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20.3.1 Block averages

We consider a time series of T measures {At}t=0,...,T −1 (note we use the
indices as in a C array, starting from 0). From this, we want to estimate
the true average of the process that generated the data. It is well-known
that the best estimator of the true average is the data’s average value

〈〈A〉〉 ≡ 1

T

T −1∑

t=0

At , with error σ〈〈A〉〉 =

√
var(At)

T − 1
. (20.11)

The expression for the uncertainty of the average’s estimate σ〈〈A〉〉 is correct
only if the T measures are fully uncorrelated from each other. With the
symbol var(At) we indicate the variance of the data series defined by

var(At) ≡
1

T

T −1∑

t=0

(
At − 〈〈A〉〉

)2
=

1

T

T −1∑

t=0

A2
t − 〈〈A〉〉2 = 〈〈A2〉〉 − 〈〈A〉〉2 .

Instead, in case the measures are correlated the expression (20.11) under-
estimates the statistical uncertainty when determining the average, and we
need a more refined analysis.

Suppose the measures are correlated with a correlation time τA. We
now show how to proceed in order to get a correct estimate of the error on
the average. We group the measures in blocks containing each b consecutive
measures and we call A(b)

t the average of the measurements in the tth block,

A(b)
t =

1

b

b(t+1)−1∑

t′=bt

At′ .

The number of blocks, and therefore, the length of the new data sequence
{A(b)

t } is T /b.3 In particular, note how the A(1)
t are the original data

and that the average value of the data 〈〈A〉〉, does not change when these
are combined in blocks of equal size (the average value remains the best
estimate of the true average).

For b < τA, the data of the sequence {A(b)
t } are still correlated (with

a correlation time of about τA/b), while, for b > τA, the data become
uncorrelated, because the majority of temporal correlations ended up inside
the blocks. Let us take advantage of this property in order to correctly
estimate the statistical error, σ〈〈A〉〉, of the average’s estimate. We define

σ(b)
〈〈A〉〉 ≡

√
var(A(b)

t )

(T /b)− 1
,

3In order to simplify the formulas, we are assuming T to be multiple of b; otherwise we
could have to treat differently the last block, if smaller.
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where the variance of the sequence {A(b)
t } is defined as before

var(A(b)
t ) ≡ b

T

T /b−1∑

t=0

(
A(b)

t

)2 − 〈〈A〉〉2 .

The σ(b)
〈〈A〉〉 corresponds to the average’s uncertainty. It is obtained by as-

suming the data grouped in blocks of size b are uncorrelated. Because of
what we just discussed, we expect σ(b)

〈〈A〉〉 to underestimate the error of the
average as long as b < τA and, instead, to provide the correct uncertainty
for b > τA.
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Fig. 20.5 Uncertainty of the estimate of 〈e〉T and 〈m〉T (a) and the average magneti-
zation with its estimated error (b) as a function of the number b of measures per block.

In Figure 20.5(a) we show the uncertainties on the estimates of the
averages 〈e〉T (below) and 〈m〉T (on top) for the two-dimensional Ising
model of size L = 20 at temperature T = 2.4. the data were obtained
from a sequence of 106 measurements at equilibrium. Note that the data
follow the theoretically predicted behavior well. They grow up to a certain
value of b, corresponding to the correlation time, after which they stabilize.
The value of the plateau is the correct error on the average. Also note that
the data given in Figure 20.5 fluctuate, given that the variances σ(b) are
random variables as well.

Having 106 available data, we could have combined them in groups using
larger values of b than those given in Figure 20.5. This might have obscured
our analysis though. Indeed, when the number of blocks becomes too small
the value of σ(b)

〈〈A〉〉 possibly fluctuates a lot. Therefore, we advise to use at
least about a hundred blocks.

The data presented in Figure 20.5(b) should convince us how important
a good estimate of the errors is. The figure contains, for various values of
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the block size b, the average value of the magnetization with its error (the
model is still the two-dimensional Ising model with L = 20 and T = 2.4).
The important thing to note is that, if we did not correctly estimate the
statistical error, i.e., if we had used the average corresponding to b = 1,
we would have concluded the average value of the magnetization was not
compatible with zero (which is a wrong result, causing us to rethink the
entire numerical simulation!). Instead, once we estimated the correct error,
the average magnetization is compatible with zero, as it should be.

