows.

A description of the system in terms of a gas of weakly interacting QP is mean-
ingful only if their attenuation is small, i.e. when the packet width is much smaller
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1 – Transport properties of normal Fermi liquids

than its energy.
By simple phase-space considerations [19], it can be shown that the lifetime of

the QP excitations, of energy ǫ and at temperature T , can be expressed as

1

τ
∝ a(ǫ− µ)2 + bT 2 . (1.17)

In the neighborhood of the Fermi surface and at sufficiently low T , quasiparticle
states are long-lived and behave pretty much like stable single-particle states. These
are the limits of validity of Landau theory. Under these conditions we can simply
describe the properties of the system through a distribution function np, which is
now to be interpreted as a quasiparticle distribution function.

As already mentioned, due to interactions the energy of a QP depends on the
state of all the others; therefore, Landau assumes ǫp to be a functional of the QP
distribution function, writing

ǫp = ǫp [np] . (1.18)

The total energy of the system is also a functional of the distribution function

E = E [np] = E0 +
∑

p

ǫp δnp , (1.19)

where E0 is the ground state energy (which can’t be determined within the frame-
work of LT), implying that the QP energy is the functional derivative of the energy
of the system

ǫp =
δE

δnp

. (1.20)

A noticeable feature of interacting systems is that the phase-space volume is not
changed by interactions: for an isotropic system pF remains unchanged too1.

A Fermi surface is still associated with the discontinuity of the momentum distri-
bution. However, there are unoccupied states below pF and occupied states above.

The QP distribution function np can be determined, just as for the perfect gas,
by minimizing the total energy of the N particles system

E = T S + µN , (1.21)

where S is the entropy, with respect to np, under the constraints of particle number
and energy conservation.

The expression of the entropy S remains the same as for the non interacting
system, being determined by combinatorics and by the assumption of the one-to-
one correspondence between states of the interacting and non interacting systems.

1This result is sometimes referred to as Landau theorem; the analog result for systems with a
periodic structure is known as Luttinger theorem.
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1.3 – Landau theory of normal Fermi liquids

It is given by

S = −
∑

p

{np log np + (1 − np) log(1 − np)} . (1.22)

The resulting np has the appearence of a Fermi-Dirac distribution (compare to
Eq.(1.16))

np =
{

1 + exp
(
β (ǫp [np] − µ)

)}−1

. (1.23)

It has to be emphasized, however, that, due to the functional dependence of ǫp on
np, the above equation provides a rather complicated implicit definition of np.

1.3.3 Quasiparticle interaction and Landau parameters

Interactions between QP are taken into account by the second term of the functional
expansion of the energy

E = E0 +
∑

p

ǫ0p δnp +
1

2

∑

p,p′

fpp′ δnp δnp′ , (1.24)

where ǫ0p is the isolation energy, i.e. the energy of an isolated QP, and fpp′ is the
interaction energy of a QP in the state of momentum p interacting with one carrying
momentum p′.

In order to better understand the meaning of the quantity fpp′ and its relation
to the physical interaction between particles, it is useful to introduce the Landau
parameters.

First of all, we specify the additional quantum numbers relevant to the descrip-
tion of different physical systems. In the low temperature regime, spin interactions
may be relevant. Including the spin in the formalism of Landau theory is straight-
forward:

ǫσp = ǫ0σp +
∑

σ′

∫
d3p′

(2π)3
fσp,σ′p′ δnσ′p′ . (1.25)

If invariance under spin-rotations holds, then

fσp,σ′p′ = f s
p,p′ + fa

p,p′ (σ · σ′) , (1.26)

with

f s,a
p,p′ =

f ↑↑
p,p′ ± f ↑↓

p,p′

2
. (1.27)

For nuclear and neutron matter (to be discussed in detail in the following Chap-
ters), isospin should also be considered.

For very low T , only states in the close vicinity of the Fermi surface are relevant
(due, once again, to Pauli blocking); this implies that the magnitude of the momenta
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1 – Transport properties of normal Fermi liquids

appearing in the quantities fpp′ is fixed to be approximately equal to the Fermi
momentum, i.e. |p| ≃ |p′| ≃ pF , as T → 0, and only the relative orientation
matters.

The interaction parameters have dimension of an energy density; by multiplying
them by the density of states (i.e. the number of states for a given density and unit
volume), we obtain the dimensionless quantities

N(0)f s,a
p,p′ ≡ F s,a

p,p′ =
∞∑

ℓ=0

F s,a
ℓ Pℓ (cos θ) , (1.28)

where F s,a has been expanded in Legendre polynomials, θ being the angle between
p and p′.

The numbers F s,a
ℓ are known as Landau F-parameters; they totally embed the

effects of interactions and cannot be determined by the theory, but have to be
extracted from measurements. Intuitively, they are connected to the scattering
amplitudes: this relation can be made precise within the Green function formalism
[19]. As we shall see, the Fermi liquids corrections, which enter through the F ’s,
do not affect the low temperature behaviour of the transport coefficients we will be
focusing on. Hence, we will not discuss Landau parameters any further (a detailed
account can be found in Refs.[15, 16]).

For an isotropic system, and in the absence of magnetic fields, the QP energy
only depends on p = |p|; in the vicinity of the Fermi surface, where Landau theory
is expected to be applicable, it can be written as

ǫp − ǫF ≡ p2

2m⋆
≈ vF (p− pF ) , (1.29)

where we introduced the effective mass m⋆ and the Fermi velocity vF , defined by

vF ≡
(
∂ǫp
∂p

)∣∣∣∣
p=pF

=
pF

m⋆
. (1.30)

The effective mass m⋆ embodies the effect of interactions at the quasiparticle level,
and it is related to the bare mass m by the Landau F-parameters [15, 16].

1.4 Transport properties

Transport properties are relevant to the description of a system in a state which differ
slightly from the equilibrium state. Under these nonequilibrium and/or nonhomo-
geneous conditions, the macroscopic parameters which characterize equilibrium (T ,
µ, . . . ) depend on position, r, and time, t.

14



1.4 – Transport properties

The system can be described through a distribution function np = np(r, t), itself
depending on space and time coordinates, as well as on momentum.

The description of many-particle systems at very low temperature requires that
quantum effects be properly taken into account; for this reason, defining a distribu-
tion function which simultaneously depends on the particle positions and momenta
may look questionable. In fact, we know that, according to Heisenberg uncertainty
principle, the position of a (quasi)particle of definite momentum p cannot be deter-
mined with arbitrary accuracy. However, if the spatial inhomogeneity of the system
occurs over a typical lenght ∆r, particles are localized in space only within the same
distance; on the other side, if the system is at temperature T , the distribution func-
tion in momentum space varies only over a characteristic width of ∆p ∼ T/vF . As
long as ∆r∆p≫ ~, or

∆r ≫ ~vF

T
,

the uncertainty principle causes no troubles, and the use of a “classical” distribution
function is legitimate [15]. For example, in nuclear matter at equilibrium density
and T = 1 MeV (corresponding to ∼ 1010 K)

∆r∆p >
∼ ~ =⇒ ∆r >

∼
~vF

T
∼ 80 fm . (1.31)

1.4.1 Boltzmann-Landau equation

If the distribution np(r, t) can be regarded as a classical distribution function,
its space and time evolution is determined by a kinetic equation, known as the
Boltzmann-Landau equation [15], in analogy with the Boltzmann equation of clas-
sical fluid mechanics (see, e.g., Ref.[14]). For simplicity, in the following we shall
neglect forces acting on the spin degrees of freedom, and omit spin indices.

The kinetic equation for np takes the form of a nonhomogeneus continuity equa-
tion (compare to Eq.(1.4)):

∂np(r, t)

∂t
+
∂np(r, t)

∂r
· v +

∂np(r, t)

∂p
· F = I[np(r,t)] . (1.32)

The rhs of the above equation is the collision integral. It takes care of collisions in
which QP momenta undergo sudden changes. We will describe the collision integral
in the next Section.

Continuous changes in the quasiparticle positions and momenta are taken into
account by the lhs of Eq.(1.32). Following Landau’s interpretation of the QP energy
as the single-particle hamiltonian, and making use of the Hamilton equation of
motion, we can write

∂ǫ

∂p
= vp ,

∂ǫ

∂r
= −F . (1.33)

15



1 – Transport properties of normal Fermi liquids

The first equation simply states that vp is the QP group velocity, while the second
expresses the fact that, for a system out of equilibrium, the (spatial) gradient of the
chemical potential acts as a generalized force.

Plugging Eq.(1.33) into Eq.(1.32), we obtain the Boltmann-Landau equation
(BLE)

∂np

∂t
+
∂ǫp
∂p

· ∂np

∂r
− ∂ǫp

∂r
· ∂np

∂p
= I[np] . (1.34)

In spite of its being similar to the equation used to decribe weakly interacting
gases, the BLE includes important additional physical features. First of all, the
QP velocity, ∇pǫp, depends on position and time; moreover, the force term, ∇rǫp,
includes the Fermi liquid corrections. In fact, even in the absence of external po-
tentials, ǫp depends on position because it depends, through the QP distribution
function, on the position of all other QP. This contribution is represented by the
term

∇rǫp =

∫
d3p′

(2π)3
fp,p′∇rn

′
p(r, t) . (1.35)

As we are interested in slightly off-equilibrium conditions, we can linearize the
lhs of the BLE in δnp = np−n0

p, the deviation of the distribution function from the
equilibrium (at T = 0) one. Note that this also implies that the QP energies are
changed, according to

ǫp = ǫ0p + δǫp . (1.36)

The linearized BLE reads [15]:

∂ δnp

∂t
+ vp · ∇r

(
δnp − ∂n0

∂ǫp
δǫp

)
= I[δnp] , (1.37)

where vp = ∇pǫp and ∂n0
p/∂ǫp are evaluated at equilibrium; the collision integral

also has to be linearized: we defer this calculation to the next Section.

A technical note In most application of kinetic theory, the system is in a state of
local equilibrium at each point, characterized by a local temperature T (r, t), a local
chemical potential µ(r, t) and a local fluid velocity u(r, t). Hence, we can define a
local equilibrium distribution function

n(ǫp, r, t) =

[
exp

(ǫp − p · u(r, t) − µ(r, t)

T (r, t)

)
+ 1

]−1

. (1.38)

The parameters T, µ,u in the local equilibrium distribution function are chosen in
such a way as to give the same local density, energy and velocity as the true (global
equilibrium) function [15].
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1.4 – Transport properties

For this reason, we should distinguish between

δnp(r) = np(r) − n0(ǫ0) , (1.39)

the deviation of the distribution function from global equilibrium, where n0 is eval-
uated at the true QP energy, and

δñp(r) = np(r) − n0(ǫ) , (1.40)

the deviation from local equilibrium.
We can write

n0(ǫ0) = n0(ǫ) − ∂n0

∂ǫ
δǫ , (1.41)

so that

δñp = δnp − ∂n0

∂ǫ

∫
d3p′

(2π)3
fp,p′ δnp′ . (1.42)

From the above discussion it follows that δñ contains the Fermi liquid corrections;
it satisfies the stationary equation

vp · ∇rδñp = I[δñp] , (1.43)

which is the same as the one satisfied by δn with fp,p′ ≡ 0.
It can be shown [15, 20] that, in the calculation of the transport coefficients in

the zero temperature limit, the effects of Fermi liquid corrections are indeed very
small; at lowest order, the equation to be solved is then given by

vp · ∇rδnp = I[δnp] . (1.44)

This approximation has been proved to be completely satisfactory for the calculation
of the shear viscosity and thermal conductivity coefficients, while a more accurate
treatment is required for the analysis of the zero sound and the magnetoresistance

[20].

1.4.2 The collision integral

In order to carry out the explicit calculation of the viscosity, we must specify the
details of the collision integral.

First of all we note that, at low temperature, the density of thermally excited
QP is also low, and we can safely neglect all the processes in which more than two
QP at a time are involved; therefore, we only have to consider binary collisions.

Denoting with “1,2 . . . ” the states |p1,σ1〉, |p2,σ2〉 . . . , the collision process
can be indicated as 1, 2 → 3, 4. We also have to consider the inverse process
3, 4 → 1, 2; moreover, as we deal with identical particles, the final states 3 and 4 are
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1 – Transport properties of normal Fermi liquids

indistinguishable. Due to the exclusion principle, the process 1, 2 → 3, 4 is possible
only if states 1 and 2 are initially occupied and states 3 and 4 are initially free. The
opposite holds true for the inverse process.

We now define the transition probability; writing the transition amplitude for
the process 1, 2 → 3, 4 as 〈3, 4|T |1, 2〉, and assuming that QP states are normalized
in a box of volume V , the transition probability is given by Fermi’s golden rule

2π

~
|〈3, 4|T |1, 2〉|2 ≡ 1

V 2
W(12; 34) δ(3)(p1+p2−p3−p4)δ(σ1+σ2−σ3−σ4) , (1.45)

where the δ-functions express conservation of momentum and spin projection (as-
suming a common quantization axis).

The collision integral I[n1] represents the net rate at which occupation of the
state 1 is increased. Hence, it is given by difference between the rate for the pro-
cess 3, 4 → 1, 2 and the rate for 1, 2 → 3, 4, summed over all states 2 and over
distinguishable states 3 and 4. Its final expression is then given by

I[n1] =
1

V 2

∑

2

′∑

34

W(12; 34) δ(ǫ1 + ǫ2 − ǫ3 − ǫ4) (1.46)

× δ(3)(p1 + p2 − p3 − p4)δ(σ1 + σ2 − σ3 − σ4)

×
[
n3n4(1 − n1)(1 − n2) − n1n2(1 − n3)(1 − n4)

]
, (1.47)

where the prime on the sum symbol denotes summation over dinstinguishable final
states only.

We now turn to the linearization of I[n], at each point, around the deviation
of the distribution function from the local equilibrium one. Note that the collision
integral vanishes only if we put into it the distribution functions evaluated at the
true QP energies. In fact, in global equilibrium all currents and fluxes are identically
zero and there is no transport of particle density, energy or momentum. Introducing
the linear deviation from local equilibrium by writing

δni ≡ −∂n
0
i

∂ǫi
Φi , i = 1, . . . ,4 , (1.48)

and using momentum conservation, we obtain the final expression for the linearized
collision integral [15]:

I[n1] = − 1

TV 2

∑

2

′∑

34

n1n2(1 − n3)(1 − n4)W(12; 34)

× δ(σ1 + σ2 − σ3 − σ4) δ(ǫ1 + ǫ2 − ǫ3 − ǫ4)

×
[
Φ1 + Φ2 − Φ3 − Φ4)

]
, (1.49)
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1.4 – Transport properties

where the quantities ni, ǫi and W are evaluated at local equilibrium. The deviation
from local equilibrium that occurs in the approximate form of the collision integral
automatically ensures consistency with the conservation laws of particle number,
energy and momentum [15].

Now we have to solve the linearized BLE (1.44), with the linearized collision
integral given by Eq.(1.49). The key element is obviously the transition probability
W: its explicit determination will be the main subject of this Thesis. For the mo-
ment, we just note that it is dictated by the dynamical model employed to describe
particle interactions, and that it cannot be determined within the framework of LT.
In LT the effects of interactions are taken into account at the mean field level; even if
Landau parameters are connected to the forward scattering amplitudes, they cannot
capture the complete energy and momentum transfer dependence of the scattering
cross section (see, e.g. Ref.[21])

For the moment, we solve the equation that determines the coefficient of shear
viscosity leaving W undetermined. Its explicit form will be specified at a later stage.

1.4.3 Calculation of the transport coefficients

The general procedure to obtain the expression of the transport coefficients is rather
simple [20]. In non-equilibrium conditions, (small) gradients of the quantities that
characterize equilibrium (T, µ,u) act like generalized forces; the response of the
system shows in a current, which is proportional to the gradient of the relevant
thermodynamic quantity that is varying: the factor of proportionality is the trans-
port coefficient. A temperature gradient, for example, produces a heat current jT ,
which turns out to be proportional to ∇T via the thermal conductivity,

jT = −κT ∇T . (1.50)

We have to write down a microscopic expression for the current, in terms of an
integral over the phase-space of the velocity times the quantity that is transported
by the fluid motion: in the case of the heat flow, this is simply

jT =
∑

σ

∫
d3p

(2π)3
vp (ǫp − µ)δnp . (1.51)

We then have to express the driving term, in the lhs of Eq. (1.44), as a function of
the relevant gradient. If we consider slight displacements from local equilibrium, the
responses of the system are linear in the generalized forces, and we can safely treat
each effect separately. In the calculation of thermal conductivity, this is achieved by
writing

vp · ∇rδnp = −∂n
0

∂ǫp

(ǫp − µ

T

)
vp · ∇rT . (1.52)
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1 – Transport properties of normal Fermi liquids

As we have seen, it is customary rewriting the deviation from local equilibrium
in the form (1.48); in this way, we actually separate δn into a singular part, given by
minus the derivative of the equilibrium distribution (for T → 0 this factor tends to a
δ function, as the distribution function rapidly varies only around the Fermi surface)
and a regular part Φ. As now both sides of the kinetic equation contain the factors
vp and ∂n0/∂ǫ, it reduces to an integral equation for Φ, containing the scattering
amplitude W as the only external input. The form of the solution, which can be
obtained using a variational approach [20], is specified by the particular transport
phenomenon we are dealing with.

