/* cap20_Binder.c: Computing the Binder parameter for the 2D Ising model. Copyright (C) 2006 Federico Ricci-Tersenghi (Federico.Ricci@roma1.infn.it) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. This program has been extracted from "Programmazione Scientifica", Pearson Education ed. (2006), by Barone, Marinari, Organtini and Ricci-Tersenghi. ISBN 8871922425. */ /* by FRT */ #include #include #include #define L 10 #define TMIN 2.0 #define DT 0.03 #define TMAX 3.0 #define L2 (L * L) #define N L2 #define DIM 2 #define CONN (2 * DIM) #define Tc (2.26918531421302) #define FNORM (2.3283064365e-10) #define RANDOM ((ira[ip++] = ira[ip1++] + ira[ip2++]) ^ ira[ip3++]) #define FRANDOM (FNORM * RANDOM) #define pm1 ((FRANDOM > 0.5) ? 1 : -1) /* variabili globali per il generatore random */ unsigned myrand, ira[256]; unsigned char ip, ip1, ip2, ip3; unsigned randForInit(void); void initRandom(void); float gaussRan(void); void error(char *string); void initProb(float temperature, float *prob); void initSpin(int *s, int *pMag, int *pEner); void oneSweep2D(int *s, float *prob, int *pMag, int *pEner); void binder(int *M, int numMeas, double *mean, double *error); int main(int argc, char *argv[]) { int s[N], mag, ener, *M; int i, t, thermMCS, numIter, measFreq, numMeas; float temperature, prob[CONN + 1]; double mean, err; if (argc != 5) { fprintf(stderr, "usage: %s \n", argv[0]); exit(EXIT_FAILURE); } thermMCS = atoi(argv[1]); numIter = atoi(argv[2]); measFreq = atoi(argv[3]); myrand = (unsigned)atoi(argv[4]); numMeas = (int)(numIter / measFreq); M = (int *)malloc(numMeas * sizeof(int)); printf("# L = %d thermMCS = %i numIter = %i " "measFreq = %i numMeas = %i random seed = %u\n", L, thermMCS, numIter, measFreq, numMeas, myrand); printf("# T binder err\n"); fflush(stdout); initRandom(); initSpin(s, &mag, &ener); for (temperature = TMIN; temperature < TMAX + 0.5 * DT; temperature += DT) { initProb(temperature, prob); for (t = 0; t < thermMCS; t++) { oneSweep2D(s, prob, &mag, &ener); } i = 0; for (t = 0; t < numIter; t++) { oneSweep2D(s, prob, &mag, &ener); if (t % measFreq == 0) M[i++] = mag; } if (i != numMeas) error("i diverso da numMeas"); binder(M, numMeas, &mean, &err); printf("%.3f %g %g\n", temperature, mean, err); fflush(stdout); } printf("\n"); return EXIT_SUCCESS; } unsigned randForInit(void) { unsigned long long y; y = myrand * 16807LL; myrand = (y & 0x7fffffff) + (y >> 31); if (myrand & 0x80000000) { myrand = (myrand & 0x7fffffff) + 1; } return myrand; } void initRandom(void) { int i; ip = 128; ip1 = ip - 24; ip2 = ip - 55; ip3 = ip - 61; for (i = ip3; i < ip; i++) { ira[i] = randForInit(); } } float gaussRan(void) { static int iset = 0; static float gset; float fac, rsq, v1, v2; if (iset == 0) { do { v1 = 2.0 * FRANDOM - 1.0; v2 = 2.0 * FRANDOM - 1.0; rsq = v1 * v1 + v2 * v2; } while (rsq >= 1.0 || rsq == 0.0); fac = sqrt(-2.0 * log(rsq) / rsq); gset = v1 * fac; iset = 1; return v2 * fac; } else { iset = 0; return gset; } } void error(char *string) { fprintf(stderr, "ERROR: %s\n", string); exit(EXIT_FAILURE); } void initProb(float temperature, float *prob) { int i; if (temperature > 0.0) { for (i = 0; i <= CONN; i++) prob[i] = exp(-2.0 * i / temperature); } else { for (i = 0; i <= CONN; i++) prob[i] = 0.0; } } void initSpin(int *s, int *pMag, int *pEner) { int site; *pMag = 0; for (site = 0; site < N; site++) { s[site] = 1; *pMag += s[site]; } *pEner = 0; /* sommiamo prima le interazioni verticali */ for (site = 0; site < N - L; site++) { *pEner -= s[site] * s[site + L]; } /* gli spin dell'ultima riga sono connessi a quelli della prima */ for (site = N - L; site < N; site++) { *pEner -= s[site] * s[site + L - N]; } /* sommiamo quindi le interazioni orizzontali */ for (site = 0; site < N; site++) { /* quelli della prima colonna sono connessi a quelli dell'ultima */ if (site % L == 0) { *pEner -= s[site] * s[site + L - 1]; } else { *pEner -= s[site] * s[site - 1]; } } } void oneSweep2D(int *s, float *prob, int *pMag, int *pEner) { int site, ix, iy, sum; site = 0; /* caso iy = 0 ix = 0 */ sum = s[site] * (s[site+L2-L] + s[site+L-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; /* caso iy = 0 0 < ix < L-1 */ for (ix = 1; ix < L-1; ix++, site++) { sum = s[site] * (s[site+L2-L] + s[site-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } /* caso iy = 0 ix = L-1 */ sum = s[site] * (s[site+L2-L] + s[site-1] + s[site+1-L] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; for (iy = 1; iy < L-1; iy++) { /* caso 0 < iy < L-1 ix = 0 */ sum = s[site] * (s[site-L] + s[site+L-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; /* caso 0 < iy < L-1 0 < ix < L-1 */ for (ix = 1; ix < L-1; ix++, site++) { sum = s[site] * (s[site-L] + s[site-1] + s[site+1] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } /* caso 0 < iy < L-1 ix = L-1 */ sum = s[site] * (s[site-L] + s[site-1] + s[site+1-L] + s[site+L]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; } /* caso iy = L-1 ix = 0 */ sum = s[site] * (s[site-L] + s[site+L-1] + s[site+1] + s[site+L-L2]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } site++; /* caso iy = L-1 0 < ix < L-1 */ for (ix = 1; ix < L-1; ix++, site++) { sum = s[site] * (s[site-L] + s[site-1] + s[site+1] + s[site+L-L2]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } /* caso iy = L-1 ix = L-1 */ sum = s[site] * (s[site-L] + s[site-1] + s[site+1-L] + s[site+L-L2]); if (sum <= 0 || FRANDOM < prob[sum]) { s[site] = -s[site]; *pMag += 2 * s[site]; *pEner += 2 * sum; } } void binder(int *M, int numMeas, double *mean, double *error) { unsigned long long int tmp, sumM2 = 0, sumM4 = 0; double reducedMean; int i, *pM; for (i = 0, pM = M; i < numMeas; i++, pM++) { tmp = (*pM) * (*pM); sumM2 += tmp; sumM4 += tmp * tmp; } *mean = 0.5 * (3.0 - (double)sumM4 / sumM2 * numMeas / sumM2); *error = 0.0; for (i = 0, pM = M; i < numMeas; i++, pM++) { tmp = (*pM) * (*pM); reducedMean = 0.5 * (3.0 - (double)(sumM4 - tmp * tmp) / (sumM2 - tmp) * (numMeas - 1) / (sumM2 - tmp)); *error += (reducedMean - *mean) * (reducedMean * *mean); } *error = sqrt(*error * (numMeas - 1) / numMeas); }