The data given in Figure 20.5 are obtained with the function of List-
ing 20.1, in which the average and the variance of the data sequence is
computed to obtain σ(b)

〈〈A〉〉 (lines 6-8). At the same time, the next sequence
of data is generated by grouping the current ones two by two (line 9). The
function binning receives in input the pointer data to the beginning of the
array containing the numMeas data of which we want to compute the block
average. Since the function writes the block averages in the same array
(more precisely, in its first half), it is important we pass a pointer to a copy
of the data, if we do not want to loose the original ones.

1 double binning (double *data , int numMeas ) {

2 int i, tmp = numMeas / 2;

3 double mean = 0.0, variance = 0.0;

4

5 for (i = 0; i < tmp; i++) {

6 mean += data [2 * i] + data[2 * i + 1];

7 variance += data[2 * i] * data [2 * i] +

8 data[2 * i + 1] * data[2 * i + 1];

9 data[i] = 0.5 * (data [2 * i] + data[2 * i + 1]);

10 }

11 if (2 * i < numMeas ) {

12 mean += data [2 * i];

13 variance += data[2 * i] * data [2 * i];

14 }

15 mean /= numMeas ; variance /= numMeas ;

16 return sqrt (( variance - mean * mean) / (numMeas - 1));

17 }

Listing 20.1 The function combining the data in groups to calculate the correct error
of the average.

The statements on lines 11-14 are executed only if numMeas is odd, as in
this case the cycle on lines 5-10 runs along all data except for the last one.
In this case, we loose a data item in the new sequence. This is no problem
whatsoever, though, as we usually start from very long data sequences.

The following lines of code show a possible way to use the function
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binning.

binSize = 1;

while (numMeas >= 100) {

printf ("% i %lg %lg %lg %lg %i\n",

binSize , aveM , binning (m, numMeas ),

aveE , binning (e, numMeas ), numMeas );

binSize *= 2;

numMeas /= 2;

}

Before executing these lines of code, the arrays m and e have been filled
with numMeas values of the magnetization and the energy. The variables
aveM and aveE contain the averages of these two data sets. The variable
binSize is the size of the block and numMeas represents the length of the
current sequence. After each function call to binning these variables are
updated, respectively, by multiplying and dividing them by 2. The cycle in
these lines of code is executed as long as the number of data in the sequence
is larger than or equal to 100, such that the variance is a stable measure. If
we try to decrease this limit, it is easy to convice ourselves we do not gain
any extra information because the measurements of σ(b)

〈〈A〉〉 start to fluctuate
a lot.

20.3.2 Jackknife

The method described in Section 20.3.1 always allows us to produce data
sequences which are practically uncorrelated, given a series of equilibrium
measurements. For example, grouping with b = 103 (this is the value
of b at which the plateau starts in Figure 20.5) the 106 magnetization
measurements, we can obtain 103 uncorrelated data.

However, we still need to solve a very common problem in data analysis.
Namely, we still need to find a correct estimate of the error for the average
of complicated function of the measurements. A concrete example, related
to what we saw in Section 20.2.3, is the estimate of the uncertainty when
computing the Binder parameter defined in equation (20.10). We can easily
evaluate the error on the estimate of 〈m2〉T and 〈m4〉T with the method
given in Section 20.3.1, using, respectively, At = m2

t and At = m4
t as data

sequences. Once the uncertainties σ〈m2〉 and σ〈m4〉 are known, we could
find the one on the estimate of 〈B(T, L)〉T by propagating the errors. This
result largely overestimates the true error though. The reason is easy to un-
derstand: the second and the fourth moments of the magnetization enter in
B(T, L) only through their ratio. So, if the estimate of the numerator 〈〈m4〉〉
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fluctuates above the true average, also the denominator’s estimate 〈〈m2〉〉2
has a positive fluctuation and the ratio does not change much. Therefore,
the fluctuations of the estimate of the ratio are very small compared to
those expected from a simple propagation of the errors, which assumes the
fluctuations of the numerator and the denominator to be uncorrelated. We
show a method allowing to compute the correct uncertainty also if strong
correlations such as these are present.

This method, called jackknife, is extremely useful and should always
be kept close at hand when analyzing data (just like a jackknife, when
going camping for example). The jackknife method allows to compute the
correct uncertainty on the estimate of the average value of any function of
the data. For example, given a series of T uncorrelated measures of the
magnetization, the estimate of the average value of the Binder parameter,
defined in (20.10), is given by the function

B
(
{mt}

)
=

1

2

(

3−
T
∑

t m
4
t

(
∑

t m
2
t )

2

)

.