1.4.4 The Abrikosov-Khalatnikov solution

The first attempt to solve the integral equation for the transport coefficients of
a Fermi liquid was carried out by Abrikosov and Khalatnikov (AK) in 1959 [12],
shortly after the appearance of the seminal papers by Landau. Their approximate
solution turned to be in good agreement with the experimental measurements of η
in very low temperature dilute solutions of 3He in superfluid 4He, while the thermal
conductivity κT turned out to be a factor 2 larger than the experimental value.

After further work (for a detailed account, see [15]), an exact analytical solution
for the transport coefficients was finally given by Brooker and Sykes (BS) in 1970
[17, 18].

It has to be emphasized that the work of AK had the merit of showing the
possibility of a separation between the energy integral and the angular ones; they
also set the basic notation. For these reasons, we first discuss their results and then
rapidly quote the exact solution of BS.

Phase-space separation Consider the collision between QP 1 and 2, scattering
to the states 3 and 4. We are interested in the low-T regime: only QP states in the
vicinity of the Fermi surface are involved in collisions. For this reason, the energies of
the states 1,. . . ,4 are very close to ǫF , while the corresponding momenta, p1, . . . ,p4

have magnitude fixed to be approximately equal to Fermi momentum pF .
We now define a reference frame to describe the collision process. Let θ be the

angle between the incoming momenta, p1 and p2, and φ the angle between the plane
containing the initial momenta and that containing the final ones, p3 and p4: this
is generally referred to as the AK reference frame.

Recalling that momentum conservation implies p1 + p2 = p3 + p4, and that all
these momenta have equal magnitudes, we can rewrite [15]

d3p2 d
3p3 =

m⋆3

2 cos (θ/2)
dǫ2 dǫ3 dǫ4 sin θ dθ dφ dφ2 , (1.53)

where φ2 is the azimuthal angle of p2.
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1.4 – Transport properties

Because of the presence of the Fermi distributions and of the δ-function express-
ing energy conservation in the collision integral (1.47), the integration limits over
QP energies may be extended to ±∞.

The scattering probability W(12; 34) only depends on spin and the angular vari-
ables θ and φ. In the absence of magnetic field, we can sum over spin variables,
obtaining

∑

σ2

′∑

σ3,σ4

W(12; 34) ≡ 2W(θ, φ) , (1.54)

which represents the average scattering probability for σ2 unpolarized with respect to
σ1. Note that, given σ1, for each value of σ2 the sum σ3 +σ4 is fixed by conservation
of spin projection, and we must sum only over distinguishable final states.

Let us introduce

τ ≡ 8π4

m⋆3〈W〉 T 2
, (1.55)

〈W〉 ≡
∫

dΩ

2π

W(θ, φ)

cos (θ/2)
, (1.56)

the QP relaxation time and the angle-averaged scattering probability, respectively.
Note that the angular integral is performed over 2π and not over the whole solid
angle 4π, due to indistinguishability of the final states.

Calculation of the shear viscosity Now we specialize our discussion to the case
of the coefficient of shear viscosity, η.

In order to calculate η, we assume that the system be in local equilibrium, and
in motion with a small local fluid velocity u(r) varying in space. Without any loss
of generality, we refer to the case in which the fluid motion is in the x direction, and
we observe a variation of the velocity in the y direction; the value of η is clearly not
affected by such a choice. The local equilibrium distribution function is then given
by (compare to Eq.(1.38))

n(ǫp, r, t) =

[
exp

(ǫp − px ux − µ(r, t)

T (r, t)

)
+ 1

]−1

. (1.57)

For an incompressible fluid, the xy component of the viscous stress tensor (1.11)
is given by

σ′
xy = η

∂ux

∂y
. (1.58)

Note that, even if the fluid is compressibile, the term proportional to ∇·v appears in
the diagonal component of the stress tensor only; moreover, in the low temperature
limit ζ/η ∼ T 2 [15], so that the bulk viscosity is never relevant to our discussion.
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1 – Transport properties of normal Fermi liquids

A small deviation from equilibrium produces a change in the dissipative stress
tensor; at lowest order in δn, this is given by

σ′
xy = −

∑

σ

∫
d3p

(2π)3
px(vp)yδnp . (1.59)

Furthermore, at lowest order in the low temperature expansion the driving term can
be written as

vp · ∇rδnp = −∂n
0

∂ǫ
px(vp)y

∂ux

∂y
. (1.60)

Collecting all the above results togheter, we finally obtain the AK expression for
the coefficient of shear viscosity [12]:

ηAK =
1

5
ρm⋆v2

F τ
2

π2(1 − λη)
, (1.61)

where τ is given by Eq.(1.55), while the quantity λη is defined as

λη =
〈W(θ,φ)[1 − 3 sin4 (θ/2) sin2 φ]〉

〈W(θ,φ)〉 . (1.62)

Note that, for any W, the value of λη is restricted to the range [17, 18]

−2 ≤ λη < 1 . (1.63)

It has to be pointed out that the value λη = 1 is not allowed, as it corresponds
to scattering taking place only between particles with parallel momenta. These
processes do not alter the momentum flux, thus giving rise to a singularity in η [15].

1.4.5 Exact solution for η

As we have seen, the general equation for the transport coefficients is an integral
equation for the regular part of the deviation of the distribution function from
local equilibrium, Φ, due to a small gradient of the equilibrium parameters. The
AK solution to this equation relied on an approximation which turned out to be
uncontrolled; in fact, the resulting η was in good agreement with experimental data,
while the thermal condutivity failed to reproduce the results of measurements by a
factor ∼ 2.

The exact analytical solution was finally given by Brooker and Sykes in 1970
[17, 18]; it turned out to be the expression of AK multiplied by a correction factor,
written in the form of a power series.

The method of BS is a standard eigenfunction expansion for the integral kernel;
its explicit derivation can be used for solving only this particular problem, and does
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not teach us to solve a wider class of equations. For this reason, we only quote the
final result, referring to the orginal papers [17, 18] and to [15] for the details of the
calculation.

The BS result for η is

η = ηAK

{
1 − λη

4

∞∑

k=0

4k + 3

(k + 1)(2k + 1)[(k + 1)(2k + 1) − λη]

}
. (1.64)

It is interesting to note that the explicit calculation of the correction factor for all
the allowed values of λη, given by Eq.(1.63), yields results in the range [17, 18, 15]

0.750 < (η/ηAK) < 0.925 , (1.65)

thus showing that the AK approximation was indeed rather good.
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Chapter 2

Nuclear matter and nuclear forces

Nuclear matter can be thought of as a giant nucleus, with given numbers of protons
and neutrons interacting through nuclear forces only. As the typical thermal energies
are negligible compared to the nucleon Fermi energies, such a system can be safely
considered to be at zero temperature.

A quantitative understanding of the properties of nuclear matter, whose calcula-
tion is greatly simplified by translational invariance, is needed both as an interme-
diate step towards the description of real nuclei and for the development of realistic
models of matter in the neutron star core.

The large body of data on nuclear masses can be used to extract empirical infor-
mation on the equilibrium properties of symmetric nuclear matter (SNM), consisting
of equal numbers of protons and neutrons.

The A-dependence of the binding energy of nuclei of mass number A and electric
charge Z is well described by the semiempirical mass formula

B

A
=

1

A
[ aVA− asA

2/3 − ac
Z2

A1/3
− aA

(A− 2Z)2

4A
+ λ ap

1

A1/2
] . (2.1)

In the A→ ∞ limit, and neglecting the effect of Coulomb repulsion between protons,
the only contribution surviving in the case Z = A/2 is the term linear in A. Hence,
the coefficient aV can be identified with the binding energy per particle of SNM.

The equilibrium density of SNM, ρ0, can be inferred exploiting the saturation of
nuclear densities, i.e. the experimental observation that the central charge density
of atomic nuclei, measured by elastic electron-nucleus scattering, does not depend
upon A for large A. This property is illustrated in Fig. 2.1.

The empirical values of the binding energy and equilibrium density of SNM are

ρ0 = 0.16 fm−3 , E = −15.7 MeV . (2.2)

In principle, additional information can be obtained from measurements of the exci-
tation energies of nuclear vibrational states, yielding the (in)-compressibility module
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2 – Nuclear matter and nuclear forces

Figure 2.1. Saturation of central nuclear densities measured by elastic
electron-nucleus scattering.

K. However, the data analyis of these experiments is non trivial, and the resulting
values of K range from K ∼ 200 MeV (corresponding to more compressible nuclear
matter, i.e. to a soft equation of state (EOS)) to K ∼ 300 MeV (corresponding to
a stiff EOS) [22].

The main goal of nuclear matter theory is deriving a EOS at zero temperature
(i.e. the density dependence of the binding energy per particle E = E(ρ)) capable
to explain the above data starting from the elementary nucleon-nucleon (NN) in-
teraction. However, many important applications of nuclear matter theory require
that its formalism be also flexible enough to describe the properties of matter at
finite temperature, including the transport coefficients introduced in Chapter 1.

Unfortunately, due to the coplexity of the fundamental theory of strong inter-
actions, the quantum chromo-dynamics (QCD), an ab initio description of nuclear
matter at finite density and zero temperature is out of reach of the present com-
putational techniques. As a consequence, one has to rely on dynamical models in
which nucleons and mesons play the role of effective degrees of freedom.

In this work we adopt the approach based on nonrelativistic quantum mechanics
and phenomenological nuclear hamiltonians, that allows for a quantitative descrip-
tion of both the two-nucleon bound state and the nucleon-nucleon scattering data.

After a short introduction on the astrophysical relevance of nuclear matter, in
this Chapter we outline the main features of nuclear interactions and briefly describe
the structure of the NN potential models employed in many-body calculations.
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2.1 – Neutron star matter

2.1 Neutron star matter

As stated in the Introduction, this work is mainly aimed at applying nuclear matter
theory to the study of properties relevant to the structure and stability of neutron
stars. Therefore, we start with a brief review on these astrophysical objects [23].

The existence of compact stars made of neutrons is said to have been conjec-
tured by Bohr, Landau and Rosenfeld right after the discovery of the neutron, by
Chadwick, in 1932. In 1934, it was suggested by Baade and Zwicky that a neutron
star may be formed in the aftermath of a supernova explosion. Neutron stars were
finally observed in 1968 as pulsars, radio souces blinking on and off at a constant
frequency.

Neutron stars are believed to be one of the possible endpoints of stellar evo-
lution. The first quantitative study of neutron star structure was carried out by
Oppenheimer and Volkov in 1939, within the framework of general relativity. Com-
bining Einstein’s equations and hydrostatic equilibrium, they found that the mass
of a star consisting of noninteracting neutrons cannot exceed the value ∼ 0.8M⊙,
where M⊙ is the mass of the Sun. The idea of a critical mass had been already
introduced by Chandrasekar in the theory of white dwarfs, stellar objects mainly
made of degenerate electrons, in which the gravitational contraction is balanced by
the pressure due to the fermionic nature of its consituents. However, the critical
mass found by Oppenheimer and Volkov turns out to be much smaller than the ob-
served neutron star masses (typically ∼ 1.4M⊙): this fact clearly shows that, at the
density typical of neutron stars (of the order of ρ0, corresponding to matter density
∼ 2 1014 g/cm3), strong interactions between nucleons cannot be disregarded, as
they provide an additional contribution to the pressure of dynamical origin.

The internal structure of neutron stars, schematically represented in Fig. 2.2,
features a sequence of layers of different composition. While the properties of mat-
ter in the outer crust, corresponding to densities ranging from ∼ 107 g/cm3 to the
neutron drip density ∼ 4 1011 g/cm3, can be obtained directly from nuclear data,
models of the EOS at 4 1011 < ρ < 2 1014 g/cm3 are somewhat based on extrapo-
lations of the available empirical information, as the extremely neutron rich nuclei
appearing in this density regime are not observed on earth.

The density of the neutron star core ranges between ∼ ρ0, at the boundary with
the inner crust, and a central value that can be as large as 1 ÷ 4 1015 g/cm3. All
models of EOS based on hadronic degrees of freedom predict that in the density range
ρ0

<
∼ ρ <

∼ 2ρ0 neutron star matter consists mainly of neutrons, with the admixture of
a small number of protons, electrons and muons. At any given density the fraction
of protons and leptons is determined by the requirements of weak equilibrium and
charge neutrality. Most calculations suggest that this fraction is rather small, of the
order of ∼ 10%. Hence, for many applications, modelling neutron star matter with
pure neutron matter can be regarded as a reasonable approximation.
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2 – Nuclear matter and nuclear forces

Figure 2.2. Schematic representation of the cross section of a nuetron star.

This picture may change significantly at larger density with the appearance of
heavy strange baryons produced in weak interaction processes. For example, al-
though the mass of the Σ− exceeds the neutron mass by more than 250 MeV, the
reaction n+e− → Σ− +νe is energetically allowed as soon as the sum of the neutron
and electron chemical potentials becomes equal to the Σ− chemical potential.

Finally, as nucleons are known to be composite objects of size ∼ 0.5 − 1.0 fm,
corresponding to a density ∼ 1015 g/cm3, it is expected that, if the density in the
neutron star core reaches this value, matter undergoes a transition to a new phase,
in which quarks are no longer clustered into nucleons or hadrons.

Ideally, one may be able to infer the composition and the EOS of neutron star
matter from observations. For example, the knowledge of mass and radius of a
neutron star would allow one to severely constrain the EOS. However, while many
neutron star masses have been measured with remarkable accuracy (a compilation of
the data is shown in Fig. 2.3), the experimental determination of the radii involves
seriuos difficulties, and the available estimates are still controversial.

The large interferometric gravitational wave detectors are also expected to pro-
vide relevant information on neutron star. The results of theoretical calculations
suggest that, as the gravitational wave signal contains information on the frequency
and damping times of the star quasi-normal oscillation modes, its detection may
shed light on the structure and dynamics of the emitting stars [25, 26, 27]. As
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Figure 2.3. Compilation of measured neutron star masses, given in
units of solar mass [24].

pointed out in the Introduction, understanding neutron star oscillation modes and
the role played by viscosity in their damping is in fact one of the main motivations
of our work.

2.2 Nuclear forces

The main features of the NN interaction, inferred from the analysis of nuclear sys-
tematics, may be summarized as follows.

• The saturation of nuclear density (see Fig. 2.1), i.e. the fact that density
in the interior of atomic nuclei is nearly constant and independent of the
mass number A, tells us that nucleons cannot be packed together too tightly.
Hence, at short distance the NN force must be repulsive. Assuming that the
interaction can be described by a nonrelativistic potential v depending on the
interparticle distance, r, we can then write:

v(r) > 0 , |r| < rc , (2.3)

rc being the radius of the repulsive core.
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2 – Nuclear matter and nuclear forces

• The fact that the nuclear binding energy per nucleon is roughly the same for
all nuclei with A ≥ 20, its value being

B

A
∼ 8.5 MeV , (2.4)

suggests that the NN interaction has a finite range r0, i.e. that

v(r) = 0 , |r| > r0 . (2.5)

• The spectra of the so called mirror nuclei, i.e. pairs of nuclei having the same
A and charges differing by one unit (implying that the number of protons in a
nucleus is the same as the number of neutrons in its mirror companion), e.g.
15
7N (A = 15, Z = 7) and 15

8O (A = 15, Z = 8), exhibit striking similarities.
The energies of the levels with the same parity and angular momentum are
the same up to small electromagnetic corrections, showing that protons and
neutrons have similar nuclear interactions, i.e. that nuclear forces are charge

symmetric.

