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The Phase Space Spin Glasses at Low T

My dream summary (forget half of it).

e T'=0,T # 0. Low T equilibrium valleys in Spin
Glasses: EM, Martin and Zuliani, PRB 64 (2001)
184413. See Olivier Martin for ground states and
spongy picture/s.

Ultrametricity. It is difficult according to 1997 work
Cacciuto, EM and Parisi, JPA 30 (1997)L263. I will

also use work by Franz and Ricci-Tersenghi and
byParisi and Ricci-Tersenghi.
(Parisi, Guerra,

Aizenman-Contucci)

(EM, Parisi, Ricci-Tersenghi and
Zuliani, J Stat Phys 98 (2000) 973; de Dominicis,
Giardina, EM, Martin, Zuliani tbp)

(Domany, Hed, Palassini and Young,

cond-mat 0104264; Ciliberti-EM tbp)

Billoire+ EM JPA
34(2001)2.)

Lukic, EM,
Martin tbp.

Supposedly ideas and techniques
(maybe all the
could use some of that too).
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The Phase Space Spin Glasses at Low T

Low T Equilibrium valleys of 3D Spin Glasses
EM, Martin, Zuliani. A first few details.

L 12,

First conclusion: 7" > 0

Define valleys. They

turn out to have a free energy distance of order

one, but an internal energy distance growing

with L: interplay of energy and entropy.

Valleys — space filling clusters...
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The Phase Space Spin Glasses at Low T

Overlap ¢; = o;7;.

Link overlap q}}f}k = QiQitp-

Two spin configurations
have but

Consider two typical spin configurations (or two
ground states). Consider the interface (IF') among

: it is done from

Probability of finding an

. IF is confined in a region of
width L* (z < 1). IF density — 0 as L™ %,
with a > (1 — 2).

2. z=1, density — 0 as L™ . For L — oc:

3. a = 0, density
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The Phase Space Spin Glasses at Low T

Numerical methods (Monte Carlo):

“in all the cold phase”

Optimized numerical methods (see later in this

lecture).

Ground state computations (see Olivier martin
lecture). Here advantage is that you are sure
you are studying

(no trapping from severe critical slowing

down).

But: is that connected with finite 7" physics?
(note that the question is very relevant also for

landscape of optimization problems).

7?7 MF = Finite D systems <= Droplet 77
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The Phase Space Spin Glasses at Low T

Finite (but low) T.
Clustering to determine valleys — “states”.

Find typical clusters (differences among two

valleys).

Space filling and

This analysis is natural for ground states (compare

ground states under different boundary conditions
or after some perturbation or additional

constraint).

Here: we have generalized these ideas for finite 1"

learn how to deal with thermal fluctuations.
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The Phase Space Spin Glasses at Low T

of configuration

differences;

have
L — oo;

by (simple)
. different valleys turn out to be
. assoclate to

3D Edwards-Anderson Spin Glass.
H = — Z O'riji,jO'j ,
(3,9)
(multi-spin
coding).
T. ~ 1.1: here we use T'=0.5 and L =6, §, 12.

Parallel tempering (see later): “good

convergence” . Here Z5 symmetry helps.

512 samples per lattice size and T' value.
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The Phase Space Spin Glasses at Low T

. !
average ————
single sample

From MMZ. Well thermalized.
P;(q) # is not it?

Define overlap among two spin configurations
selected independently according to their a priori

probability.
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The Phase Space Spin Glasses at Low T

Let |G| be the cardinality of the
, . Then

Peaks of Py
(states).

We classify follow Houdayer, Krzakala and Martin.

Define categories:

1. G is sponge-like if it and its complement both
wind around the lattice in all three spatial

directions;

2. G is droplet-like if it does not wrap the lattice,

in no directions;
3. (@ is intermediate in all other cases.

here no “clustering” is needed.

We find that

Decompose:

P(q) = PSPOng(q) + Pdr()plot(Q) + P‘?(Q)
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The Phase Space Spin Glasses at Low T

J\\\\ “\
0 1 1 1 1 1 1 T L Y
H#

0 01 02 03 04 05 06 0.7 08 09 1

q

Density of sponges. Do we have sponges in

infinite volume limit?

Support increases with size.

Piponge(q ~ 0) >~ constant
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The Phase Space Spin Glasses at Low T

Does it naturally appears also in 3D7

this is the leading question of this lecture...

Valley — state.

If valleys are really well separated (we are in
finite volume + maybe at the end there are no
real valleys) the clusterization turns out to be

meaningful.

Clustering method for defining a valley. Set a
(distance is derived from

overlap).
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The Phase Space Spin Glasses at Low T

It works.

