PROCESSING NODE


Each Processing Node is composed of a JMILLE floating point processor, attached to a SDRAM local memory. The Memory Controller inside Jmille generates addresses for the External Memory summing up a Global Address given by Tmille and a Local Address computed by Jmille itself. This way each APEMille Processing Node is able to generate a different Memory Address. The five addresses needed by the Multiport Register File are fixed by our compiler at compile time, and therefore distributed to Jmille inside the Program Word. This is obtained by means of our VLIW (Very Long Instruction Word) compiling technology.

Each Processing Node generates Status Signals (Global conditions, Exceptions etc.). These Status Signals are collected into a Global Status Return managed by the Control System. This connection allows the Control System to execute flow control instructions based on simultaneous logical conditions produced by the set of Processing Nodes. The instruction word read by JMILLE specifies the set of addressed location inside the large multiport Register File internal to JMILLE, and controls the Arithmetic Devices inside the processing node. Moreover it specifies Local Conditional Operation, Local Addressing functions, and Special Arithmetic function calculations to be performed by JMILLE.



  Scheme of a Processing Node