Charge symmetry is a manifestation of a more general property of the NN inter-
action, called isotopic invariance. Neglecting the small mass difference, proton and
neutron can be viewed as two states of the same particle, the nucleon (N), described
by the Dirac equation obtained from the lagrangiam density

L = ψ̄N (iγµ∂µ −m)ψN (2.6)

where

ψN =

(
p
n

)
, (2.7)

p and n being the four-spinors associated with the proton and the neutron, re-
spectively. The lagrangian density (2.6) is invariant under the SU(2) global phase
transformation

U = eiαjτj , (2.8)

where α is a constant (i.e. independent of x) vector and the τj (j = 1,2,3) are
Pauli matrices (whose properties are briefly collected in Appendix A). The above
equations show that the nucleon can be described as a doublet in isospin space.
Proton and neutron correspond to isospin projections +1/2 and −1/2, respectively.
Proton-proton and neutron-neutron pairs always have total isospin T=1 whereas
a proton-neutron pair may have either T = 0 or T = 1. The two-nucleon isospin
states |T,MT 〉 can be summarized as follows (see also Appendix A)

|1,1〉 = |pp〉
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2.2 – Nuclear forces

|1,0〉 =
1√
2

(|pn〉 + |np〉)

|1,− 1〉 = |nn〉

|0,0〉 =
1√
2

(|pn〉 − |np〉) .

Isospin invariance implies that the interaction between two nucleons separated by
a distance r = |r1 − r2| and having total spin S depends on their total isospin T
but not on its projection MT . For example, the potential v(r) acting between two
protons with spins coupled to S = 0 is the same as the potential acting between a
proton and a neutron with spins and isospins coupled to S = 0 and T = 1.

2.2.1 The two-nucleon system

The details of the NN interaction can be best understood in the two-nucleon system.
There is only one NN bound state, the nucleus of deuterium, or deuteron (2H),
consisting of a proton and a neutron coupled to total spin and isospin S = 1 and
T = 0, respectively. This is a clear manifestation of the spin dependence of nuclear
forces.

Another important piece of information can be inferred from the observation
that the deuteron exhibits a nonvanishing electric quadrupole moment, implying
that its charge distribution is not spherically symmetric. Hence, the NN interaction
is noncentral.

Besides the properties of the two-nucleon bound state, the large data base of
phase shifts measured in NN scattering experiments (the Nijmegen data base [28]
includes ∼ 4000 data points, corresponding to energies up to 350 MeV in the lab
frame) provides valuable additional information on the nature of NN forces.

The theoretical description of the NN interaction was first attempted by Yukawa
in 1935. He made the hypotesis that nucleons interact through the exchange of a
particle, whose mass µ can be related to the interaction range r0 according to

r0 ∼
1

µ
. (2.9)

Using r0 ∼ 1 fm, the above relation yields µ ∼ 200 MeV (1 fm−1 = 197.3 MeV).
Yukawa’s idea has been successfully implemented identifying the exchanged par-

ticle with the π meson (or pion), discovered in 1947, whose mass is mπ ∼ 140 MeV.
Experiments show that the pion is a spin zero pseudoscalar particle1 (i.e. it has
spin-parity 0−) that comes in three charge states, denoted π+, π− and π0. Hence, it

1The pion spin has been deduced from the balance of the reaction π+ +2H ↔ p + p, while its
intrinsic parity was determined observing the π− capture from the K shell of the deuterium atom,
leading to the appearance of two neutrons: π− + d → n + n.
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N(p2)

N(p2´) N(p1´)

N(p1)

π

Figure 2.4. Feynman diagram describing the one-pion-exchange process between
two nucleons. The corresponding amplitude is given by Eq. (2.10).

can be regarded as an isospin T=1 triplet, the charge states being associated with
isospin projections MT =+ 1, 0 and −1, respectively.

The simplest π-nucleon coupling compatible with the observation that nuclear
interactions conserve parity has the pseudoscalar form igγ5

τ , where g is a coupling
constant and τ describes the isospin of the nucleon. With this choice for the in-
teraction vertex, the amplitude of the process depicted in Fig. 2.4 can readily be
written, using standard Feynman’s diagram techniques, as

〈f |M |i〉 = −ig2 ū(p
′
2,s

′
2)γ5u(p2,s2)ū(p

′
1,s

′
1)γ5u(p1,s1)

k2 −m2
π

〈τ1 · τ2〉 , (2.10)

where k = p′1 − p1 = p2 − p′2, k
2 = kµk

µ = k2
0 − |k|2, u(p,s) is the Dirac spinor

associated with a nucleon of four momentum p ≡ (p,E) (E=
√

p2 +m2) and spin
projection s and

〈τ1 · τ2〉 = η†2′τη2 η
†
1′τη1 , (2.11)

ηi being the two-component Pauli spinor describing the isospin state of particle i.
In the nonrelativistic limit, Yukawa’s theory leads to define a NN interaction

potential that can be written in coordinate space as

vπ =
g2

4m2
(τ1 · τ2)(σ1 · ∇)(σ2 · ∇)

e−mπr

r

=
g2

(4π)2

m3
π

4m2

1

3
(τ1 · τ2)

{[
(σ1 · σ2) + S12

(
1 +

3

x
+

3

x2

)]
e−x

x

− 4π

m3
π

(σ1 · σ2)δ
(3)(r)

}
, (2.12)
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2.2 – Nuclear forces

where x = mπ|r| and

S12 =
3

r2
(σ1 · r)(σ2 · r) − (σ1 · σ2) , (2.13)

reminiscent of the operator describing the noncentral interaction between two mag-
netic dipoles, is called the tensor operator. The properties of S12 are described in
Appendix A

For g2/(4π) ∼ 14, the above potential provides an accurate description of the
long range part (|r| > 1.5 fm) of the NN interaction, as shown by the very good fit of
the NN scattering phase shifts in states of high angular momentum. In these states,
due to the strong centrifugal barrier, the probability of finding the two nucleons at
small relative distances becomes in fact negligibly small.

At medium- and short-range other more complicated processes, involving the
exchange of two or more pions (possibly interacting among themselves) or heavier
particles (like the ρ and the ω mesons, whose masses are mρ = 770 MeV and mω =
782 MeV, respectively), have to be taken into account. Moreover, when their relative
distance becomes very small (|r| <

∼ 0.5 fm) nucleons, being composite and finite in
size, are expected to overlap. In this regime, NN interactions should in principle
be described in terms of interactions between nucleon constituents, i.e. quarks and
gluons, as dictated by QCD.

Phenomenological potentials describing the full NN interaction are generally
written as

v = ṽπ + vR (2.14)

where ṽπ is the one-pion-exchange potential, defined by Eqs. (2.12) and (2.13),
stripped of the δ-function contribution, whereas vR describes the interaction at
medium and short range. The spin-isospin dependence and the noncentral nature
of the NN interactions can be properly described rewriting Eq. (2.14) in the form

v(ij) =
∑

ST

[vTS(rij) + δS1vtT (rij)S12]P2S+1Π2T+1 , (2.15)

S and T being the total spin and isospin of the interacting pair, respectively. In
the above equation P2S+1 (S = 0,1) and Π2T+1 (T = 0,1) are the spin and isospin
projection operators, whose definition and properties are given in Appendix A.

The functions vTS(rij) and vtT (rij) describe the radial dependence of the inter-
action in the different spin-isospin channels and reduce to the corresponding com-
ponents of the one-pion-exchange potential at large rij . Their shapes are chosen in
such a way as to reproduce the available NN data (deuteron binding energy, charge
radius and quadrupole moment and the NN scattering data).

An alternative representation of the NN potential, based on the set of six oper-
ators (see Appendix A)

On≤6
ij = [1,(σi · σj),Sij ] ⊗ [1,(τi · τj)] , (2.16)
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is given by

v(ij) =

6∑

n=1

v(n)(rij)O
(n)
ij . (2.17)

While the static potential of Eq.(2.17) provides a reasonable account of deuteron
properties, in order to describe NN scattering in S and P wave, one has to include
the two additional momentum dependent operators

On=7,8
ij = L · S ⊗ [1,(τi · τj)] , (2.18)

L being the orbital angular momentum.
The potentials yielding the best available fits of NN scattering data, with a

χ2/datum ∼ 1, are written in terms of eighteen operators, with

On=9,...,14
ij = [L2,L2(σi · σj),(L · S)2] ⊗ [1,τi · τj ] , (2.19)

On=15,...,18
ij = [1,σi · σj ,Sij] ⊗ Tij , (τzi + τzj) (2.20)

where

Tij =
3

r2
(τi · r)(τj · r) − (τi · τj) . (2.21)

The On=15,...,18
ij take care of small charge symmetry breaking effects, due to the

different masses and coupling constants of the charged and neutral pions.

Figure 2.5. Radial dependence of the NN potential describing the interaction be-
tween two nucleons in the state of relative angular momentum ℓ = 0, and total spin
and isospin S = 0 and T = 1.
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The calculations discussed in this Thesis are based on a widely employed poten-
tial model, obtained within the phenomenological approach outlined in this Section,
generally referred to as Argonne v18 potential [29]. It is written in the form

v(ij) =

18∑

n=1

vn(rij)O
n
ij . (2.22)

As an example of the quality of the phase shifts obtained from the Argonne
v18 potential, in Fig. 2.6 we show the results for the 1S0 and 1D2 partial waves
(see Appendix D), compared with the predictions of the one-pion-exchange model
(OPEP).
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Figure 2.6. Comparison between the 1S0 and 1D2 phase shifts resulting from the
Nijmegen analysis [28] (open circles) and the predictions of the Argonne v18 (AV18)
and one-pion-exchange (OPEP) potentials.

We have also used a simplified version of the above potential, obtained including
the operators On≤8

ij , originally proposed in Ref.[30]. It reproduces the scalar part of
the full interaction in all S and P waves, as well as in the 3D1 wave and its coupling
to the 3S1.

The typical shape of the NN potential in the state of relative angular momen-
tum ℓ = 0 and total spin and isospin S = 0 and T = 1 is shown in Fig. 2.5. The
short-range repulsive core, to be ascribed to heavy-meson exchange or to more com-
plicated mechanisms involving nucleon constituents, is followed by an intermediate-
range attractive region, largely due to two-pion-exchange processes. Finally, at large
interparticle distance the one-pion-exchange mechanism dominates.
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2 – Nuclear matter and nuclear forces

2.2.2 Three-nucleon interactions

The NN potential determined from the properties of the two-nucleon system can
be used to solve the many-body nonrelativistic Schrödinger equation for A > 2. In
the case A = 3 the problem can be still solved exactly, but the resulting ground
state energy, E0, turns out to be slightly different from the experimental value. For
example, for 3He one typically finds E0 = 7.6 MeV, to be compared to Eexp = 8.48
MeV. In order to exactly reproduce Eexp one has to add to the nuclear hamiltonian
a term containing three-nucleon interactions described by a potential Vijk. The
most important process leading to three-nucleon interactions is two-pion exchange
associated with the excitation of a nucleon resonance in the intermediate state,
depicted in Fig. 2.7.

Figure 2.7. Diagrammatic representation of the process providing the main con-
tribution to the three-nucleon interaction. The thick solid line corresponds to an
excited state of the nucleon.

The three-nucleon potential is usually written in the form

Vijk = V 2π
ijk + V N

ijk , (2.23)

where the first contribution takes into account the process of Fig. 2.7 while V N
ijk is

purely phenomenological. The two parameters entering the definition of the three-
body potential are adjusted in such a way as to reproduce the properties of 3H and
3He [31]. Note that the inclusion of Vijk leads to a very small change of the total
potential energy, the ratio 〈vij〉/〈Vijk〉 being ∼ 2 %.

For A > 3 the Scrödinger equation is no longer exactly solvable. However, very
accurate solutions can be obtained using stochastic techniques, such as variational
Monte Carlo (VMC) and the Green function Monte Carlo (GFMC) methods [32].

The GFMC approach has been succesfully employed to describe the ground state
and the low lying excited states of nuclei having A up to 8. The results of VMC and
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GFMC calculations, summarized in Fig. 2.8, show that the nonrelativistic approach,
based on a dynamics modeled to reproduce the properties of two- and three-nucleon
systems, has a remarkable predictive power.
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Figure 2.8. VMC and GFMC energies of nuclei with A ≤ 8 compared
to experiment (from Ref.[32]).
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Chapter 3

Nuclear matter theory

Understanding the properties of matter at densities comparable to the central den-
sity of atomic nuclei is made difficult by both the complexity of the interactions and

the approximations implied in any theoretical description of quantum mechanical
many-particle systems.

The main problem associated with the use of the nuclear potential models de-
scribed in Chapter 2 in a many-body calculation lies in the strong repulsive core of
the NN force, which cannot be handled within standard perturbation theory.

Within nonrelativistic many-body theory (NMBT), a nuclear system is seen as
a collection of pointlike protons and neutrons whose dynamics are described by the
hamiltonian

H =
∑

i

t(i) +
∑

j>i

v(ij) + . . . , (3.1)

where t(i) and v(ij) denote the kinetic energy operator and the bare NN poten-
tial, respectively, while the ellipses refer to the presence of additional many-body
interactions (see Chapter 2).

Carrying out perturbation theory in the basis provided by the eigenstates of
the noninteracting system requires a renormalization of the NN potential. This
is the foundation of the widely employed approach developed by Brückner, Bethe
and Goldstone, in which v(ij) is replaced by the well-behaved G-matrix, describing
NN scattering in the nuclear medium (see, e.g. Ref.[33]). Alternatively, the many-
body Schrödinger equation, with the hamiltonian of Eq.(3.1), can be solved using
either the variational method or stochastic techniques. These approaches have been
succesfully applied to the sudy of both light nuclei [32] and uniform neutron and
nuclear matter [7, 34, 35, 36].

Our work has been carried out using a scheme, formally similar to standard per-
turbation theory, in which nonperturbative effects due to the short-range repulsion
are embodied in the basis functions. The details of this approach will be discussed
in the following Sections.
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3 – Nuclear matter theory

It has to be emphasized that within NMBT the interaction is completely deter-
mined by the analysis of the exactly solvable two- and few-nucleon systems. As a
consequence, the uncertainties associated with the dynamical model and the many-
body calculations are decoupled, and the properties of nuclear systems ranging from
deuteron to neutron stars can be obtained in a fully consistent fashion, without
including any adjustable parameters.

3.1 Correlated basis function theory

The correlated states of nuclear matter are obtained from the Fermi gas (FG) states
|nFG〉 through the transformation [37, 38]

|n) =
F |nFG〉

〈nFG|F †F |nFG〉1/2
. (3.2)

The operator F , embodying the correlation structure induced by the NN interaction,
is written in the form

F (1, . . . ,N) = S
N∏

j>i=1

fij , (3.3)

where S is the symmetrization operator which takes care of the fact that, in general,

[fij ,fik] 6= 0 . (3.4)

The structure of the two-body correlation functions fij must reflect the complexity
of the NN potential. Hence, it is generally cast in the form (compare to Eq.(2.17))

fij =

6∑

n=1

fn(rij)O
n
ij , (3.5)

with the On
ij defined by Eq.(2.16). Note that the operators included in the above

definition provide a fairly accurate description of the correlation structure of the
two-nucleon bound state. The shape of the radial functions fn(rij) is determined
through functional minimization of the expectation value of the nuclear hamiltonian
in the correlated ground state

EV
0 = (0|H|0) . (3.6)

The correlated states defined in Eq.(3.2) are not orthogonal to one another. However,
they can be orthogonalized using an approach, based on standard techniques of
many-body theory, that preserves diagonal matrix elements of the hamiltonian [39].
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Denoting the orthogonalized states by |n〉, the procedure of Ref. [39] amounts to

defining a transformation T̂ such that

|n) → |n〉 = T̂ |n) , (3.7)

with
(n|H|n) = 〈n|H|n〉 . (3.8)

Correlated basis function (CBF) perturbation theory is based on the decompo-
sition of the nuclear hamiltonian

H = H0 +HI , (3.9)

where H0 and HI denote the diagonal and off-diagonal components of H , respec-
tively, defined by the equations

〈m|H0|n〉 = δmn〈m|H|n〉 , (3.10)

〈m|HI |n〉 = (1 − δmn)〈m|H|n〉 . (3.11)

The above definitions obviously imply that, if the correlated states have large over-
laps with the eigenstates of H , the matrix elements of HI are small, and the per-
turbative expansions in powers of HI is rapidly convergent.

