
February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Numbers and non-numbers 25

ber of places the decimal point has been moved: 24, whose repre-
sentation in excess–127 is 4 + 127 = 131 = 1000 00112;

(4) write the bit of the sign (0), then the first ne bits rep-
resenting the exponent of 2 followed by the fractional part
of the mantissa. For ne = 8 and nm = 23 we have:
0 1000 0011 011 0110 0000 0000 0000 0000.

According to the IEEE 754 Standard rational numbers can be represented in
double precision. In this way they follow the convention described above, us-
ing 64 bits, of which 11 are allocated to the exponent. In 2008, the quadruple
precision representation was defined, as part of the IEEE 754 2008 Stan-
dard, using 15 bits for the exponent and 112 bits for the mantissa, for a
total length of 128 bits.

Table 1.3.4 shows the minimum and maximum values of numbers rep-
resentable in the memory of a 32 bit computer.

Number classes Minimum Maximum

integer
unsigned 0 4294 967 295
signed −2147 483 647 2147 483 647
two’s complement −2147 483 648 2147 483 647

rational (in modulus)
in single precision 1.401 298× 10−45 3.402 823× 1038

in double precision 4.940 656× 10−324 1.797 693× 10308

1.4 The approximation problem

Since the available number of digits is limited, a computer can only rep-
resent those numbers whose fractional part can be expressed as a limited
sum of powers of 2 exactly. If this is not the case, it is approximated by
the nearest one. While 22.75 can be represented exactly, other cases, such
as 0.1, cannot. To ascertain yourself of this try to write the latter number
in binary notation considering a 32 bit computer.

The same occurs for non–rational, real numbers (such as
√
2, π, etc.):

these numbers have an infinite amount of digits after the decimal point, for
which there is not enough space in the computer memory. They can only
be approximated by the closest rational number.



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

26 Scientific Programming: C–Language, algorithms and models in science

This limitation causes a problem which is to be faced each time a com-
puter performs a computation: the rounding error. In practice, all non
integer numbers are approximated by the nearest rational number having
a finite representation, with a precision of the order of 2−nm , where nm

is the number of bits reserved for the mantissa. Two numbers that differ
less than this quantity from each other are considered to be equal on the
computer and a number smaller than the smallest representable number
equals 0 (this is the case of an underflow error).

Care should be taken with this type of approximation. Though
it is harmless in many cases, the error could propagate dramatically
in some algorithms, especially the iterative ones, and may become im-
portant (a concrete example is given in Chapter 3.7). A frequent
cause of such a catastrophic error are either very different or very
similar operands. In the first case, the smaller of the two numbers
is less precise because the mantissa needs to be represented with a
larger exponent. Consider adding two numbers a = 68 833 152, i.e.,
0 1001 1001 000 0011 0100 1001 1111 0000 in the IEEE 754 representation,
and b = 2309 657 318 129 664 (0 1011 0010 000 0011 0100 1001 1111 0000).
To carry out this addition, we need to organize these numbers in columns.
To this purpose, we need to express the smallest of the two (a) with the
same exponent of 2 as the biggest (b) in IEEE 754 notation. The exponent
of a is 26, while b’s is 51. The difference between these two numbers is
25. Thus, we need to rewrite the mantissa of a moving the digits 25 places
to the right. As the maximum number of digits of the mantissa is 23, the
resulting mantissa of a is represented by a sequence of zeros:

0 1011 0010 000 0000 0000 0000 0000 0000 + . . .
0 1011 0010 000 0011 0100 1001 1111 0000 =
0 1011 0010 000 0011 0100 1001 1111 0000

and the sum is a+ b = b, which obviously is nonsense!
The second type of error often occurs when subtracting two numbers

that are close to each other. This is easily understood by considering some
examples in the more familiar base 10 (though similar examples can be
found in any other base). Suppose we represent floating–point numbers with
3 significant digits after the decimal point. The number 1000 is represented
as a = 1.000× 103, while the number 999.8 as b = 9.998× 102.

The difference is (a− b) = 0.2. However, to perform this calculation
in floating–point representation, the smallest number first needs to be ex-
pressed with the same power of 10 as the one of the higher number. This



February 14, 2013 14:41 World Scientific Book - 9in x 6in ScientificProgramming

Numbers and non-numbers 27

causes a loss of significant digits: b → b′ = 0.999× 103. Consequently, the
difference becomes

(1.000− 0.999)× 103 = 10−3 × 103 = 1.0 .

Though the precision of each single number is of order 10−3, the ap-
proximate value is larger by a factor 5 with respect to the true value!
In some cases, this type of error can be avoided (or at least reduced)
by reformulating the expression which is to be calculated. Suppose,
x = 3.451 × 100 and y = 3.45 × 100 are given, and we need to calcu-
late ∆ =

(
x2 − y2

)
= 0.006 901 = 6.901 × 10−3. If we first calculate the

squares x2 = 11.909 401 = 1.190× 101 and y2 = 11.9025 = 1.190× 101, we
find ∆ = 0. A disastrous result, especially if ∆ is the denominator in some
expression. Instead, by reformulating the expression as ∆ =

(
x2 − y2

)
=

(x− y) (x+ y), we find (x− y) = (3.451− 3.450) × 100 = 0.001 × 100 =
1.000×10−3, while (x+ y) = (3.451 + 3.450)×100 = 6.901×100, and thus,
∆ = 1.000× 10−3 × 6.901× 100 = 6.901× 10−3.

In numerical computation, unlike analytical calculus, the order in which
operations are executed is extremely important, as is the order of magni-
tude of the terms subject to arithmetic operations. Depending on these
operations, they should be neither too different from each other, nor be too
similar.

1.5 Non-numbers on computers

Performing a task, whether it scientific or not, may require manipulating
data other than numbers, such as images, sounds, etc. Today this might
seem obvious because we can see images or watch a movie on a computer all
the time; we can listen to music by means of the loudspeakers; a microphone
allows us to use our voice to communicate with users far away through the
Internet; we can use a video camera to organize a video conference.

When the computer era began, in the Forties of last century, their
only purpose was to perform calculations. Numbers represented practically
the only form of information available. Programs were built by operating
switches. Their results were visualized by light bulbs whose status (on/off)
indicated the bit sequence in binary. When it became possible to produce
written results (on paper, and later, on screen) and to give commands by
means of a keyboard, the problem of how to represent other types of infor-
mation, such as characters, needed to be solved. As more refined techniques