® some under variation of ¢* (i.e. of

d*);
o to the Pj(q) structure.

d* : fraction it too much. d*
: merge by brute force all configurations in
a single valley.

After that we have , and we can
them. In this
analysis ¢* = 0.5, and we select disorder

realizations that generate more than one valley.

eBFa = 37 ¢ BH(CA)
Acx

that equals the number of times that MC
visited this valley.

This is the weight of the valley. Monte Carlo
gives that to us “for free”.
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The Phase Space Spin Glasses at Low T

Order the valleys by increasing free energy:

—par _No
Ni

ratio of number of configurations in each

AF =F,—F;>0; e

valley. AF' is order one in mean field. It is also
of order one in our numerical data in 3D
(meaning that the fraction of configurations

that pass our tests is sizable).

Now the

We measure P(AE = E5 — E1), where Fj is
the internal energy of the valley with smaller

free energy, and FE5 of the second one. We find

1. (E) > 0 (this is not completely trivial:
F2>F1:>E2>E1)

2. The width of P(AFE) grows with L (as
opposed to the case of the free energy).
Entropy must be balancing it.

3. Correlation (AFE, AF) is small.
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The Phase Space Spin Glasses at Low T
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The Phase Space Spin Glasses at Low T

f(x)=0.55+0.36* x°

L=12
bestl fit

0.1

There are different procedures for analyzing

these fluctuations at finite 7": they give a
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The Phase Space Spin Glasses at Low T

Slicing Configuration Space Start from a set of
configurations such that {C'} = P(q), that we
plot on the left, and generate, by inverting part of
them, a new set of configurations such that

, that we plot on the right:

N

This is (we will discuss

-
|

testing of clustering and sum rules). We could

apply a small magnetic field, but this is

cumbersome.

So transform your configuration set. In the limit
V — 00 one could use the fact that Vma = O(V/V)
to select the right sign. This is

. it will leave you
with a
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The Phase Space Spin Glasses at Low T

We do the separation using gq.

e Flip (s if ¢q12 < 0;

e Flip C3 if 13 + g23 < 0;

o Flip C4 if g14 + qoa +q34 < 0; ...
L

Now you can apply some mutations:

. Do it in random order and in sequential

order (can help a bit, never much).

Normally the process reaches very good results.

hierarchical
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The Phase Space Spin Glasses at Low T

Here results of selection of the phase space

with two methods.
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The two methods give the same result, quite

satisfactory.
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The Phase Space Spin Glasses at Low T

Optimized Monte Carlo Methods: Parallel
Tempering

For Tempering and Parallel Tempering see: KM and Parisi
1992, Tesi et al. 1995; Geuer and Thompson 1994;
Hukushima et al. 1995.

This is a Complex Free Energy landscape

Difficult to cross. Crucial to cross.

If we free energy barriers change. When T
increases barriers become smoother and smoother.
When T reaches T, the landscape has been flattened.

Idea:let the system walk in temperature space, going
down to the low, interesting 71" value, and up all the

way, through a chain of intermediate 7" values up to

some 1" > T,.

(A bit like annealing, but needs to be always at thermal

equilibrium: tempering is annealing for free energy).
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The Phase Space Spin Glasses at Low T

Generic class of methods where you modify the
probability distribution 7:

density scaling or umbrella sampling

Here the method is very simple since you have
exactly the Boltzmann distribution at each T

value (no reconstruction is needed: just select

data at the correct T value). The method:

e select a discrete set of T' values, T(,) :

a=0,1,2,..., M. Here Ty = Tppin

(typically smaller than T,) and
Th = Tmax (typically larger than T¢).

e Clone your system M times, i.e. consider
M configurations C\, of your system.

e start by assigning T'(Cy) = Ty, T(Cy) = T1,
o T(Chyp) =Ty

e g0 ahead with Monte Carlo sweeps.
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The Phase Space Spin Glasses at Low T

of Monte Carlo sweep:

e Usual MC sweeps on all copies of the system at

fixed temperature.

Swap two values of T'. Consider

Propose them to swap T values.
P(E)

Selection of T values range and spreading is the
freedom of the method. If equidistributed T values

and T}, is fixed from physics parameters are

n
and

Use Metropolis to swap

e do previous point for all configuration couples

, etcetera.
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The Phase Space Spin Glasses at Low T

Choice of

e T\ .in: interesting physics + reasonable

CPU time.
o Thax: “>" T..

e Np: keep high acceptance factor for

tempering swap.
Check thermalization

e Symmetry of P;(q) (here this is not as a
strong check as in normal Monte Carlo:
spin flip is not the slowest mode anymore).

e Check convergence of observables on

logarithmic time scale.

e Check that acceptance rate for tempering
has been kept high (see earlier).

e FEach of the Nt copies of the system must

have covered the T{,) space with “many

visits”.
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The Phase Space Spin Glasses at Low T

Ultrametricity
Here a few basic issues, toward a numerical

approach.