Let us consider, for example, the Green function describing the propagation of
a nucleon in a hole state [40]

G(k,E) = 〈0̃|a†k
1

H − E0 −E − iη
ak|0̃〉/〈0̃|0̃〉 . (3.12)

In the above equation, η = 0+, a†k and ak are creation and annihilation operators

and the exact ground state |0̃〉, satisfying the Schrödinger equation H|0̃〉 = E0|0̃〉
can be obtained from the expansion [41, 42]

|0̃〉 =
∑

n

(−)n

(
HI − ∆E0

H0 −EV
0

)n

|0〉 , (3.13)

where ∆E0 = E0 − EV
0 , with EV

0 defined by Eq.(3.6).
In principle, using Eq.(3.13) and the similar expansion [41, 42]

1

H − E0 − E − iη
=

1

H0 − EV
0 − E − iη

∑

n

(−)n

(
HI − ∆E0

H0 − EV
0 − E − iη

)n

, (3.14)

the Green function can be consistently computed at any order in HI . However,
the calculation of the matrix elements of the hamiltonian appearing in Eqs.(3.12)-
(3.14) involves prohibitive difficulties and requires the development of a suitable
approximation scheme, to be discussed in the following Section.
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3.2 Cluster expansion formalism

The correlation operator of Eq.(3.3) is defined in such a way that, if any subset of
the particles, say i1, . . . ip, is removed far from the remaining ip+1, . . . iN , it factorizes
according to

F (1, . . . ,N) → Fp(i1, . . . ip)FN−p(ip+1, . . . iN) . (3.15)

The above property is the basis of the cluster expansion formalism, that allows one
to write the matrix element of a many-body operator between correlated states as
a sum, whose terms correspond to contributions arising from isolated subsystems
(clusters) involving an increasing number of particles.

Let us consider the expectation value of the hamiltonian in the correlated state
|0〉, defined as in Eq.(3.2). We will closely follow the derivation of the corresponding
cluster expansion given in Ref. [38] and neglect, for the sake of simplicity, the three
body potential Vijk.

The starting point is the definition of the generalized normalization integral

I(β) = 〈0|exp[β(H − T0)]|0〉 , (3.16)

where T0 is the FG ground state energy. Using Eq.(3.16) we can rewrite the expec-
tation value of the hamiltonian in the form

〈H〉 =
〈0|H|0〉
〈0|0〉 = T0 +

∂

∂β
ln I(β)

∣∣∣∣
β=0

. (3.17)

Exploiting the cluster property of F we can also define a set of N !/(N − p)!p!
subnormalization integrals for each p-particle subsystem (p = 1, . . . ,N)

Ii(β) = 〈i|exp[β(t(1) − ǫ0i )]|i〉 ,
Iij(β) = 〈ij|F †

2 (12)exp[β(t(1) + t(2) + v(12) − ǫ0i − ǫ0j)]F2(12)|ij〉a ,
...

I1...N (β) = I(β) , (3.18)

where the indices i,j, . . . label states belonging to the Fermi sea, ǫ0i is the kinetic
energy eigenvalue associated with the state |i〉 and the subscript a refers to the fact
that the corresponding two-particle state is antisymmetrized, i.e.

|ij〉a =
1√
2

(|ij〉 − |ji〉) . (3.19)

To express ln I(β) in terms of the ln Ii1...ip(β), we start noting that Iij is close to
the product of Ii and Ij . It would be equal if we could neglect the interaction,
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described by the potential v(12), and the correlations induced by both F2(12) and
Pauli exclusion principle. This observation suggests that Iij can be written as

Iij = IiIjYij . (3.20)

Extending the same argument to the I’s with more than two indices, we find

Ii = Yi

Iij = YiYjYij

...

I1...N = I =
∏

i

Yi

∏

j>i

Yij . . . Y1...N , (3.21)

implying

ln I(β) =
∑

i

lnYi +
∑

j>i

lnYij + . . .+ lnY1...N . (3.22)

It can be shown [38] that each term in the rhs of Eq.(3.22) goes like N in the
thermodynamic limit. In addition, the p-th term collects all individual contributions
to the cluster development of ln I(β) involving, in a connected manner, exactly p
Fermi sea orbitals. Therefore, the p-th term can be referred to as the p-body cluster
contribution to ln I(β).

The decomposition (3.21) allows one to rewrite the expectation value of the
hamiltonian in the form

〈H〉 = T0 + (∆E)2 + (∆E)3 + . . .+ (∆E)N (3.23)

with

(∆E)p =
∑

i1<i2<...<ip

∂

∂β
lnYi1i2...ip

∣∣∣∣
β=0

. (3.24)

To make the last step we have to use Eq.(3.21) to express (∆E)p in terms of the
Ii1...ip. Substitution of the resulting expressions

Yi = Ii

Yij = Iij(IiIj)
−1 , (3.25)

... (3.26)

into Eq.(3.24) with p = 2 yields

(∆E)2 =
∑

i<j

[
1

Iij

∂Iij
∂β

−
(
∂Ii
∂β

+
∂Ij
∂β

)]

β=0

=
∑

i<j

wij , (3.27)
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with

wij = 〈ij| 1

2
F †

2 (12) [t(1) + t(2), F2(12)] + adj + F †
2 (12)v(12)F2(12) |ij〉a , (3.28)

where, assuming that the correlation operator be hermitean, F2(12) = F †
2 (12) = f12

(see Eq.(3.3)).
Each term of the expansion (3.23) can be represented by a diagram featuring p

vertices, representing the nucleons in the cluster, connected by lines corresponding
to dynamical and statistical correlations. The terms in the resulting diagrammatic
expansion can be classified according to their topological structure and selected
classes of diagrams can be summed up to all orders solving a set of coupled integral
equations, called Fermi hyper-netted chain (FHNC) equations [43, 44].

3.3 Effective interaction

At lowest order of CBF, the effective interaction Veff is defined by the equation

〈H〉 = 〈0FG|T0 + Veff |0FG〉 . (3.29)

As the above equation suggests, the approach based on the effective interaction
allows one to obtain any nuclear matter observables using perturbation theory in
the FG basis. However, as discussed in the previous Section, the calculation of the
hamiltonian expectation value in the correlated ground state, needed to extract Veff

from Eq.(3.29), involves severe difficulties.
In this Thesis we follow the procedure developed in Refs. [45, 46], whose au-

thors derived the effective interaction by carrying out a cluster expansion of the
rhs of Eq.(3.29), and keeping only the two-body cluster contribution. The resulting
expression reads

Veff =
∑

i<j

veff(ij) =
∑

i<j

fij

[
− 1

m
(∇2fij) −

2

m
(∇fij) · ∇ + v(ij)fij

]
, (3.30)

where the laplacian and the gradient operate on the relative coordinate. Note that
veff defined by the above equation exhibits a momentum dependence due to the
operator (∇fij) · ∇, yielding contributions to nuclear matter energy through the
exchange terms. However, the results of numerical calculations show that these
contributions are small, compared to the ones associated with the momentum in-
dependent terms. As a consequence, the results discussed in this Thesis have been
obtained using only the static part of the effective interaction (3.30), i.e. setting

veff(ij) = fij

(
− 1

m
∇2 + v(ij)

)
fij =

∑

n

vn
eff(rij)O

n
ij , (3.31)
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The properties of the operators On with n = 1, . . . ,6, leading to the above result,
are given in Appendix A.

The definition of veff given by Eqs.(3.30) and (3.31) obviously neglects the ef-
fect of three-nucleon interactions, whose inclusion in the hamiltonian is known to
be needed in order to explain the binding energies of the few-nucleon systems, as
well as the saturation properties of nuclear matter. To circumvent this problem,
we have used the approach originally proposed by Lagaris and Pandharipande [47],
in which the main effect of the three-body force is simulated through a density
dependent modification of the two-nucleon potential at intermediate range, where
two-pion exchange is believed to be the dominant interaction mechanism. Neglect-
ing, for simplicity, the charge-symmetry breaking components of the interaction, the
resulting potential can be written in the form

ṽ(ij) =
∑

n=1,14

[
vn

π(rij) + vn
I (rij)e

−γ1ρ + vn
S(rij)

]
On

ij , (3.32)

where vn
π , vn

I and vn
S denote the long- (one-pion-exchange), intermediate- and short-

range part of the potential, respectively. The above modification results in a repul-
sive contribution to the binding energy of nuclear matter. The authors of Ref.[47]
also include the small additional attractive contribution

∆ETNA = γ2ρ
2(3 − 2β)e−γ3ρ , (3.33)

with β = (ρp−ρn)/(ρp+ρn), where ρp and ρn denote the proton and neutron density,
respectively. The values of the parameters γ1, γ2 and γ3 appearing in Eqs.(3.32) and
(3.33) have been determined in such a way as to reproduce the binding energy and
equilibrium density of nuclear matter [47].

Besides the bare two body-potential v(ij), the effective interaction is determined
by the correlation operators fij defined by Eq.(3.5). The shapes of the radial func-
tions fn(rij) are obtained from the functional minimization of the energy at the
two-body cluster level, yielding a set of coupled differential equations to be solved
with the boundary conditions

fn(rij ≥ d) =

{
1 , n = 1
0 , n = 2,3,4

, (3.34)

fn(rij ≥ dt) = 0 , n = 5,6 (3.35)

and

dfn

drij

∣∣∣∣
rij=d

= 0 , n = 1,2,3,4

dfn

drij

∣∣∣∣
rij=dt

= 0 , n = 5,6 , (3.36)
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d and dt > d being variational parameters. The above conditions simply express
the requirements that i) for relative distances larger than the interaction range the
two-nucleon wave function reduces to the one describing non interacting particles
and ii) tensor interactions have longer range.

For any given value of nuclear matter density, we have solved the Euler-Lagrange
equations, whose form is given in Appendix C, using the values of d and dt obtained
by the authors of Ref.[7] through a highly accurate minimization, carried out within
the FHNC-SOC scheme [48].

The results corresponding to nuclear matter at equilibrium density are illustrated
in Fig.3.1, showing the central component of the correlation functions acting between
a pair of nucleon carriyng total spin and isospin S and T , respectively. The relations
between the fTS of Fig.3.1 and the fn of Eq.(3.5) are given in Appendix A. The
shapes of the fTS clearly reflect the nature of the interaction. In the T = 0 S = 0
channel, in which the potential exhibits a strong repulsive core, the correlation
function is very small at r <

∼ 0.5 fm. On the other hand, in the T = 0 S = 1
channel, the spin-isospin state corresponding to the deuteron, the repulsive core is
much weaker and the potential becomes attractive at r >

∼ 0.7 fm. As a consequence,
the correlation function does not approach zero as r → 0 and exceeds unity at
intermediate range.

Figure 3.1. Interaction potentials (upper panel) and correlation functions (lower
panel) acting in the spin-isospin channels S = 0 and T = 0 (solid lines) and S = 0
and T = 1 (dashed lines). The potential is the Argonne v′8 and the correlation
functions correspond to nuclear matter at equilibrium density.
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In Fig.3.2 the components of the effective interaction at equilibrium density are
compared to the corresponding components of the truncated v′8 potential. It clearly
appears that screeening effects due to NN correlations lead to a significant quenching
of the interaction.

Figure 3.2. Comparison between the components of the bare Argonne v′8 poten-
tial (dashed lines) and the effective potential defined by Eq.(3.31) (solid lines),
calculated at nuclear matter equilibrium density.
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Figure 3.3 shows a comparison between the central (n = 1, left panel) and spin-
isospin (n = 4, right panel) components of the effective interaction of Eq.(3.31),
calculated at different densities using the Argonne v′8 potential. The density de-
pendence associated with the correlation functions, that depend on ρ through the
correlation ranges, d and dt, and the Fermi distributions (see Appendix C) turns
out to be rather weak in the range 0.04 ≤ ρ ≤ 0.32.

Figure 3.3. Density dependence of the central (n = 1, left panel) and spin-isospin
(n = 4, right panel) components of the effective interaction of Eq.(3.31), calculated
using the Argonne v′8 potential. The dot-dash, dashed and solid lines correspond
to ρ = 0.04, 0.16 and 0.32 fm−3, respectively.

3.3.1 Energy per particle of neutron and nuclear matter

The effective interaction described in the previous Section was tested by computing
the energy per particle of symmetric nuclear matter and pure neutron matter in first
order perturbation theory using the FG basis.

Let us consider nuclear matter at density

ρ =

4∑

λ=1

ρλ , (3.37)

where λ = 1,2,3,4 labels spin-up protons, spin-down protons, spin-up neutrons and
spin-down neutrons, respectively, the corresponding densities being ρλ = xλρ, imply-
ing

∑
λ xλ = 1. Within our approach, the energy of such a system can be obtained
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from

E

N
=

3

5

∑

λ

pλ
F

2

2m
+
ρ

2

∑

λµ

∑

n

xλxµ

∫
d3r vn

eff

[
An

λµ − Bn
λµℓ(p

λ
F r)ℓ(p

µ
F r)

]
. (3.38)

In the above equation, pλ
F = (6π2ρλ)

1/3 and the Slater function ℓ is defined as

ℓ(pλ
F r) =

∑

k

eik·r θ(pλ
F − |k|) . (3.39)

The explicit expression of the matrices

An
λµ = 〈λµ|On|λµ〉 , Bn

λµ = 〈λµ|On|µλ〉 , (3.40)

where |λµ〉 denotes the two-nucleon spin-isospin state, is given in Appendix A.
In Fig. 3.4 our results are compared to those of Refs. [8] and [35]. The calcu-

lations of Ref. [8] (solid lines) have been carried out using a variational approach
based on the FHNC-SOC formalism, with a hamiltonian including the Argonne v18

NN potential and the Urbana IX three-body potential [31]. The results of Ref. [35]
(dashed line of the lower panel) have been obtained using the v′8 and the same three-
body potential, within the framework of the Auxiliary field diffusion Monte Carlo
(AFDMC) approach.

The results of Fig. 3.4 show that the effective interaction provides a fairly rea-
sonable description of the EOS over a broad density range. The empirical equilib-
rium properties of symmetric nuclear matter are accounted for without including
the somewhat ad hoc density dependent correction of Ref. [8]. This is probably
to be ascribed to the fact that, unlike the Urbana IX potential, the three-nucleon
interaction (TNI) model of Ref. [47] also takes into account the contribution of
many-body forces. It should also be emphasized that, using veff of Eq.(3.31) and
the TNI model, one effectively includes the contribution of clusters involving more
than two nucleons. Note that, in addition to the correct binding energy per nucleon
and equilibrium density (E/N = 15.96 MeV at ρ = 0.16 fm−3), our calculation also
yields a very reasonable value of the compressibility module, which turns out to be
K = 230 MeV.

It is worth reminding that our approach does not involve adjustable parameters.
The correlation ranges d and dt have been taken from Ref. [7], while the parameters
entering the definition of the three-nucleon interaction (TNI) have been determined
by the authors of Ref. [47] through a fit of nuclear matter equilibrium properties.

3.3.2 Effective mass

Within the approach based on veff , the effective mass can be obtained from the single-
particle energies eλ(p), that can be easily computed in Hartree-Fock approximation.
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3 – Nuclear matter theory

Figure 3.4. Energy per particle of symmetric nuclear matter (upper panel) and
pure neutron matter (lower panel). The diamonds represent the results obtained
using Eq.(3.38), whereas the solid lines correspond to the results of Akmal, Pand-
haripande and Ravenhall [8]. The dashed line of the lower panel represents the
results of the AFDMC approach or Ref. [35].

The resulting expression is (compare to Eq.(3.38):

eλ(p) =
p2

2m
+
ρ

2

∑

µ

∑

n

xµ

∫
d3rvn

eff(r)
[
An

λµ − Bn
λµj0(pr)ℓ(pF r)

]
, (3.41)

where p = |p| and j0 is the spherical Bessel function: j0(x) = sin(x)/x.
The relation between the effective mass, m⋆, and the single-particle energies is

given by
1

m⋆
=

1

p

de

dp
. (3.42)

The density dependence of the effective masses of PNM, obtained from the veff dis-
cussed in this Chapter, is shown in Fig. 3.5. It is worth mentioning that for SNM
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3.3 – Effective interaction

at equilibrium, we find m⋆(pF )/m = 0.65, in close agreement with the lowest order
CBF result of Ref. [49]. Comparing to the zero-th order CBF result is consistent
with the Hartree-Fock approximation employed to calculate the single-particle en-
ergies. The 20% enhancement of the effective mass at the Fermi surface resulting
from the second order CBF calculation [49] is in fact due to effects not included in
the present implementation of our approach.

Figure 3.5. Density dependence of the ratio m⋆/m obtained from Eqs.(3.41) and
(3.42) using the effective interaction described in the text.

3.3.3 Spin susceptibility of neutron matter

The results of numerical calculations show that the energy per particle of nuclear
matter can be accurately approximated using the expression

1

N
E(α,β,γ) = E0 + Eσα

2 + Eτβ
2 + Eστγ

2 , (3.43)

with

α = (x3 − x4) + (x1 − x2)

β = (x3 + x4) − (x1 + x2) (3.44)

γ = (x3 − x4) − (x1 − x2) .

In symmetric nuclear matter xλ = 1/4 for all values of λ, yielding E/N = ESNM =
E0, while in pure neutron matter, corresponding to x1 = x2 = 0 and x3 = x4 = 1/2,
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E/N = EPNM = E0 + Eτ , implying that Eτ can be identified with the symmetry
energy.