It is not clear though, which error we should associate to this estimate.
The jackknife method is based on the following idea. Suppose all mea-

surements are available but the ith one. With these T − 1 measures we can
still estimate the average value of the function. Typically, this estimate is
slightly different from the one obtained with all T measures and the differ-
ence between these two estimates precisely give us the information needed
to compute the uncertainty of the average’s estimate.

In slightly more formal terms, suppose the best estimate, µ, of a generic
quantity is given by the following function of T uncorrelated measures 4,

µ = f
(
{xt}t=1,...,T

)
.

By defining the averages without measure j as

µj = f
(
{xt}t$=j

)
,

we can determine the uncertainty of µ as

σµ =

√√√√T − 1

T

T∑

j=1

(µj − µ)2 , (20.12)

that is the spread of the averages µj around µ.

4In case the measures are correlated, we first need to group them in blocks of appropriae
size.
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Exercise 1 - Computation of the average with the jackknife method

In case we want to estimate the sample mean, the best estimator
is simply the average value of the measurements

µ =
1

T

T∑

t=1

xt .

Prove that in this case, the error resulting from the jackknife method, given
by the equation (20.12), is identical to the one we obtain by computing the
standard deviation of the measurements, as in the expression (20.11).

Creating a code that computes the error with the jackknife method is
easy. We simpy need to write two functions, respectively, returning the
value of µ and µj . Actually, we can write one single function which, called
with a parameter j ∈ [0, T − 1], computes the average without the jth
measure, and returns the total average, instead, if j /∈ [0, T − 1]. The
drawback of this approach is the number of operations, as the code would
contain T +1 function calls performing O(T ) operations each. Performing
a number of operations O(T 2) is sometimes very heavy (it is not rare to
have 108 data and 1016 operations are many even for a modern PC) and we
need more efficient solutions, whenever possible. For example, in case of the
Binder parameter, being the magnetization an integer variable, we can use
the function given in Listing 20.2. The latter only takes O(2T ), number
of operations because the averages µj are computed by subtracting each
time a measure from the variables sumM2 and sumM4 containing the sums of
all measures. In case of floating-point variables, the use of expressions like
sumM4 - tmp * tmp, where a large quantity sumM4) is compared to a small
one, is risky and requires at least the use of Kahan’s algorithm (described
in Section 4.5).

The function binder given in Listing 20.2 accepts the pointer M to the
array containing the magnetization measurements and the number numMeas
of these measures as arguments. The other two arguments, pMean and
pError, are pointers to the memory locations where the function saves the
value of the Binder parameter and its error. The latter is computed with
the jackknife method assuming the measures are uncorrelated.
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1 void binder (int *M, int numMeas , double *pMean , double *pError ) {

2 unsigned long long int tmp , sumM2 = 0, sumM4 = 0;

3 double reducedMean ;

4 int i, *pM;

5

6 for (i = 0, pM = M; i < numMeas ; i++, pM++) {

7 tmp = (*pM) * (*pM);

8 sumM2 += tmp ;

9 sumM4 += tmp * tmp ;

10 }

11 *pMean = 0.5 * (3.0 - (double )numMeas * sumM4 / sumM2 / sumM2 );

12 *pError = 0.0;

13 for (i = 0, pM = M; i < numMeas ; i++, pM++) {

14 tmp = (*pM) * (*pM);

15 reducedMean = 0.5 * (3.0 - (double )( numMeas - 1) *

16 (sumM4 - tmp * tmp) / (sumM2 - tmp) / (sumM2 - tmp ));

17 *pError += (reducedMean - *pMean) * ( reducedMean - *pMean );

18 }

19 *pError = sqrt (* pError * (numMeas - 1) / numMeas );

20 }

Listing 20.2 A function computing the error on the estimate of the Binder parameter
with the jackknife method.

Hands on 4 - Error of the Binder parameter with the jackknife

q [

; ’

/

]

Consider once more the magnetization data obtained when
studying the Ising model in 2 and/or 3 dimensions. Com-
bine them in bins of an appropriate size in order to elim-
inate the correlations. Next, estimate the average value

of the Binder parameter and the corresponding error with the jackknife
method. Compare this error with the one obtained by the simpler (but less
reliable) error propagation.

20.3.3 Scaling laws and critical exponents

Very often a Monte Carlo simulation is used to solve a problem with a
given number of variables. For example, optimizing a given cost function
or computing the average value in a model accurately describing a specific
problem. Nevertheless, there exist situations in which the interesting result
is obtained in the limit in which the number of variables of the model
becomes extremely large (in statistical mechanics formally we consider the
thermodynamic limit, N →∞). Think, for example, to those phenomena in