Ultrametricity (UM) needs lot of space to emerge:

it is really difficult to verify it on finite lattices.

In our 1996 paper we tried to find an effective
procedure to detect ultrametricity. Ultrametricity:

diz < di2 + d2z3 — di13 < max (di2,d23),

from triangular to (stronger) ultrametrical.

UM is an absolutely crucial feature of Parisi
continuous RSB scheme. Consider two spin

configurations a and 8. Define a distance d from:

BPy=1(1- 08
*F 9 qJEA

equal to zero if ¢ = qga, equal to 1 if ¢ = —qgra.
Overlap:

1 174
do,B — VZU?UE .
1=1
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The Phase Space Spin Glasses at Low T

In mean field:

Py (q12,913,923)

1

5 P(q12)z(q12)0(gq12 — ¢23)(q12 — q13)

% {P(q12)P(q23)0(q12 — q23)5(q23 — q13)

two permutations }

i.e. UM holds. How can we verify that?

Constrained Monte Carlo procedure. For one given
realization of the disorder consider three copies of the
system, and fix

do,B =q, q4p,~ =q

(smooth constraint, with some given allowance €). A
good choice of q and ¢ is crucial: they must be in the
support of P(q) of the unconstrained model, and such
to make the UM bound as different as possible from the

triangular one.

4D EA SG, Tiin ~ 0.7 T.. Select

2
q=q=ngA20-21-

1. triangular = ¢ > —%qEA

2. ultrametric =— ¢q > %C_IEA
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The Phase Space Spin Glasses at Low T

from left to right
triangular lower bound
UM lower bound

Edwards Anderson infinite volume upper bound

Far from triangular bound, but very large finite volume

effects
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The Phase Space Spin Glasses at Low T

Probability for a configuration not to be ultrametric:

9min

(q(L) — gmin)*P(q)dq

(¢(L) — qmax)’P(q)dq ,

Log(I5(L))

Log(14(L))

—2.21+0.04

I™ ~ (—.0001 % .0005) + (0.76 + 0.03)L

Reasonable but not perfect (mainly clear problems with
finite volume).
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The Phase Space Spin Glasses at Low T

Nice dynamic UM analysis
Evolve two copies of the system at fixed overlap g (as
usual keep ¢ in the support of P(q)).

autocorrelation:
1
Ot t') = PO
cross-correlation:
1
D(t,t') = o Y oilt)r(t))

(Dynamic) ultrametricity implies that

D(t,t') = min {C(t,t'),q}

(based on approach by ). The
main point is in the fact that g fixes two of the

correlations over the ones you can form using o(t),
o(t'), 7(t), 7(t'),

3d Diluted Ferromagnet

0.55 06 065 07 075 08 08 09 095
Ct,)
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The Phase Space Spin Glasses at Low T

Sum Rules

Parisi; Guerra; Aizenman, Contucci; EM, Parisi,
Ricci-Tersenghi, Ruiz-Lorenzo, Zuliani. We can define sum
rules by starting from a crucial property of systems that
are “generic enough”. Define:
() — 770
H" = H" +eH3ndom

HPY is for the original system, for example an EA SG, while

H is a (further) random perturbation.

random

Stochastic stability:

after averages over the original H® and over H . ndom 2l
the properties of the original system are smooth functions
of € around € = 0.

A typical H.ondom 18

R: random uncorrelated Gaussian variables. If there is a
symmetry, no stochastic stability (for example need h ~ ¢).
Sum rules can be derived from stochastic stability. For
example:

P(a1,42) = P (@1)Ps(a2) = - P(a1)P(a2)+5 P(a1)d(a1—g2)

that in turn implies (¢2)2 =
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The Phase Space Spin Glasses at Low T

To check these ideas compute numerically joint

overlaps of real replicas.

Here 3D, EA SG, binary couplings.

So what we wrote before can be written as

2 1

B (¢ydd) = B (dh) + -

3 3

and both sides of the relation can be obtained
by only two copies of the system. This is not
true for example for a second relation:

L (q%2q§3)

where you need at least three copies.

This second relation is very interesting, since it

contains the effect of correlated replicas.
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The Phase Space Spin Glasses at Low T

. They cannot be
distinguished on this scale.

The sum rule is satisfied (since points are
perfectly superposed) and in a non-trivial way

(i.e. not by 0=0) (since the values are non-zero
for T < T,).