Let us consider fully spin-polarized neutron matter. The two degenerate states
corresponding to x3 = 1 and x4 = 0 (α = 1, spin-up) and x3 = 0 and x4 = 1
(α = −1, spin-down) have energy,

E↑ = E↓ = EPNM + Ẽσ , (3.45)

with Ẽσ = Eσ +Eστ . For arbitrary polarization α, the energy can be obtained from
the expansion

E(α) = E(0) +
∂E

∂α

∣∣∣∣
α=0

α +
1

2

∂2E

∂α2

∣∣∣∣
α=0

α2 + . . . . (3.46)

As E must be an even function of α (see Eq.(3.45)), the linear term in the above
series must be vanishing and, neglecting terms of order α3, we can write

∆E = E(α) −E(0) =
1

2

∂2E

∂α2

∣∣∣∣
α=0

α2 . (3.47)

Figure 3.6. Ratio between the spin susceptibility obtained from Eqs.(3.53)
and (3.38) and the FG model result. The points with error bars show the
AFDMC results of Ref.[50].

In the presence of a uniform magnetic field B the energy of the system becomes

EB(α) = E(α) − αµB, (3.48)
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where B denotes the magnitude of the external field, whose direction is chosen as
spin quantization axis, and µ is the neutron magnetic moment.

Assuming that equilibrium is achieved at α = α0, i.e. that

∂E

∂α

∣∣∣∣
α=α0

− µB = 0 , (3.49)

we obtain

α0 = µB

(
∂2E

∂α2

)−1

α=0

. (3.50)

From the definitions of the total magnetization

M = µ(ρ3 − ρ4) = µα0ρ = µ2

(
∂2E

∂α2

)−1

α=0

Bρ , (3.51)

and the spin susceptibility χ
M = χB , (3.52)

we finally obtain

χ = µ2

(
∂2E

∂α2

)−1

α=0

ρ = µ2 1

2(E↑ −EPNM)
ρ . (3.53)

The above equation shows that, within our approach, the spin susceptibility of
neutron matter can be easily calculated from Eq.(3.38)

Figure 3.6 shows the density dependence of the ratio between the susceptibility
of neutron matter obtained from the effective interaction and that corresponding to
the FG model. For comparison, the results of Ref.[50], obtained within the AFDMC
approach using the Argonne v′8 NN potential and the Urbana IX three-body force,
are also displayed. It appears that the inclusion of interactions leads to a substancial
decrease of the susceptibility over the whole density range, and that the agreement
between the two theoretical calculations is remarkably good.

3.4 Thermal effects

The CBF formalism described in the previous Sections assumes that nuclear matter
can be described as a cold, zero-temperature, system. As pointed out in Chapter
2, this approximation is justified as long as the thermal energy, ∼ T , is negligible
compared to the typical nucleon energy.

In principle, to apply the CBF formalism to the calculation of the shear vis-
cosity, which is the ultimate goal of our work, this assumption should be released.
However, the thermal regime relevant to the astrophysical aplications of our results
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corresponds to temperatures of few MeV at most. Since these energies are much
lower than the mass of the lightest strongly interacting particle - the π meson, whose
mass is mπ ∼ 140 MeV - it is reasonable to assume that the dynamics, described by
the NN potential, is not affected by the finite temperature.

Thermal effects also enter the calculation of the correlation functions through the
Fermi distribution, yielding the occupation probability of the single-particle states.
The Euler-Lagrange equations to be solved to obtain the fij at T 6= 0 can be easily
obtained from those corresponding to T = 0 (see Appendix C), replacing the Slater
functions of Eq.(3.39) with

L(pλ
F r,T ) =

∑

k

eik·rnλ(k,T ) , (3.54)

where nλ(k,T ) is the Fermi distribution defined in Chapter 1, which reduces to the
step function of Eq.(3.39) in the limit T → 0. The temperature dependence of
L(pλ

F r,T ) for the case of symmetric nuclear matter at equilibrium density (corre-
sponding to pλ

F = 1.33 fm−1 for all values of λ) is illustrated in Fig. 3.7.

Figure 3.7. Radial dependence of the generalized Slater functions at finite
temperature, defined by Eq.(3.54), calculated in symmetric nuclear matter at
equilibrium density. The solid, dashed and dot-dash lines correspond to T =
0, 5 and 10 MeV, respectively.

Figure 3.8 shows the temperature dependence of the correlation function in the
two-nucleon channel corresponding to S = 1 and T = 0. The quantity diplayed in
the figure is the relative deviation with respect to the zero temperature result

∆fTS(r,T ) =
fTS(r,T ) − fTS(r,T = 0)

fTS(r,T = 0)
. (3.55)
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It clearly appears that even for rather large temperatures, of the orders of tens of
MeV, the thermal modifications of the Fermi distributions have a negligible effect,
leading to a few percent deviation.

Figure 3.8. Radial and temperature dependence of the quantity ∆fTS(r,T ),
defined in Eq.(3.55), corresponding to the S = 1, T = 0 channel and nuclear
matter equilibrium density.
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Chapter 4

Shear viscosity of neutron matter

In this Chapter we discuss the calculation of the shear viscosity coefficient of pure
neutron matter. As a first step, we compare with the results of existing calculations,
in which the scattering probability entering the definition of η is obtained from the
NN scattering cross section in vacuum. The modifications due to the presence of
the nuclear medium, whose consistent inclusion has to be regarded as the main aim
of our work, have been taken into account replacing the bare NN potential with
the CBF effective interaction decribed in Chapter 3. Most of the original results
presented in this Chapter are taken from Ref. [51].

4.1 Comparison with existing results

Early estimates of the shear viscosity coefficient of neutron star matter were obtained
in the 70s by Flowers and Itoh [5, 6], who used the measured scattering phase shifts
to estimate the neutron-neutron scattering probability entering the definition of η
(see Eqs.(1.55) and (1.61)). However, in principle, the effect of the nuclear medium
on NN scattering should also be taken into account, using the same dynamical model
employed to obtain the neutron star matter EOS.

In Ref. [52], the relation between NN scattering in vacuum and in nuclear matter
has been analyzed under the assumption that the nuclear medium mainly affects the
flux of incoming particles and the phase-space available to the final state particles,
while leaving the transition probability unchanged. Within this picture W(θ,φ) can
be extracted from the NN scattering cross section measured in free space, (dσ/dΩ)vac,
according to

W(θ,φ) =
16π2

m⋆2

(
dσ

dΩ

)

vac

(4.1)

where m⋆ is the nucleon effective mass and θ and φ are related to the kinematical
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variables in the center of mass frame through [6]

Ecm =
p2

F (1 − cos θ)

2m
, θcm = φ . (4.2)

The above procedure has been followed in Ref. [11], whose authors have used the
available tables of vacuum cross sections obtained from partial wave analysis [53]. In
order to compare with the results of Ref. [11], we have first carried out a calculation
of the viscosity using Eqs.(1.55), (1.56), (1.61), (1.62) and (1.64), and the free-space
neutron-neutron cross section obtained from the Argonne v18 potential, discussed in
Chapter 2.

The calculation of the cross section has been carried out using a partial wave
expansion of the scattering wave-function, solution of the Lipmann-Schwinger equa-
tion

|p,SM,T 〉(±) = |p,SM,T 〉0 +
1

E −H0 ± iη
v|p,SM,T 〉(±) , (4.3)

H0 and |p,SM,T 〉0 being the free hamiltonian and the corresponding eigenstate.
In the above equation p is the relative momentum, while S, M and T specify the
pair spin, spin projection and isospin. Note that labeling the state with the isospin
projection in not necesssary, due to charge invariance of the nuclear potential v.
Hence, we can set MT = 0. The structure of the Schrödinger equations for the
different partial waves is discussed in Appendix D.

From the scattering wave function one can readily obtain the elements of the
T -matrix

T (S,M,M ′,T ;p) = 0〈p′,S ′M ′,T ′|v|p,SM,T 〉+ , (4.4)

entering the calculation of the cross section. For example, in the case of proton-
proton or neutron-neutron scattering, i.e. of pure T = 1 states, we find

dσpp

dΩ
=
dσnn

dΩ
= |a10|2 +

∑

MM ′

|aMM ′

11 |2 , (4.5)

where the scattering amplitudes aT0 and aMM ′

T1 are trivially related to the T -matrix
elements through

aT0 =
µ

2π
T (0,0,0,T ;p) , aMM ′

T1 =
µ

2π
T (1,M,M ′,T ;p) , (4.6)

µ being the reduced mass of the two-nucleon system.
Being fit to the full Nijmegen phase shifts data base [28], as well as to low energy

scattering parameters and deuteron properties, the Argonne v18 potential provides
an accurate description of the scattering data by construction. In order to show the
accuracy of our calculation of the free-space cross section, in Fig.4.1 we compare
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Figure 4.1. Differential proton-neutron scattering cross section at Ecm = 100
MeV, as a function of the scattering angle in the center of mass frame. The
data are taken from Ref. [54].

our results to the experimental data, available online from Ref. [54], for the case of
proton-neutron scattering at Ecm = 100 MeV.

In Fig. 4.2, we show the quantity ηT 2 a function of density. Our results are
represented by the solid line, while the dot-dash line corresponds to the results
obtained from Eqs.(43) and (46) of Ref. [11]. Both calculations have been carried
out using the effective masses discussed in Chapter 3 and illustrated in Fig. 3.5.
The differences between the two curves are likely to be ascribed to the correction
factor of Eq.(1.64), not taken into acount by the authors of Ref. [11], and to the
extrapolation needed to determine the cross sections at small angles within their
approach.

To gauge the model dependence of our results, we have replaced the full Argonne
v18 potential with its simplified form, referred to as v′8 [30]. The corresponding
results, represented by the dashed line, show that using the v′8 potential leads to a
few percent change of ηT 2 over the density range corresponding to 1/4 < (ρ/ρ0) < 2.

4.2 Inclusion of medium effetcs

To improve upon the approximation of Eq.(4.1) and include the effects of medium-
modifications of the NN scattering amplitude, we have replaced the bare NN poten-
tial with the CBF effective interaction veff discussed in Chapter 3.
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Figure 4.2. Neutron matter ηT 2 as a function of density. Solid line: results
obtained using free-space cross section corresponding to the Argonne v18 poten-
tial and m⋆ computed from to the effective interaction described in Chapter 3.
Dot-dash line: results obtained from Eqs.(43) and (46) of Ref. [11] using the
same m⋆. Dashed line: same as the solid line, but with the Argonne v18 replaced
by its reduced form v′8.

Knowing veff , the in-medium scattering probability can be readily obtained from
Fermi’s golden rule. The corresponding cross section at momentum transfer q reads

dσ

dΩ
=

m⋆2

16π2
|v̂eff(q)|2 , (4.7)

v̂eff being the Fourier transform of the effective potential. The details of the cal-
culation of the scattering probability appearing in the above equation are given in
Appendix E.

In Fig. 4.3 the in-medium neutron-neutron cross section at Ecm = 100 MeV
obtained from the effective potential, with ρ = ρ0 and ρ0/2, is compared to the
corresponding free-space result. As expected, screening of the bare interaction leads
to an appreciable suppression of the scattering cross section.

Replacing the cross section in vacuum with the one defined in Eq.(4.7), the
medium modified scattering probability can be obtained from Eq.(4.1). The result-
ing W(θ,φ) can then be used to calculate the quasiparticle lifetime τ , from Eq.(1.55)
and ηT 2, from Eq.(1.64).

Figure 4.4 shows the Fermi momentum dependence of the product τT 2, with τ
computed from Eq.(1.55) using both the free space and medium modified scattering
probabilities. It clearly appears that the suppression of the cross section (see Fig.
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Figure 4.3. Differential neutron-neutron scattering cross section at Ecm = 100
MeV, as a function of the scattering angle in the center of mass frame. Solid line:
cross section in vacuum, calculated with the v′8 potential. Dot-dash line: medium
modified cross section obtained from the effective interaction described in the text
at ρ = 0.08 fm−3. Dashed line: same as the dot-dash line, but for ρ = 0.16 fm−3.

4.3) results in a significant increase of the quasiparticle lifetime. For comparison, we
also report the results of Ref.[55], whose authors derived an effective interaction using
G-matrix perturbation theory and the Reid soft-core NN potential. The predictions
of the two approaches based on effective interactions are close to one another for
pF

<
∼ 1.7 fm−1, corresponding to ρ <

∼ ρ0. The differences observed at larger density
are likely to be ascribed to the fact that the calculations of Ref.[55] does not include
three-nucleon interactions, whose effects become more and more important as the
density increases.

The effect of using the medium modified cross section in the calculation of η is
illustrated in Fig. 4.5. Comparison between the solid and dashed lines shows that
inclusion of medium modifications leads to a large increase of the viscosity, ranging
between ∼ 75% at half nuclear matter density to a factor of ∼ 6 at ρ = 2ρ0. Such
an increase is likely to produce appreciable effects on the damping of neutron-star
oscillations.

It has to be emphasized that our results are only applicable at temperatures
T > Tc, Tc ∼ 109 K being the superfluid transition temperature of neutron matter.

At temperature below Tc the main contribution to shear viscosity of neutron
star matter arises from the electrons [5]. The viscosity in a neutron star containing
neutrons in the superfluid state can be modelled according to [4]

ηs(T ) = [1 − θ(T )]η + θ(T )ηe , (4.8)
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4 – Shear viscosity of neutron matter

Figure 4.4. Fermi momentum dependence of τT 2, with the quasiparticle life-
time τ computed from Eq.(1.55) using the free-space (dashed line) and in-
medium (solid line) scattering probabilities. The dot-dash line corresponds to
the results of Ref.[55], obtained using G-matrix perturbation theory and the
Reid soft-core potential.

Figure 4.5. Neutron matter ηT 2 as a function of density. Solid line: results ob-
tained using the effective interaction described in the Chapter 3. Dashed line: ηT 2

obtained from the free space cross section corresponding to the v′8 potential.

where η and ηe denote the shear viscosity coefficients associated with neutrons and
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electrons, and

θ(T ) =

{
0 T > Tc

1 T < Tc .
(4.9)

In this context, it is worth mentioning that within the approach developed in this
Thesis, the viscosity coefficients and the superfluid gap can be consistently obtained
from the same dynamical model.
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Conclusions & Outlook

We have carried out a calculation of the shear viscosity of pure neutron matter in
which medium modifications of the scattering probability are consistently taken into
account.

Viscosity plays a pivotal role in damping oscillations associated with gravitational
waves emission, that may lead to the CFS instability of rotating neutron stars.
Hence, its quantitative understanding is required to determine whether an oscillation
mode is stable or not.

The calculation has been performed using a many-body approach based on an
effective interaction, derived from a realistic NN potential within the framework
of CBF theory. Our work improves upon existing effective interaction models [45,
46] in that it includes the effects of many-nucleon forces, which become sizable,
indeed dominant, in the high density region relevant to the studies of neutron star
properties.

The energy per nucleon of both symmetric nuclear matter and pure neutron
matter, obtained from our effective interaction model, turns out to be in fairly good
agreement with the results of highly refined many-body calculations, based on si-
milar dynamical models. A comparable agreement with the results available in the
literature has also been found for single-particle properties, e.g. the effective mass,
and the spin susceptibility. The emerging picture suggests that our approach cap-
tures the relevant physics, allowing one to obtain reasonable estimates of a number
of different quantities using standard perturbation theory in the Fermi gas basis.

Our results show that using a medium modified cross section leads to a large
increase of the viscosity. While these results are interesting in their own right, as they
can be employed in a quantitative analysis of the effect of viscosity on neutron-star
oscillations, we emphasize that our work should be seen as a first step towards the
development of a general computational scheme, allowing for a consistent evaluation
of the properties of neutron star matter.

The most straightforward extension of our approach is the calculation of the
equation of state of matter in weak equilibrium (see Eqs.(3.38) and (3.41)). The
corresponding transport coefficients can also be easily obtained from the generaliza-
tion of Landau theory to the case of a multicomponent liquid.
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Conclusions & Outlook

Other quantities relevant to the description of neutron star observables are the
supefluid gap and the response of nuclear matter to interactions with low energy
neutrino. Both quantities have been previously studied within the CBF formalism
[46, 56] and can be obtained using our effective interaction model.

As a final remark, it has to be pointed out that, while our approach can and
should be further developed, the possible improvements only pertain the structure
of the effective interaction and the inclusion of perturbative corrections, and do not

involve going to higher order in the cluster expansion.
Although the contribution of clusters involving more than two nucleons is known

to be, in general, non negligible, effective theories are in fact designed to provide
lowest order results reasonably accounting for the available data.

