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19.2.5 Barriers ad ergodicity breaking

We conclude the study of the Markov chains by focusing once more on the
problem of their convergence towards the equilibrium distribution. The
problem of ergodicity breaking we discuss in this section, is often studied
in connection with a specific model (especially those used in statistical
mechanics). However, it is a much more general phenomenon, which we
therefore study at the level of generic Markov chains.

Let us start from a concrete example. Suppose we have a Markov chain
defined on integer numbers and we want the asymptotic probability dis-
tribution to be the sum of two Gaussians with unit variance, one centered
in −L and the other in L. For simplicity, we only allow for transitions
between nearest neighbor states, i.e., between number differing by one. In
the simulation, we obviously use the most efficient algorithm among those
we know at present, namely the Metropolis algorithm.
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Fig. 19.5 A random walker’s position in a Markov chain with an asymptotic probability
distribution concentrated in L and −L, for three values of L. In the three plots on the
bottom, the times are multiplied by a factor e−L2/2.

In the three plots on top of Figure 19.5 we show the random walker’s
position, initially starting from the origin, for the first 104 steps and for
three different values of L. For L = 2 the walker passes relatively easily
between the two maxima of the distribution. Instead, for L = 3 the time
between jumps among maxima is already of the order of a thousand of steps
(11 crossovers L ↔ −L can clearly be identified). Finally, for L = 4, the
walker remains during all the 104 steps around the Gaussian’s maximum
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with negative average. In the latter case, we need to extend the simulation
and consider much longer times in order for the walker to visit both regions
in which the probability !π is sensibly different from zero.

The cause of this behavior is relatively simple. Any trajectory moving
the walker from one maximum of !π to the other one must pass through
regions in which the asymptotic probability is extremely small. In this
particular case, this statement might seem obvious and predictable (we are
working in one dimension and to go from −L to L or vice versa we need
to pass through the origin). However, this is general valid also in more
complicated cases, such as when dealing with multidimensional integration
domains.

In the simple case of the two Gaussian distributions centered in L and
−L the asymptotic distribution is

πj ∝ e−(j+L)2/2 + e−(j−L)2/2 .

In this case we can estimate the time needed by the walker to pass from
the negative to the positive states. Passing from negative to positive values
(and the other way around) only occurs when the walker is at the origin
and continues in the opposite direction with respect to where he came from.
While the second of these events occurs with probability 1/2, the first one
has probability π0 = O(e−L2/2). So, this event only occurs every τ = 1/π0

steps and we expect the walker to move from one maximum to the other
each O(eL

2/2) time steps.
This argument is formally correct, only in the limit L→∞ in which the

probability π0 tends to zero and the relaxation time diverges. Nevertheless,
also for small values of L this leads to excellent results. Indeed, in the lower
plots of Figure 19.5 we changed the time scales by a multiplicative factor
exp(−L2/2), as shown along the horizontal axes. The three resulting curves
are very similar (apart from some larger fluctuations in the case L = 2,
where the separation between the maxima is too small to clearly show the
effect).

Often, the term barrier is used to indicate the region in which !π is very
small; the random walker needs many attempts before he actually manages
to cross it.

Please note that in the upper right panel of Fig. 19.5 the number of
steps in our simulation were not chosen accurately. Indeed, we cannot be
sure to have overcome all barriers in the Markov chain under study. By
looking at that plot, we might believe to have reached the asymptotic state,
though the walker is only visiting half of the true asymptotic distribution’s
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relevant states. Sometimes, the only way to make sure the entire Markov
chain has been visited is to increase the length of the numerical simulation.
In Section 20.2.1 we explain in more detail how to study the convergence
towards equilibrium of a Markov chain Monte Carlo method.

Hands on 4 - Barrier crossing times
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Consider a Markov chain with an asymptotic distribution
consisting of two Gaussian distributions centered in L and
−L and a barrier around the origin. We just saw that, for
the Metropolis algorithm, the transition from one side of

the barrier to the other occurs each τ = O(eL
2/2) steps, i.e., it is a rare

dynamical process for large L. Moreover, when this event takes place, it is
very quick, as is clear from the rightmost plot on the bottom of Figure 19.5.

Study numerically the time it takes to cross a barrier. To this pur-
pose, compute the length of the random walker’s trajectories starting from
the position −L and reaching the position L without ever passing by the
position −L again, and the length of those following the opposite path.
Considering that these trajectories last at least 2L steps, you should be
able to conclude from this analysis, that when the walker decides to cross
the barrier, he does so without any delays, following an almost ballistic
trajectory!

For any value of L the Markov chain we studied in this section is ergodic,
i.e., it is possible to move from any state to any other one (even though the
time needed might be very long in some cases). On the contrary, in the limit
L → ∞, the relaxation time τ really diverges and the chain decomposes
into two subchains, one consisting of the positive states and the other of the
negative ones. Indeed, in the limit L→∞ an ergodicity breaking occurs.

The system showing ergodicity breaking we have discussed here is very
simple. Indeed, it is not difficult to figure out that a different choice of
the probabilities uij , i.e., a different connectivity between the states, allows
to avoid the ergodicity breaking phenomenon. For example, by including
the transitions which are symmetric with respect to the origin, i.e., j ↔
−j, among the allowed one, all dynamical phenomena we described in this
section (from the slowing down due to the barrier to the ergodicity breaking)
vanish. The transition j ↔ −j represents a kind of shortcut around the
barrier eliminating all these effects. Note how the transition between two
states which are symmetric with respect to the origin is always accepted in
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the Metropolis algorithm, because these states have the same asymptotic
probability, πj = π−j .

The search for these “shortcuts” is one of the most interesting aspects in
the development of Markov chain Monte Carlo algorithms. Unfortunately,
for more complicated systems than the one discussed in this section, the
shortcuts are not at all obvious. For example, the so-called “cluster” algo-
rithms [Newman and Barkema (1999)] do apply some kind of shortcut, but
only because of a deep knowledge of the physical-mathematical properties
of the Ising model, described in Section 19.3.

19.3 The Ising model

The Ising model is characterized by a set of binary variables placed at the
vertices of a regular lattice. These variables are called spins because in a
typical application of the model they represent elementary magnetic mo-
ments. In this section, we study the model defined on a two-dimensional
square lattice, such as the one in Figure 19.6. The spins of nearest neigh-
boring vertices, i.e., those connected by an edge, interact with each other,
by means of a ferromagnetic interaction attempting to align thse two spins
in the same direction. The energy of a configuration s ≡ (s1, . . . , sN ) of
the system’s N spins is given by

E(s) = −
∑

(i,j)

J si sj . (19.20)

In the expression (19.20) the spin variables can only take on two values
si = ±1, the sum is over the pairs of indices i, j ∈ {1, . . . , N} corresponding
to adjacent vertices and the coupling constant5 J is positive, because the
ferromagnetic interaction fosters the alignment of the spins. The minus
sign preceding the sum is needed because the preferred configurations in
Nature are those minimizing the energy. Indeed, two aligned spins have
energy −J , while two spins in the opposite direction have energy +J . It
is easy to generalize this model to other interaction topologies. We can
take any graph, place spins on its vertices and have each couple of spins
connected by an edge to interact with a coupling term −Jsisj .

We follow the advice of Section 10.4 to use in a simulation the simplest
measurement units. As the energy (19.20) is an integer multiple of J (which
5The symbol J we use for the coupling constant should not be confused with the

one of the Joule, the measurement unit of energy (which might might actually be the
measurement unit of the coupling constant J , which is an energy).