3D +/- I rule: E(q;,°q3,%) = 2/3 E(q®)* + 13 E(q")

»
[ ]

»
]

*

]

s
1

L ' '%'m—u—i—-—im.—-—i—-—.—
1 12 14 16 18 2 22 24

Temperature
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The Phase Space Spin Glasses at Low T

Size of the violation on a finite lattice.

The corrections are already small on small
lattices.

They are maximum close to T, and decrease far

away.

E(q),° q34°) - 23 B(@? - 13 E(q")

: +

04 06 08 1 12 14 1.6 1. 2 22 24

Temperature
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The Phase Space Spin Glasses at Low T

Maybe you doubt. Indeed even for a droplet
like, delta like probability distribution, the sum
rule would be satisfied.

So we sum the two factors with wrong

coefficients:

12 14 16 18

Temperature
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The Phase Space Spin Glasses at Low T

Also for the 3 replicas sum rule there is a
perfect agreement of right hand side and left
hand side.

3D +/- I rule: E(q;,°qy3°) = 12 E(q%)* + 112 E(q")

]

[ ]
| ]
.

»
.

Ed

£

s
1

*
1 1 1 .%l%'é.ﬁ.i.i.*..--..
06 0.8 1 1.2 14 16 18 2 22 24

Temperature
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The Phase Space Spin Glasses at Low T

Same pattern than before for finite size effects.

E(q;5” Qp3) - 112 E(@)* - 12 E(q)

0

-0.0005

-0.001

-0.0015

-0.002

-0.0025 i i i
04 06 08 1 12 14 16 1.8 2 22 24

Temperature
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The Phase Space Spin Glasses at Low T

Analysis of spin-spin correlation functions in the

framework of replica field theory — sum rules.

A cancellation mechanism leads to an exponential decay
for a particular correlation function. This mechanism is

connected to the existence of a sum rule.

Define

Ca(i,3) = (0505)?—2a(0:)(0:05)(0;)+(2a—1){0c;)*(0;)?

(notice that here you need h ~ € or, better, to partion
configuration space). a = 1: usual spin glass
susceptibility

((oi05) — (i) {(o;))?

At large distance:

lim  Ca(i,)) = ¢}y — 20q12G23 + (200 — 1)q12¢32
|i—j|—o0
a = 2: expect exponential decay. This a precise

prediction of Mean Field, not shared by droplet picture.

Also in this case plateau is zero because of the sum rule:

q%z — 4912923 + 3912934 = 0

We have find numerically that this decay is indeed
exponential, and plateau goes to zero when L — oo.
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The Phase Space Spin Glasses at Low T

Back to ultrametricity is via an interesting
result by

(1) stochastic stability + 2) overlap
equivalence) = ultrametricity

1) stochastic stability, that we have already
discussed, is equivalent to replica equivalence,
i.e. the fact that observables which depend

only on one replica are replica symmetric.
2) overlap equivalence is connected to
separability:

Qab — ch — f(Qab) — f(ch) )

for example @, > QacQbe.

For a generic observable w;({c}) define a
generalized overlap w;({o})w;({7}). Typical
example is the link overlap.

In MF gj;,,)c ~ ¢*. In the fixed g ensemble

fluctuations due to RSB disappear.
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The Phase Space Spin Glasses at Low T

Testing UM with Clustering

Clustering results of numerical simulations.
Domany, Hed, Hartmann, Stauffer 2001, Domany, Hed,

Palassini, Young 2001.

We try to apply quantitative testing techniques
Ciliberti, Marinari. We test MF: we know
detecting UM is very difficult.

We find that the Z5 symmetry has to be
removed before any quantitative testing. This
is very important: the £1 degeneracy
completely obfuscates the results of the UM

tests (see later).
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The Phase Space Spin Glasses at Low T

Clustering (here for SK model with Gaussian

couplings).

First you produce independent configurations (save
V1000 full MC plus tempering sweeps)
configurations at different (low) 7" values. N up to
512. T down to 0.2 (very low).

Set of configurations {C? }. Compute overlaps at

T =T from o}, (i)o;(j), and since we are at
equilibrium and configurations are uncorrelated

this is a stationary sequence.

Clustering: partition data in “natural classes”’:
e impose an ultrametric structure;
e check it it is natural.

Partion N objects into K clusters so that two
points that belong to the same group are more

similar than objects belonging to different groups.

Here we use, for the case ¢ € (—1,4+1) the
definition d ~ 152 € (0,1).
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The Phase Space Spin Glasses at Low T

Hierarchical cluster algorithm —

dendogram. ?m There are many
clustering algorithms one could use. Ward
algorithm looks very suitable.