In this context, the most obvious improvement is the inclusion in veff of the non
static components of the NN potential, which are known to be needed to reproduce
scattering data.

On the other hand, inclusion of higher order terms in the perturbative expansion
is necessary to take into account more complex mechanisms, that play a role in de-
termining several properties of many-body systems. For example, second order CBF
corrections produce a ∼ 20% increase of the effective mass at the Fermi surface [49].
Although such an enhancement does not significantly affect the conclusions of the
present work, a numerical study of these corrections using the effective interaction
and the FG basis will be needed for future applications.

Higher order effects leading to the appearance of long-range correlations can
be also taken into account, implementing the effective interaction in the Random
Phase or Tamm-Dancoff approximation schemes [46]. Long-range correlations dom-
inate the nuclear response in the region of low momentum transfer, where the space
resolution of the probe is much larger than the average separation between nucle-
ons. Using the effective interaction allows one to describe short- and long-range
correlations in a fully consistent fashion.

Finally, it is worth mentioning that, for T ≪ mπ, the effective interaction ap-
proach can be easily generalized to include thermal effects. Understanding this
low temperature regime is relevant to the study of matter in both supernovæ and
proto-neutron stars.
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Appendix A

Properties of the operators Onij

In this Appendix, we discuss the properties of the six operators defined in Eq.(2.16),
as well as some useful properties of the Pauli matrices.

A.1 Pauli matrices

In the standard representation, in which σ3 is chosen to be diagonal, the threee Pauli
matrices are given by (we specialize here to the spin matrices σi: analog properties
obviously hold for the isospin matrices τ i)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1)

The Pauli matrices satisfy

σiσj = δij + iǫijkσ
k , (A.2)

ǫijkσ
jσk = 2iσi , (A.3)

that can be put in the form

[σi, σj] = 2iǫijkσ
k , (A.4)

{σi, σj} = 2δij , (A.5)

where ǫijk is the totally antisymmetric tensor and i,j,k = 1,2,3. The first properties
shows that the Pauli matrices are the generators of an SU(2) algebra.
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A.2 Projection operators

Let now σ1 and σ2 be the vectors of Pauli matrices for particle 1 and 2, respectively
(i.e. σ1 ≡ {σ1

1, σ
2
1 , σ

3
1}). From the properties (A.2)-(A.3), it follows that

(σ1 · σ2)
2 = 3 − 2(σ1 · σ2) . (A.6)

As (σ1 ·σ2) is a scalar quantity, we can interpret the above equation as an algebraic
one, with solutions (σ1 · σ2) = −3 and (σ1 · σ2) = 1. They correspond to the
states of total spin S = 0 (spin singlet channel) and S = 1 (spin triplet channel),
respectively. It is thus useful introducing the operators P2S+1 (and the analog Π2T+1

for the isospin states), defined as

P(S=0) ≡ P1 =
1 − (σ1 · σ2)

4
, (A.7)

P(S=1) ≡ P3 =
3 + (σ1 · σ2)

4
, (A.8)

which project onto states of definte total spin 0 or 1, respectively:

P2S+1|S ′〉 = δSS′|S ′〉 , (A.9)

The projection operators satisfy to

P 2
2S+1 = P2S+1 , (A.10)

P1 + P3 = 11 , (A.11)

P1P3 = P3P1 = 0 , (A.12)

where 11 is the two-dimensional identity matrix.

A.3 Spin and isospin exchange operators

Consider the two-nucleon spin states (or the analog isospin states)

|0 0〉 =
1√
2

(| ↑↓〉 − | ↓↑) ,

|1 − 1〉 = | ↓↓〉 ,

|1 0〉 =
1√
2

(| ↑↓〉 + | ↓↑) ,

|1 1〉 = | ↑↑〉 ,
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A.4 – The tensor operator S12

where |0 0〉 ≡ |S = 0MS = 0〉 etc., and the inverse relations

| ↑↑〉 = |1 1〉 ,

| ↑↓〉 =
1√
2

(|1 0〉+ |0 0〉) ,

| ↓↑〉 =
1√
2

(|1 0〉 − |0 0〉) ,

| ↓↓〉 = |1 − 1〉 .

From properties (A.9), and from

(P3 − P1) | ↑↑〉 = | ↑↑〉 , (P3 − P1) | ↓↓〉 = | ↓↓〉 ,
(P3 − P1) | ↑↓〉 = | ↓↑〉 , (P3 − P1) | ↓↑〉 = | ↑↓〉 ,

it follows that Pσ ≡ P3 − P1 is the spin-exchange operator, satisfying

Pσ|SMS〉 = (−)S+1|SMS〉 . (A.13)

A similar exchange operator can be defined for isospin, Pτ ≡ Π3 − Π1, with

Pτ |T MT 〉 = (−)T+1|T MT 〉 . (A.14)

Combining the above results we find

Pστ ≡ PσPτ =
1

4

(
1 + (σ1 · σ2)

)(
1 + (τ1 · τ2)

)
, (A.15)

with
Pστ |SMS, T MT 〉 = (−)S+T |SMS, T MT 〉 . (A.16)

A.4 The tensor operator S12

The tensor operator S12 is defined as

S12 ≡
3

r2
(σ1 · r) (σ2 · r) − (σ1 · σ2) , (A.17)

where r is the relative coordinate of particels 1 and 2 while r = |r|.
Making use of Eq.(A.2), it can be shown that

S12(σ1 · σ2) = (σ1 · σ2)S12 = S12 . (A.18)

As we saw, (σ1 ·σ2) = 1 on triplet states, while (σ1 ·σ2) = −3 on singlet states.
The above equation thus implies that the tensor operator only acts on triplet states
and

[S12, P3] = 0 . (A.19)
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Moreover,

S2
12 = 6 − 2S12 + 2(σ1 · σ2) . (A.20)

The tensor operator is a function of r satisfying

∇S12 =
3

r2

[
σ1 (σ2 · r) + σ2 (σ1 · r) − 2

r

r2
(σ1 · r) (σ2 · r)

]
, (A.21)

∇2S12 = − 6

r2
S12 . (A.22)

For any function u(r), Eq.(A.21) implies

(∇u) · (∇S12) =
du

dr

r

r
· (∇S12) = 0 . (A.23)

Moreover

(∇S12)
2 =

6

r2
(8 − S12) , (A.24)

[S12, (∇S12)] =
36

r2
i (S × r) , (A.25)

[S12, (∇S12)]∇ =
36

r2
(L · S) , (A.26)

where S = (σ1 + σ2) /2 and L = r× p = −i (r× ∇) is the orbital angular momen-
tum operator of the relative motion.

From Equation (A.22), we can calculate

[
S12, ∇2S12

]
= 0 , (A.27)

and

(∇S12) [S12, ∇] = − (∇S12)
2 . (A.28)

A.5 Algebra of the six operators On≤6
ij

Equations (A.6), (A.18) and (A.20) show that the six operators

O1,...,6 = 1, (τ1 · τ2), (σ1 · σ2), (σ1 · σ2)(τ1 · τ2), S12, S12(τ1 · τ2) , (A.29)

close an algebra, i.e. they satisfy

OiOj =
∑

k

Kk
ijO

k . (A.30)
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A.6 – Matrix elements of P2S+1 and Π2T+1

The coefficients Kk
ij are easily obtained by calculating

O1Oi = OiO1 = Oi =⇒ Kk
1i = Kk

i1 = δk
i

O2O2 = 3O2 − 2O2 =⇒ Kk
22 = 3δk

1 − 2δk
2 ,

O2O3 = O3O2 = O4 =⇒ Kk
23 = Kk

32 = δk
4 ,

O2O4 = 3O3 − 2O4 =⇒ Kk
24 = Kk

42 = δk
3 − 1δk

4 ,

O2O5 = O5O2 = O6 =⇒ Kk
25 = Kk

52 = δk
6 ,

O2O6 = O6O2 = 3O5 − 2O6 =⇒ Kk
26 = Kk

62 = 3δk
5 − 2δk

6 ,

O3O3 = 3O1 − 2O3 =⇒ Kk
33 = 3δk

1 − 2δk
3 ,

O3O4 = O4O3 = 3O2 − 2O4 =⇒ Kk
34 = Kk

43 = 3δk
2 − 2δk

4 ,

O3O5 = O5O3 = O5 =⇒ Kk
35 = Kk

53 = δk
5 ,

O3O6 = O6O3 = O6 =⇒ Kk
36 = Kk

63 = δk
6 ,

O4O4 = 9O1 − 6O2 − 6O3 + 4O4 =⇒ Kk
44 = 9δk

1 − 6δk
2 − 6δk

3 + 4δk
4 ,

O4O5 = O5O4 = O6 =⇒ Kk
45 = Kk

54 = δk
6 ,

O4O6 = O6O4 = 3O5 − 2O6 =⇒ Kk
46 = Kk

64 = 3δk
5 − 2δk

6 ,

O5O5 = 6O1 + 2O3 − 2O5 =⇒ Kk
55 = 6δk

1 + 2δk
3 − 2δk

5 ,

O5O6 = O6O5 = 6O2 + 2O4 − 2O6 =⇒ Kk
56 = Kk

65 = 6δk
2 + 2δk

4 − 2δk
6 ,

O6O6 = 18O1 − 12O2 + 6O3 − 4O4 − 6O6 + 4O6

=⇒ Kk
66 = 18δk

1 − 12δk
2 + 6δk

3 − 4δk
4 − 6δk

4 + 4δk
6 .

A.6 Matrix elements of P2S+1 and Π2T+1

Finally, we report a number of expectation values of operators involving Pauli ma-
trices, in two-nucleon states of definite total spin and isospion, |S MS, T MT 〉.

〈P2S′+1Π2T ′+1〉 = δSS′δTT ′ , (A.31)

〈P2S′+1Π2T ′+1Pστ 〉 = (−)S+T δSS′δTT ′ , (A.32)∑

SMS

δS′1〈S12P2S′+1Π2T ′+1〉 = δS′1δTT ′

∑

MS

〈1 MS|S12|1 MS〉 = 0 , (A.33)

∑

SMS

δS′1〈S12P2S′+1Π2T ′+1Pστ 〉 = 0 . (A.34)

71



A – Properties of the operators On
ij

A.7 Matrix elements of On≤6
ij

The explicit expressions for the matrices entering Eqs.(3.38) and (3.41), defined by

Ai
λµ = 〈λµ|Oi

12|λµ〉 , Bi
λµ = 〈λµ|Oi

12|µλ〉 , (A.35)

where |λµ〉 denotes the two-nucleon spin-isospin state, can be easily obtained from
the above properties of the six operators On≤6.

We find

A1 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , (A.36)

A2 =




1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1


 , (A.37)

A3 =




1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1


 , (A.38)

A4 =




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1


 , (A.39)

A5 =




1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1




(
3 cos2 θ − 1

)
= A2

(
3 cos2 θ − 1

)
, (A.40)

A6 =




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1




(
3 cos2 θ − 1

)
= A4

(
3 cos2 θ − 1

)
, (A.41)

B1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (A.42)
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A.8 – Change of representation

B2 =




1 0 2 0
0 1 0 2
2 0 1 0
0 2 0 1


 , (A.43)

B3 =




1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1


 , (A.44)

B4 =




1 2 2 4
2 1 4 2
2 4 1 2
4 2 2 1


 , (A.45)

B5 =




1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1




(
3 cos2 θ − 1

)
, (A.46)

B6 =




1 −1 2 −2
−1 1 −2 2

2 −2 1 −1
−2 2 −1 1




(
3 cos2 θ − 1

)
, (A.47)

where θ is the angle between r and the z axis.

A.8 Change of representation

In this Section we discuss the different representation for the operators of the “v6”
algebra. A generic operator x can be written as

x =
6∑

p=1

xp
ijO

p = xc+xτ (τ1·τ2)+xσ(σ1·σ2)+xστ (σ1·σ2)(τ1·τ2)+xtS12+xtτS12(τ1·τ2) ,

(A.48)
in the basis of operators (A.29), or as

x =
∑

TS

[xT0 + δS1xtTS12]P2S+1Π2T+1 , (A.49)

in the “TS-representation”.
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The transformation matrix is given by




1 −3 −3 9
1 1 −3 −3
1 −3 1 −3
1 1 1 1







xc

xτ

xσ

xστ


 =




x00

x10

x01

x11


 , (A.50)

(
1 −3
1 1

) (
xt

xtτ

)
=

(
xt0

xt1

)
, (A.51)

or





xTS = xc + (4T − 3)xτ + (4S − 3)xσ + (4S − 3)(4T − 3)xστ ,

xtT = xt + (4T − 3)xtT .
(A.52)

The inverse transformation is given by

1

16




1 3 3 9
−1 1 −3 3
−1 −3 1 3

1 −1 −1 1







x00

x10

x01

x11


 =




xc

xτ

xσ

xστ


 , (A.53)

1

4

(
1 3

−1 1

) (
xt0

xt1

)
=

(
xt

xtτ

)
, (A.54)
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Appendix B

Energy at two-body cluster level

The energy per particle at two-body cluster level can be written (see Eqs.(3.27) and
(3.28))

(∆E)2 =
∑

i<j

〈ij| 1

2

[
f12, [ t1 + t2, f12]

]
+ f12v12f12 |ij − ji〉 , (B.1)

with

ti = − 1

2m
∇2

i , t1 + t2 = − 1

m
∇2 − 1

4m
∇2

R , (B.2)

where ∇ acts on the relative coordinate r, while ∇R acts on the center of mass
coordinate R, defined as

r = r1 − r2 , R =
1

2
(r1 + r2) (B.3)

respectively.

Including only the static part of the interaction, both the correlation function
f12 and the two-nucleon potential v12 are written as

f12 =
6∑

p=1

f p(r12)O
p
12 , v12 =

6∑

p=1

vp(r12)O
p
12 , (B.4)

with the six operator On
12 listed in Eq.(2.16), whose properties are discussed in

Appendix A..

The FG two-nucleon state is given by

|ij〉 =
1

V
ei(ki·r1+kj ·r2) |SMS, T MT 〉

=
1

V
ei(k·r+K·R) |SMS , T MT 〉 , (B.5)
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with

|ki|, |kj| ≤ pF

k =
1

2
(ki − kj) , K = ki + kj . (B.6)

We will discuss the potential and kinetic energy term separately.

B.1 Potential energy

Consider the operator
w12 = f12v12f12 , (B.7)

and the decomposition of f12 in the TS-representation (see Eq.(A.49))

f12 =
∑

ST

[
fST + δS1ftTS12

]
P2S+1Π2T+1 . (B.8)

In the above equation, P2S+1 and Π2T+1 are spin and isospin projection operators,
whose properties are given in Appendix A. By writing the corresponding decompo-
sition for w12 and v12 and calculating

w12 =
∑

TS

{
δS0f

2
T0vT0 + δS1

{
vT1

[
f 2

T1 + 8f 2
tT + 2

(
fT1ftT − f 2

tT

)
S12

]
+

+ vtT

[
16

(
fT1ftT − f 2

tT

)
+

(
f 2

T1 − 4fT1ftT + 12f 2
t1

)
S12

]}}
P2S+1Π2T+1 ,

we can identify

wT0 = vT0 f 2
T0

wT1 = vT1

(
f 2

T1 + 8f 2
tT

)
+ 16vtT

(
fT1ftT − f 2

tT

)
(B.9)

wtT = 2vT1

(
fT1ftT − f 2

tT

)
+ vtT

(
f 2

T1 − 4fT1ftT + 12f 2
t1

)
.

After replacing ∑

i<j

−→ 1

2

∑

ij

, (B.10)

the potential energy contribution to (∆E)2 reads

〈w〉 =
1

2

1

V 2

∑

SMS

∑

TMT

∑

kikj

∑

S′T ′

{∫
d3r1d

3r2

[
wS′T ′(r)〈P2S′+1Π2T ′+1〉 +
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δS′1wtT ′(r)〈S12P2S′+1Π2T ′+1〉
]
−

∫
d3r1d

3r2 ei(ki·r−kj·r) (B.11)

[
wS′T ′(r)〈P2S′+1Π2T ′+1Pστ 〉 + δS′1wtT ′(r)〈S12P2S′+1Π2T ′+1Pστ 〉

]}
,

where Pστ is the spin-isospin exchange operator defined in Appendix A and the
expectation values 〈O〉 are taken over two-nucleon states of definite total spin and
isospin |SMS, T MT 〉. Using

∫
d3r1d

3r2 =

∫
d3r d3R = V

∫
d3r , (B.12)

the definition of the Slater function (3.7),

∑

|k|≤pF

eik·r =
V

(2π)3

∫

|k|≤pF

d3k eik·r =
N

ν
ℓ(pF r) , (B.13)

and the results of Appendix A, we finally obtain

〈w〉 =
1

2

1

V 2

N2

ν2
V

∑

ST

(2S + 1) (2T + 1)

∫
d3r wST (r)

[
1 − (−1)S+T ℓ2(pF r)

]
,

(B.14)
i.e., in the case of symmetric nuclear matter (ν = 4),

1

N
〈w〉 =

ρ

32

∫
d3r

{
[w00(r) + 9w11(r)]a−(pF r) +

+ [3w01(r) + 3w10(r)]a+(pF r)]
}
, (B.15)

where ρ = N/V is the density and

a±(x) = 1 ± ℓ2(x) . (B.16)

B.2 Kinetic energy

Let us now discuss the kinetic contribution to the energy, given by

1

2

[
f12, [ t1 + t2, f12]

]
= − 1

2m

[
f12,

[
∇2, f12

] ]
. (B.17)

We consider spin-zero and spin-one channels separately.
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Spin-zero channels In these channels, the relevant part of the correlation func-
tion is given by

f12 =
∑

T

fT0(r) P1Π2T+1 . (B.18)

Making use of the results of Appendix A, as well as of
[
fT0,∇2fT0

]
= 0 ,

[
fT0, (∇fT0)∇

]
= −(∇fT0)

2 , (B.19)

we find
[
f12,

[
∇2, f12

] ]
=

∑

TT ′

[
fT0 P1 Π2T+1,

[
∇2, fT0

]
P1 Π2T ′+1

]

=
∑

TT ′

[
fT0,

[
∇2, fT0

] ]
P 2

1 Π2T+1Π2T ′+1

=
∑

T

[
fT0, (∇2fT0) + 2(∇fT0)∇

]
P1 Π2T+1

= 2
∑

T

[
fT0, (∇fT0)∇

]
P1 Π2T+1

= −2
∑

T

(∇fT0)
2 P1 Π2T+1 . (B.20)

Finally,

− 1

2m

[
f12,

[
∇2, f12

] ]
=

1

m

∑

T

(∇fT0)
2 P1 Π2T+1 . (B.21)

Spin-one channels In these channels, the correlation function is given by

f12 =
∑

T

[
fT1(r) + ftT (r)S12

]
P3 Π2T+1 . (B.22)

Relying once more on Appendix A, we calculate

∑

T ′

[
∇2, (fT ′1 + ftT ′S12)P3 Π2T ′+1

]
=

∑

T ′

{
[∇2, fT ′1] + [∇2, ftT ′S12]

}
P3 Π2T ′+1

=
∑

T ′

{
(∇2fT ′1) + 2(∇ftT ′)∇ + (∇2ftT ′S12) + 2(∇ftT ′S12)∇

}
P3 Π2T ′+1

=
∑

T ′

{
(∇2fT ′1) + 2(∇ftT ′)∇ + (∇2ftT ′)S12 + (∇2S12)ftT ′

+2(∇ftT ′)(∇S12) + 2S12(∇ftT ′)∇ + 2ftT ′(∇S12)∇
}
P3 Π2T ′+1 . (B.23)
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Hence, the commutator in Eq.(B.17) can be rewritten as

[
f12,

[
∇2, f12

] ]
=

∑

TT ′

[
(fT1 + ftTS12)P3 Π2T+1, {. . .}P3 Π2T ′+1

]

=
∑

T

[
fT1 + ftTS12, {. . .}

]
P3 Π2T+1

=
∑

T

(
F

(1)
T + F

(2)
T

)
P3 Π2T+1 , (B.24)

with
F

(1)
T =

[
fT1, {. . .}

]
, F

(2)
T =

[
ftTS12, {. . .}

]
, (B.25)

and
{
. . .

}
=

{
(∇2fT ′1) + 2(∇ftT ′)∇ + (∇2ftT ′)S12 + (∇2S12)ftT ′

+ 2(∇ftT ′)(∇S12) + 2S12(∇ftT ′)∇ + 2ftT ′(∇S12)∇
}
. (B.26)

We find
F

(1)
T = −2(∇fT1)

2 − 2(∇fT1)(∇ftT )S12 , (B.27)

and

F
(2)
T =

[
ftTS12, 2(∇fT1)∇

]
+

[
ftTS12, 2S12(∇fT1)∇

]
+

+
[
ftTS12, 2fT1(∇S12)∇

]
=

= −2(∇fT1)(∇ftT )S12 − 2(∇ftT )2S2
12 +

+2f 2
tT

[
S12, (∇S12)∇

]

= −2 (∇fT1)(∇ftT )S12 − 2(∇ftT )2(8 − 2S12) +

− 2f 2
tT

[
36

r2
(L · S) +

6

r2
(8 − S12)

]
. (B.28)

Collecting all pieces togheter, we find for the spin-one channels

− 1

2m

[
f12,

[
∇2, f12

] ]
=

1

m

∑

T

{
(∇fT1)

2 + (∇fT1)(∇ftTS12) +

+ (∇ftT )2(8 − 2S12) + f 2
tT

[
36

r2
(L · S) +

6

r2
(8 − S12)

]}
P3 Π2T+1

=
1

m

∑

TS

{
(∇fTS)2 + δS1

[
2(∇fTS)(∇ftT )S12 +
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+(∇ftT )2S2
12 + ftT

36

r2
(L · S) +

6

r2
(8 − S12)

]}
P2S+1Π2T+1

=
∑

TS

{
tTS(r) + δS1

[
ttT (r)S12 + tbT (r)(L · S)

]}
P2S+1Π2T+1 , (B.29)

with

tT0 =
1

m
(∇fT0)

2

tT1 =
1

m

[
(∇fT1)

2 + 8(∇ftT )2 +
48

r2
f 2

tT

]

ttT =
1

m

[
2(∇fT1)(∇ftT ) − 2(∇ftT )2 − 6

r2
f 2

tT

]

tbT =
1

m

36

r2
f 2

tT .

B.3 Final expression for (∆E)2

We can rewrite

(∆E)2 =
∑

i<j

〈ij|W12|ij − ji〉 , (B.30)

with

W12 = − 1

m

[
f12,

[
∇2, f12

] ]
+ f12v12f12

=
∑

TS

{
WTS(r) + δS1

[
WtT (r)S12 +WbT (r)(L · S)

]}
P2S+1Π2T+1 ,

where

WT0 =
1

m
(∇fT0)

2 + vT0f
2
T0

WT1 =
1

m

[
(∇fT1)

2 + 8(∇ftT )2 +
48

r2
f 2

tT

]
+

+vT1

(
f 2

T1 + 8f 2
tT

)
+ 16vtT

(
fT1ftT − f 2

tT

)

WtT =
1

m

[
2(∇fT1)(∇ftT ) − 2(∇ftT )2 − 6

r2
f 2

tT

]
+

+2vT1

(
fT1ftT − f 2

tT

)
+ vtT

(
f 2

T1 − 4fT1ftT + 12f 2
t1

)

WbT =
1

m

36

r2
f 2

tT .
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2

Making use of the expression for the expectation values given in Appendix A,
we finally obtain (compare to Eq.(B.15))

(∆E)2

N
=

ρ

32

∫
d3r

{[
W00(r) + 9W11(r)

]
a−(pF r) +

+
[
3W01(r) + 3W10(r)

]
a+(pF r)

}
. (B.31)
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Appendix C

Euler-Lagrange equations for the

correlation functions

C.1 Spin singlet channels: uncoupled equations

In the spin-zero channels, the energy per partcicle of SNM, evaluated at two-body
cluster level, reads (compare to Eqs.(B.15) and (B.21))

(∆E)2

N
=

ρ

32
(2T + 1)

∫
d3r

[
1

m
(∇fT0)

2 + vT0f
2
T0

]
aT0(pF r)

=
ρ

32
(2T + 1) 4π

∫
r2dr

[
1

m
(f ′

T0)
2 + vT0f

2
T0

]
aT0(pF r)

= const

∫ ∞

0

dr F
[
fT0, f

′
T0

]
, (C.1)

where aTS(x) = 1 − (−)T+Sℓ2(x) and

F
[
fT0, f

′
T0

]
=

[
(f ′

T0)
2 +m vT0f

2
T0

]
φ2

T0 , (C.2)

with
φT0 = r

√
aT0 . (C.3)

The corresponding Euler-Lagrange (EL) equations for the unknown functions fT0

are given by
d

dr

∂F

∂f ′
T0

− ∂F

∂fT0

= 0 . (C.4)

From

∂F

∂fT0

= 2 m vT0 f
2
T0 φ

2
T0 ,
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∂F

∂f ′
T0

= 2 f ′
T0 φ

2
T0 ,

d

dr

∂F

∂f ′
T0

= 2 f ′′
T0 φ

2
T0 + 4 f ′

T0 φ
′
T0 φT0 , (C.5)

we obtain

f ′′
T0 φ

2
T0 + 2 f ′

T0 φ
′
T0 −m vT0 f

2
T0 φ

2
T0 = 0 . (C.6)

Introducing

gT0 ≡ fT0 φT0 , (C.7)

we can put Eq.(C.6) in the form

g′′T0 −
(
φ′′

T0

φT0
+m vT0

)
gT0 = 0 . (C.8)

Now we introduce a Lagrange multiplier, in order to fulfill the requirement (see
Eqs.(3.34)-(3.36))

g′T0|r=d = φ′
T0|r=d . (C.9)

The resulting equation is Eq.(4) of Ref.[57]

g′′T0 −
(
φ′′

T0

φT0
+m (vT0 + λ)

)
gT0 = 0 , (C.10)

to be integrated with the boundary conditions

gT0|r=0 = 0 , (C.11)

gT0|r=d = φT0|r=d . (C.12)

C.2 Spin triplet channels: coupled equations

In the spin-one channels, the contribution to the energy is given by (see Eqs.(B.15)
and (B.31))

(∆E)2

N
=

ρ

32
(2T + 1)

∫
d3r

{
1

m

[
(∇fT1)

2 + 8(∇ftT )2 +
48

r2
f 2

tT

]
+

+vT1

(
f 2

T1 + 8f 2
tT

)
+ 16vtT

(
fT1ftT − f 2

tT

)}
aT1(pF r)

= const

∫ ∞

0

dr F
[
fT1, ftT ; f ′

T1, f
′
tT

]
, (C.13)
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where

F
[
fT1, ftT ; f ′

T1, f
′
tT

]
= (f ′

T1)
2
φ2

T1 + 8 (f ′
tT )

2
φ2

T1 +
48

r2
f 2

tTφ
2
T1 +

+ m
[
vT1

(
f 2

T1 + 8f 2
tT

)
+ 16vtT

(
fT1ftT − f 2

tT

) ]
. (C.14)

In this case we have two coupled EL equations




d
dr

∂F
∂f ′

T1

− ∂F

∂f
T1

= 0

d
dr

∂F
∂f ′

tT

− ∂F

∂f
tT

= 0 .
(C.15)

Carrying out the derivativees as in the spin-zero channels and defining

gT1 ≡ fT1φT1 , gtT ≡
√

8ftTφT1 , (C.16)

we find




g′′T1 −
(

φ′′

T1

φT1

+m vT1

)
gT1 −m

√
8vtT gtT = 0

g′′tT −
[

φ′′

T1

φT1

+m (vT1 − 2vtT ) + 6
r2

]
gtT −m

√
8vtT gT1 = 0 .

(C.17)

Finally, inclusion of the Lagrange multipliers needed to guarantee

g′T1|r=d1
= φ′

T1|r=d1
, (C.18)

g′tT |r=d2
= φ′

T1|r=d2
, (C.19)

with, in general, d1 6= d2, leads to (compare to Eq.(5) of Ref.[57])




g′′T1 −
[

φ′′

T1

φT1

+m (vT1 + λ1)
]
gT1 −m

(√
8vtT + λ2

)
gtT = 0

g′′tT −
[

φ′′

T1

φT1

+m (vT1 − 2vtT + λ1) + 6
r2

]
gtT −m

(√
8vtT + λ2

)
gT1 = 0 ,

(C.20)
with the boundary conditions

gT1|r=0 = 0 , (C.21)

gT1|r=d1
= φT1|r=d1

, (C.22)

and

gtT |r=0 = 0 , (C.23)

gtT |r=d2
= 0 . (C.24)
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Appendix D

Nucleon-nucleon scattering

In this Appendix, we describe the formalism employed to obtain the NN scattering
from section in free space from the bare potential.

D.1 Partial wave expansion

The total angular momentum J of two interacting nucleons in their center of mass
frame is given by the sum of the relative orbital angular momentum L and the total
spin S of the nucleons. As nuclear forces are invariant under spatial rotations, the
angular momentum J and its projection MJ are good quantum numbers. However,
the orbital angular momentum L and its projection m are not good quantum num-
bers, since the tensor component of the potential couples states with L = J ± 1.
The fact that the tensor operator commutes with the total spin S, implies that S
is a good quantum number, while the projection MS is not. The parity, π = + (−)
for even (odd) values of L, is also a good quantum number since the strong as well
as electromagnetic forces are invariant under space reflection. The main part of
the strong interaction is isoscalar, and thus the total isospin T is an approximately
good quantum number, while its projection MT is exactly conserved due to charge
conservation. As a consequence, the two-nucleon eigenstates can be labeled with
the quantum numbers Jπ,MJ ,S,T and MT .

In the notation of atomic spectroscopy, waves with quantum numbers J,L,S are
denoted by 2S+1LJ using letters L = S,P,D,F,G. . . for L = 0,1,2,3,4. . . , respectively.
For example, 3P2 denotes a state with J = 2, L = 1 and S = 1. The parity of the
wave is given by (−1)L. The J = L states have “natural parity” π = (−1)J . Hence,
the 1S0 and 3D2 are natural parity waves. All natural parity waves are uncoupled
to other waves by nuclear forces. The tensor force has no effect on the S = 0, L = J
waves, while the triplet waves having S = 1 and L = J are uncoupled because there
are no other waves with the same Jπ and S. For example, the 3D2 wave can not
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mix with any other wave because it is the only positive parity wave with J = 2 and
S = 1. On the other hand, triplet waves with L = J ± 1 have “unnatural parity”,
− (+) for even (odd) J . The tensor force mixes unnatural parity waves having the
same values of J , such as 3S1 and 3D1 for example. The only exception to this rule
is the 3P0 wave which, being the only negative parity J = 0 wave, is an eigenstate
of the two-nucleon hamiltonian.

It is convenient to use the spin-angle functions YM
JSL to express two-nucleon

partial waves. These eigenfunctions of total J,L,S and MJ , are obtained by coupling
L + S to the appropriate value of J and MJ . They are given by:

YMJ

JSL =
∑

MS

〈L,m = MJ −MS; S,MS |JMJ〉 Y m
L (θ,φ) |S,MS〉 , (D.1)

where θ and φ are the polar angles of the relative position vector r = r1 − r2, and
Y m

L (θ,φ) are spherical harmonics. The Clebsch-Gordon coefficients for the case S = 1
are tabulated in Table D.1. Obviously, for S = 0 MS = 0, and the Clebsch-Gordon
coefficient is δJLδMJm.

MS = 1 MS = 0 MS = −1

L = J − 1
√

(L+MJ )(L+MJ+1)
(2L+1)(2L+2)

√
(L−MJ+1)(L+MJ+1)

(2L+1)(L+1)

√
(L−MJ )(L+MJ+1)

(2L+1)(2L+2)

L = J −
√

(L+MJ )(L−MJ+1)
2L(L+1)

MJ√
L(L+1)

√
(L−MJ )(L+MJ+1)

2L(L+1)

L = J + 1
√

(L−MJ )(L−MJ+1)
2L(2L+1)

−
√

(L−MJ )(L+MJ )
L(2L+1)

√
(L+MJ+1)(L+MJ )

2L(2L+1)

Table D.1. Clebsch-Gordan coefficients entering the definition of the
spin-angle functions, Eq.(D.1).

The two-nucleon wave function in a JMJSL partial wave is given by

ψM
JSL = RJSL(r) YM

JSL, (D.2)

where RJSL(r) is the radial wave function, independent ofMJ . The total isospin T of
the wave is determined by the requirement of antisymmety under the exchange of the
two nucleons. On exchanging the spatial positions of the nucleons, r1 ⇋ r2, implying
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r → −r. The radial wave function RJSL(r) does not change, while Y m
L → (−1)LY m

L .
Under spin exchange, Ms1

⇋ Ms2
the total spin state |S,MS〉 → −(−1)S |S,MS〉.