Fuse two clusters (individual objects are initial
clusters).

Initial partition: one object per cluster.
Compute D, g among all “clusters”. Fuse the
two closer clusters:

,y: “OZUBH

Now define effective distance from this cluster
to other clusters. For the process oo + 3 — 7,
let n, be the number of objects in cluster «.
For all other cluster n we define

N =ngy +ng +ny. and

Na + Ny

N

ng + Ny Ny

d'm — dom +
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The Phase Space Spin Glasses at Low T

¢(7) = da,p (¢initia1 configuration (a) — 0)

0=p,,

5(v)= Y Dig

a,B€y

distance of all couples of configurations in a cluster.

Clusters formed earlier have lower ¢ and 6.

Output of the procedure is a dendogram. Leaves

are configurations. Ascending the tree you coarsen.
UM is built in.

Testing: are we detecting a real UM? A
is equivalent to the presence of an
ultrametric structure. So, we have to check validity

of the clustering.
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The Phase Space Spin Glasses at Low T

Visual observation does not help much... (but scale is
different).
|

]
’]Tm i M‘ﬁ.

g 'FWMTE,M' i ""Mﬁﬁ‘

GEndd Ak G ARG A |
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The Phase Space Spin Glasses at Low T

A different disorder sample.

il

i v'w\-]’“ 'yTr H,'.'IT”' ,vl-rM-H'I
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The Phase Space Spin Glasses at Low T

We summarize:

_ 1 — {quo,8

da,ﬁ 2

by application of a cluster algorithm we obtain
a

DENDOGRAM

i.e. an ordering of the configurations enriched

by a (cophenetic) distance

ordered C

ordered C

And now we can look at some figures.
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The Phase Space Spin Glasses at Low T

SK, N=512, T = T, /2

There is something good here.

March 2003 Les Houches Page 45



The Phase Space Spin Glasses at Low T

SK, N=512, T = T. /2

mﬂf]ﬂ.ﬂ?ﬁ {

But much less here.
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The Phase Space Spin Glasses at Low T

Before testing clustering. Classical analysis for

ultrametricity detection. Order
da,g 2 do,y 2 dg

and define
da,g = da,y
dg,~
UM = po 8 = pa,y = P(W) — 6(W) for L — oco.

Wa,8,y =

W2
PL(W)~e 22°MW) 5 40

Very slow decrease (see Cacciuto, EM, Parisi before).
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The Phase Space Spin Glasses at Low T

Standard techniques fo a quantitative test of
Clustering Jain and Dubes, Algorithms for Clustering
Data, Prentice Hall (1998).

Two hypothesis: Ry randomness (no UM), /?;

structures (our clustering is ok, UM structure is

not a dream).

We define some variable r, small under the null
hypothesis Ry. We define a such that

P(r > rqa|Ro) = «
Measure r = r* in our data.
o " > r, = reject Rp at level «;

o " < r, = accept Ry at level «.

Hubert I' statistics.

You want to compare two proximity matrices for

the same object.
e d, s true distance among configurations.

e f. p is zero if a and [ are in the same valley
(defined under a threshold level), is 1 if it is

not.
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The Phase Space Spin Glasses at Low T

(do,s — ma) ((fa,6 —my)
SdSf

Testing the hypothesis. Compute the probability
level. Select a number of random permutations of

integers m(a) and compute

['(7)

1 Z (da,g — ma) ((fr(a),m(s) — Ms)

T M2 S457

a,fB

Build up an histogram and check how probable it is
the clustering you obtained (larger than 95% ok?)

Results are positive (for valley threshold we have
seen in the figure) even after removing the £1

symmetry. There is some structure!
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The Phase Space Spin Glasses at Low T

We discuss last a second indicator. This is crucial, since
it tells us about the validity of the hierarchical
structure.

dg 3 cophenetic distance (UM by definition), i.e. the
distance on the dendogram. d, g is the true distance.

7 Zaﬁ dS 5da,p — d° d

O-do-c

K=

It must be close to one to support the presence of a
hierarchical structure (here there is not arbitrary
threshold in the definition).

K is very used in numerical taxonomy. Empirically 0.9
is not enough (can establish accurately levels with MC
as before).

Again, in presence of the Z2 symmetry, K is very high

and misleading. After removing it:

I T T T L
|5"’|_ — L'l':l_
|:l=- T L"-l-
%] %)
(L1} Dt

b e naf

A

b3

low, large errors, not very N dependent.

Detection on UM on “medium” size lattices is, even for
MF models, very difficult or, better, impossible.
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