Hence

P space
12 P spin

12 ψMJ

JSL = −(−1)S+LψMJ

JSL, (D.3)

where P space
12 and P spin

12 are the operators exchanging space and spin coordinates,
respectively. Like the spin state, the isospin state |T,MT 〉 → −(−1)T |T,MT 〉 under
isospin exchange. Therefore the complete two-nucleon wave function ψM

JSL|T,MT 〉
satisfies

P tot
12 ψ

MJ

JSL|T,MT 〉 = P space
12 P spin

12 P isospin
12 ψMJ

JSL|T,MT 〉
= (−1)T+S+LψMJ

JSL|T,MT 〉 , (D.4)

where P tot
12 is the total two-nucleon exchange operator. This wave function is an-

tisymmetric only when T + S + L is odd. Its isospin factor is often omitted, and
the partial waves are denoted by quantum numbers JSL. The isospin of the partial
wave is implicit via the antisymmetry constraint, requiring T = 0 if S + L is odd,
and T = 1 if S + L is even.

The partial waves are not eigenstates of the tensor operator S12. We will now
consider the operation of S12 on the partial waves. Since it contains the unit vector
r̂ = r/|r| and the spins, it operates on the spin-angle functions YMJ

JSL according to

S12YMJ

J0J = 0 . (D.5)

As the YMJ

JSL form a complete orthonormal set and the tensor operator commutes
with J , MJ and S, we can write

S12YMJ

J1L =
∑

L′

cJL′LYMJ

J1L′ , (D.6)

cJL′L = 〈YMJ

J1L′|S12|YMJ

J1L〉 . (D.7)

The values of the coefficients cJL′L are given in Table D.2.

D.2 The Two-Nucleon Schrödinger Equation

The natural parity waves are not coupled by nuclear forces. Therefore in these states
the two-nucleon eigenfunctions have a simpler form

ΨMJ

JSJ = RJSJ(r)YMJ

JSJ =
1

r
u(r)YMJ

JSJ . (D.8)
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L′ = J − 1 L′ = J L′ = J + 1

L = J − 1 −2 J−1
2J+1

0 6

√
J(J+1)

2J+1

L = J 0 2 0

L = J + 1 6

√
J(J+1)

2J+1
0 −2 J+2

2J+1

Table D.2. Matrix elements of the tensor operator S12, cJ
L′L, between spin-

angle states (see Eq.(D.7)).

On the other hand, the unnatural parity eigenstates have two coupled waves with
L = J ± 1. Their wave function is represented by

ΨMJ

JST = RJS(J−1)(r)YMJ

JS(J−1) +RJS(J+1)(r)YMJ

JS(J+1)

=
1

r
u(r)YMJ

JS(J−1) +
1

r
w(r)YMJ

JS(J+1) . (D.9)

The radial functions u(r) and w(r) are more convenient to use than the RJSL(r),
and the requirement that RJSL(r) be finite at the origin implies that u(r = 0) = 0
and w(r = 0) = 0. The JSL subscripts of u and w are suppressed for brevity.

The two-nucleon Schrödinger equation describing scattering state is given by

[
− 1

m
∇2 + v(12)

]
ΨMJ

JST = EΨMJ

JST ≡ 1

m
k2ΨMJ

JST , (D.10)

where v(12) is the two-nucleon interaction operator and E ≡ k2/m the center of
mass energy. For uncoupled waves this Schrödinger equation can be simplified to
the form

− 1

m

1

r
YMJ

JSJ

(
d2

dr2
− J(J + 1)

r2

)
u(r) + v(12)

1

r
u(r)YMJ

JSJ = E
1

r
u(r)YMJ

JSJ , (D.11)

by using the identity

∇21

r
u(r)YMJ

JSL =
1

r
YMJ

JSL

(
d2

dr2
− L(L+ 1)

r2

)
u(r) . (D.12)
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For coupled waves we find

− 1

m

1

r

[
YMJ

JS(J−1)

(
d2

dr2
− J(J − 1)

r2

)
u(r) + YMJ

JS(J+1)

(
d2

dr2
− (J + 1)(J + 2)

r2

)
w(r)

]

+v12
1

r

(
u(r)YMJ

JS(J−1) + w(r)YMJ

JS(J+1)

)
(D.13)

= E
1

r

(
u(r)YMJ

JS(J−1) + w(r)YMJ

JS(J+1)

)
.

As the operators in v(12) operate only on the YMJ

JSL, we can define potentials
vJSL(r) in the partial wave with quantum numbers JSL, and channel coupling
tensor potentials vt

J which couple the L = J ± 1 partial waves as follows

v(12) YMJ

JSJ = YMJ

JSJ vJSJ(r),

v(12) YMJ

JS(J−1) = YMJ

JS(J−1) vJS(J−1)(r) + YMJ

JS(J+1) v
t
J(r) cJ(J−1)(J+1),

v(12) YMJ

JS(J+1) = YMJ

JS(J+1) vJS(J+1)(r) + YMJ

JS(J−1) v
t
J(r) cJ(J−1)(J+1), (D.14)

In the case of uncoupled waves, we can multiply the Schrödinger Eq. D.11 by

YM
JSJ

†
from the left, integrate over angles using the orthonormality of the spin-angle

functions and obtain the simple radial equation:

− 1

m

(
d2

dr2
− J(J + 1)

r2

)
u(r) + vJSJ(r)u(r) = Eu(r) . (D.15)

In the case of coupled waves we obtain two, coupled radial equations by multiplying

eq.(D.13) with YMJ

JS(J±1)

†
and integrating over angles. The final result is

− 1

m

(
d2

dr2
− J(J − 1)

r2

)
u(r) + vJS(J−1)(r)u(r) (D.16)

+ vt
J(r)cJ(J−1)(J+1)w(r) = Eu(r)

− 1

m

(
d2

dr2
− (J + 1)(J + 2)

r2

)
w(r) + vJS(J+1)(r)w(r) (D.17)

+ vt
J(r)cJ(J−1)(J+1)u(r) = Ew(r). (D.18)

The above equations have been used to obtain the scattering wave function, solu-
tion of the Lipmann-Shcwinger equation, needed to calculate the NN cross section.
It is worth mentioning that, to carry out numerical calculations, it is more conve-
nient to use interaction operators vJSL and vt

J in the T,S representation, discussed
in Appendix A.
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Appendix E

Transition probability in Born

approximation

This appendix decribes the calculation of the transition probability |v̂eff(q)|2, ap-
pearing in Eq.(4.7).

We need to calculate the matrix elements of veff between antisymmetric plane-
wave two-nucleon states

〈r|k,SM,T 〉a =
1√
2

(
eik·r − e−ik·rPστ

)
|SM,T 〉 , (E.1)

where Pστ is the spin-isospin exchange operator, defined in Appendix A. Note that,
due to charge conservation, the matrix elements do not depend on the projection of
the total isospin. Hence, we can set MT = 0.

Using the expansion (r = |r|, k = |k|, r̂ = r/|r|, k̂ = k/|k|)

eik·r =
∑

L

√
4π(2L+ 1) iLjL(kr)Y 0

L (k̂ · r̂) (E.2)

and

Y 0
L (k̂ · r̂) =

√
4π

2L+ 1

∑

m

Y m
L

⋆(k̂)Y m
L (r̂) (E.3)

we obtain

eik·r|SM〉 =
∑

Lm

4π iLjL(kr)Y m
L

⋆(k̂)Y m
L (r̂)|SM〉 . (E.4)

Using the the spin-angle functions, defined through (see Appendix D)

Y m
L (r̂)|SM〉 =

∑

J

〈LmSM |JMJ〉YMJ

LSJ = |LSJMJ〉 , (E.5)
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E – Transition probability in Born approximation

we can rewrite Eq.(E.4) in the form (MJ = m+M)

eik·r|SM〉 = 4π
∑

LJMJ

iLjL(kr)Y MJ−M
L

⋆
(k̂)〈L(MJ −M)SM |JMJ 〉|LSJMJ〉 . (E.6)

The matrix elements of veff reads

Mif =
(4π)2

2

∑

JMJ

∑

LL′

iL−L′
[
1 − (−)L+S+T

] [
1 − (−)L′+S+T

]

× 〈JMJ |L′(MJ −M ′)SM ′〉Y MJ−M ′

L′

⋆
(k̂′) (E.7)

× 〈L(MJ −M)SM |JMJ〉Y MJ−M
L (k̂)

×
∫ ∞

0

drr2jL′(k′r)〈L′SJMJT |veff |LSJMJT 〉jL(kr) .

Writing the effective interaction in the TS-representation (see Appendix A) and
using the properties of the spin-isospin projection operators we obtain the following
expressions:

• Spin zero channels. L′ = L :

Mif =
(4π)2

2

∑

Lm

[
1 − (−)L+S+T

]2
Y m

L
⋆(k̂′)Y m

L (k̂)

∫ ∞

0

drr2jL(k′r)vTS
eff jL(kr) .

(E.8)

• Spin one channels. The calculation of Mif requires the matrix elements

cJLL′ = 〈ℓ′1JMJ |S12|L1JMJ〉 = cJL′L (E.9)

whose values are given in Table D.2.
The matrix elements involving the tensor component vtT

eff are

Mt
if =

(4π)2

2

∑

JMJ

∑

LL′

iL−L′
[
1 − (−)L+S+T

] [
1 − (−)L′+S+T

]

× 〈JMJ |L′(MJ −M ′)SM ′〉Y MJ−M ′

L′

⋆
(k̂′)

× 〈L(MJ −M)SM |JMJ〉Y MJ−M
L (k̂)

× cJLL′

∫ ∞

0

drr2jL′(k′r)vtT
effjL(kr) , (E.10)

and can be readily evaluated using the Clebsch-Gordan coefficients of Table D.1.
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Finally, the matrix elements involving the central components vT1
eff are given by

Mc
if =

(4π)2

2

∑

JMJ

∑

L

[
1 − (−)L+S+T

]2

× 〈JMJ |L(MJ −M ′)1M ′〉Y MJ−M ′

L

⋆
(k̂′)

× 〈L(MJ −M)1M |JMJ〉Y MJ−M
L (k̂)

× cJLL

∫ ∞

0

drr2jL(k′r)vT1
eff jL(kr) . (E.11)

95



E – Transition probability in Born approximation

96



Bibliography

[1] S. Chandrasekhar, Phys. Rev. Lett. 24 (1970) 611.

[2] J.L. Friedman and B.F. Schutz, Ap. J. 221 (1978) 937; ibidem 222 (1978) 281.
[3] L. Lindblom, in Gravitational Waves: a Challenge to Theoretical Astrophysics,

edited by V. Ferrari, J.C. Miller and L. Rezzolla, ICTP Lecture Notes Series
Vol. 3 (ICTP, Trieste, 2001).

[4] C. Cutler and L. Lindblom, Ap. J. 314 (1987) 234.

[5] E. Flowers and N. Itoh, Astrophys. J. 206 (1976) 218.
[6] E. Flowers and N. Itoh, Astrophys. J. 230 (1979) 847.
[7] A. Akmal and V.R. Pandharipande, Phys. Rev. C 56 (1997) 2261.

[8] A. Akmal, V.R. Pandharipande and D.G. Ravenhall, Phys. Rev. C 58 (1998)
1804.

[9] N.K. Glendenning, Compact Stars (Springer, Berlin, 2000)

[10] L.D. Landau, Soviet Phys. JETP 3 (1957) 920; ibid. 8 (1959) 70.
[11] D.A. Baiko and P. Haensel, Acta Phys. Pol. 30 (1999) 1097.
[12] A.A. Abrikosov and I.M. Khalatnikov, Soviet Phys. JETP 5 (1957) 887; Rep.

Prog. Phys. 22 (1959) 329.
[13] R.P. Feynman, The Feynman Lectures on Physics, Vol. I (Addison Wesley, New

York, NY, 1977).

[14] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, (Elsevier, Amsterdam, 1987).
[15] G. Baym and C. Pethick, Landau Fermi-Liquid Theory (John Wiley & Sons,

New York, NY, 1991).

[16] L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2

(Pergamon, Oxford, 1980).

[17] G.A. Brooker and J. Sykes, Phys. Rev. Lett. 21 (1968) 279.
[18] J. Sykes and G.A. Brooker, Ann. of Phys. (N.Y.) 56 (1970) 1.
[19] A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of Quantum Field

Theory in Statistical Physics (Dover, New York, 1975).
[20] E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, (Elsevier, Amsterdam,

1981).

[21] D. Pines and P. Nozières, The theory of quantum fluids (Perseus Books, Cam-
bridge, MA, 1999).

97



Bibliography

[22] S. Shlomo and D.H. Youngblood, Phys. Rev. C 47 (1993) 529.
[23] S.L. Shapiro and S.A. Teukolski, Black holes, white dwarfs and neutron stars

(Wiley-Interscience, New York, NY, 1983)
[24] S.E. Thorsett, Z. Arzoumanian and J.H. Taylor, Ap. J. 405 (1993) L29.
[25] L. Lindblom and S. Detweiler, Ap. J. Suppl. 53 (1983) 73.

[26] N. Andersson and K.D. Kokkotas, MNRAS 299 (1998) 1059.
[27] O. Benhar, V. Ferrari and L. Gualtieri, Phys. Rev. D 70 (2004) 124015.

[28] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester and J.J. de Swart, Phys.
Rev. C 48 (1993) 792.

[29] R.B. Wiringa, V.G.J. Stoks and R. Schiavilla, Phys. Rev. C 51 (1995) 38.

[30] B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper and R.B. Wiringa,
Phys. Rev. C 56 (1997) 1720.

[31] B.S. Pudliner, V.R. Pandharipande, J. Carlson and R.B. Wiringa, Phys. Rev.
Lett. 74 (1995) 4396.

[32] S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51 (2001) 53.

[33] Nuclear Methods and Nuclear Equation of State, Ed. M. Baldo (World Scientific,
Singapore, 1999).

[34] J. Carlson, J. Morales, Jr, V.R. Pandharipande and D.G. Ravenhall, Phys. Rev.
C 68 (2003) 025802.

[35] A. Sarsa, S. Fantoni, K.E. Schmidt and F. Pederiva, Phys. Rev. C 68 (2003)
024308.

[36] S. Gandolfi, F. Pederiva, S. Fantoni and K.E. Schmidt, Phys. Rev. Lett. 98

(2007) 102503

[37] E. Feenberg, Theory of quantum fluids (Academic Press, New York, NY, 1969).
[38] J.W. Clark, Prog. Part. Nucl. Phys. 2 (1979) 89.

[39] S. Fantoni and V.R. Pandharipande, Phys. Rev. C 37 1697 (1988) 1697.
[40] A.L. Fetter and J.D. Walecka, Quantum theory of many-particle systems

(McGraw-Hill, New York, NY, 1971).

[41] O. Benhar, A. Fabrocini and S. Fantoni, Nucl. Phys. A 505 (1989) 267.
[42] O. Benhar, A. Fabrocini and S. Fantoni, Nucl. Phys. A 550 (1992) 201.

[43] S. Fantoni and S. Rosati, Nuovo Cimento A 25 (1975) 593.
[44] V.R. Pandharipande and R.B. Wiringa, Rev. Mod. Phys. 51 (1979) 821.
[45] S. Cowell, Ph.D. Thesis, University of Illinois at Urbana-Champaign (2004).

[46] S. Cowell and V.R. Pandharipande, Phys. Rev. C 70 (2004) 035801.
[47] I. Lagaris and V.R. Pandharipande, Nucl. Phys. A 359 (1981) 349.

[48] A. Akmal, Ph.D. Thesis, University of Illinois at Urbana-Champaign (1998).
[49] S. Fantoni, B.L. Friman and V.R. Pandharipande, Nucl. Phys. A399 (1983) 51.
[50] S. Fantoni, A. Sarsa and K.E. Schmidt, Phys. Rev. Lett. 87 (2001) 181101.

[51] O. Benhar and M. Valli, arXiv:0707.2681, submitted to Physical Review Letters.
[52] V.R. Pandharipande and S.C. Pieper, Phys. Rev. C 45 (1992) 791.

98



Bibliography

[53] R.A. Arndt, L.D. Roper, R.A. Bryan, R.B. Clark, B.J. VerWest and P. Signell,
Phys. Rev. D 28 (1983) 97.

[54] Center for Nuclear Studies, Data Analysis Center, http://gwdac.phys.gwu.edu/
[55] J. Wambach, T.L. Ainsworth and D. Pines, Nucl. Phys. A 555 (1993) 128.
[56] A. Fabrocini, S. Fantoni, A.Yu. Illarionov and K.E. Schmidt, Phys. Rev. Lett.

95 (2005) 192501.
[57] O. Benhar, C. Ciofi degli Atti, S. Fantoni and S. Rosati, Phys. Lett. B

70 (1977) 1.

99


